Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Extracting Luttinger liquid parameter K based on U(1) symmetric infinite matrix product states

Wang Xiu-Juan Li Sheng-Hao

Citation:

Extracting Luttinger liquid parameter K based on U(1) symmetric infinite matrix product states

Wang Xiu-Juan, Li Sheng-Hao
PDF
HTML
Get Citation
  • We numerically calculate Luttinger liquid parameter K in the anisotropic spin XXZD models with spin $s = 1/2$, 1, and 2. In order to obtain groundstate wavefunctions in Luttinger liquid phases, we employ the $U(1)$ symmetric infinite matrix product states algorithm (iMPS). By using relation between the bipartite quantum fluctuations F and the so-called finite-entanglement scaling exponents $\kappa$, the Luttinger liquid parameter K can be extracted. For $s = 1/2$ and $D=0$, the numerically extracted Luttinger liquid parameter K is shown to be good agreement with the exact value. On using the fact that the spin-1 XXZD Hamiltonian with $ D \leqslant - 2$ can be mapped to an effective spin-1/2 XXZ model, we calculate the Luttinger liquid parameter for the region of $ D \leqslant - 2$. It is shown that our numerical value of the Luttinger liquid parameter agree well with the exact values, here, the relative error less than $1\%$. Also, our Luttinger liquid parameter at $\Delta = - 0.5$ and $ D = 0$ is shown to be consistent with the result form the density matrix renormalization group (DMRG) method. These results suggest that the $U(1)$ symmetric iMPS method can be applicable to calculate Luttinger liquid parameters if any system has a $U(1)$ symmetry for gapless phases. For instance, we present our Luttinger liquid parameters for the first time for the spin-1 XXZD model under the other parameters and the spin-2 XXZD model with $D = 1.5$.
      Corresponding author: Li Sheng-Hao, shanshui510@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11104362), the Research Program of Basic Research and Frontier Technology of Chongqing, China (Grant No. cstc2018jcyjAX0812), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN201801212), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2019JM-017).
    [1]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University)pp3—5

    [2]

    White S R 1992 Phys. Rev. Lett. 69 2863Google Scholar

    [3]

    Landau D P, Binder K 2011 A Guide to Monte-Carlo Simulatios in Statistical Physics (Cambridge: Cambridge University)pp70-73

    [4]

    Evenbly G, Vidal G 2009 Phys. Rev. B 79 144108.

    [5]

    Jordan J, Orus R, Vidal G, Verstraete F, Cirac J I 2008 Phys. Rev. Lett. 101 250602Google Scholar

    [6]

    Singh S, Zhou H Q, Vidal G 2010 New J. Phys. 12 033029Google Scholar

    [7]

    Jiang H C, Weng Z Y, Xiang T 2008 Phys. Rev. Lett. 101 090603Google Scholar

    [8]

    Czarnik P, Dziarmaga J 2015 Phys. Rev. B 92 035120.

    [9]

    Li W, Ran S J, Gong S S, Zhao Y, Xi B, Ye F, Su G 2011 Phys. Rev. Lett. 106 127202Google Scholar

    [10]

    Chen B B, Chen L, Chen Z Y, Li W, Weichselbaum A 2018 Phys. Rev. X 8 031082

    [11]

    Corboz P, Czarnik P, Kapteijns G, Tagliacozzo L 2018 Phys. Rev. X 8 031031

    [12]

    Singh S, Pfeifer R N C, Vidal G 2010 Phys. Rev. A 82 050301Google Scholar

    [13]

    Haghshenas R, Sheng D N 2017 arXiv: 1711.07584v1 [cond-mat.str-el]

    [14]

    Singh S, Pfeifer R N C, Vidal G 2011 Phys. Rev. B 83 115125Google Scholar

    [15]

    Song H F, Rachel S, Hur K Le 2010 Phys. Rev. B 82 012405Google Scholar

    [16]

    Song H F, Rachel S, Flindt C,Klich I, Laflorencie N, Hur K Le 2012 Phys. Rev. B 85 035409Google Scholar

    [17]

    Yang M F 2007 Phys. Rev. B 76 180403(R).

    [18]

    Boschi C D E, Ercolessi E, Ortolani F, Roncaglia M 2003 Eur. Phys. J. B 35 465Google Scholar

    [19]

    Pollmann F, Mukerjee S, Turner A, Moore J E 2009 Phys. Rev. Lett. 102 255701Google Scholar

    [20]

    苏耀恒, 陈爱民, 王洪雷, 相春环 2017 物理学报 66 120301Google Scholar

    Su Y H, Chen A M, Wang H L, Xiang C H 2017 Acta Phys. Sin. 66 120301Google Scholar

    [21]

    Yang C N, Yang C P 1966 Phys. Rev. 150 321Google Scholar

    [22]

    Chen W, Hida K, Sanctuary B C 2003 Phys. Rev. B 67 104401Google Scholar

    [23]

    Kjall J A, Zaletel M P, Mong R S K, Bardarson J H, Pollmann F 2013 Phys. Rev. B 87 235106Google Scholar

  • 图 1  (i)三指标张量${ {\varGamma}}$, 奇异值矩阵${ {\lambda}}$和粒子数n; (ii)具有$U(1)$对称的iMPS表示

    Figure 1.  (a) Three index tensor ${ {\varGamma}}$, singular value matrix ${ {\lambda}}$ and particle number n; (b) An U(1) symmetric iMPS representation.

    图 2  更新具有$U(1)$对称的MPS的过程(a)把U门作用在具有$U(1)$对称的MPS上; (b)吸收U门缩并(a)中的张量使之成为一个两指标张量${ {\varTheta}}$;(c)对张量${ {\varTheta}}$进行奇异值分解(SVD), 得到新的张量X, Y$\tilde{{ {\lambda}}_{\rm B}}$, 同时得到新的粒子数$\tilde{n_r}$;(d)插入逆矩阵, 还原原来的原胞结构; (e)得到更新的张量$\tilde{ {\varGamma}}^{\rm A}$, $\tilde{ {\varGamma}}^{\rm B}$$\tilde{ {\lambda}}^{\rm B}$及粒子数$\tilde{n_r}$

    Figure 2.  The process of update the U(1) symmetric MPS (a) applied gate U on the U(1) symmetric MPS, then contract the tensor network (a) into a single tensor ${ {\varTheta}}$. We compute the singular value decomposition of tensor ${ {\varTheta}}$, and get the new tensor X, Y$\tilde{{ {\lambda}}_{\rm B}}$ and particle number $\tilde{n_r}$ as in (c). (d) Insert inverse matrix and restore the original tensor structure, we obtain the new tensor $\tilde{ {\varGamma}}^{\rm A}$, $\tilde{ {\varGamma}}^{\rm B}$, $\tilde{ {\lambda}}^{\rm B}$ and particle number $\tilde{n_r}$ as in (e).

    图 3  在不同控制参量条件下, 自旋$S = 1/2$的XXZD模型的关联长度$\xi$和涨落F是截断维数$\chi$的函数. 其中, 参数$D = 0$

    Figure 3.  Correlation length $\xi$ and fluctuation F of spin $S = 1/2$ XXZD model as a function of the truncation dimension $\chi$ for various parameters $\varDelta$. Here, fixed parameter $D = 0$

    图 4  在不同控制参量条件下, 自旋$S = 1$的XXZD模型的关联长度$\xi$和涨落F是截断维数$\chi$的函数. 其中, 各向异性参数$\varDelta = -0.5$

    Figure 4.  Correlation length $\xi$ and fluctuation F of spin $S = 1$ XXZD model as a function of the truncation dimension $\chi$ for various parameters D. Here, fixed anisotropic parameter $\varDelta = -0.5$

    图 5  在不同控制参量条件下, 自旋$S = 2$的XXZD模型的关联长度$\xi$和涨落F是截断维数$\chi$的函数. 其中, 参数$D = 1.5$

    Figure 5.  Correlation length $\xi$ and fluctuation F of spin $S = 2$ XXZD model as a function of the truncation dimension $\chi$ for various parameters $\varDelta$. Here, fixed parameter $D = 1.5$

    表 1  自旋S = 1/2的XXZD模型在临界区的Luttinger液体参数K, 其中参数D = 0

    Table 1.  Estimates for Luttinger liquid parameter K in the critical phase of spin S = 1/2 XXZD model with the parameter D = 0.

    Δ 0 0.25 0.5 0.75 1
    K[精确] 1.0 0.8614... 0.75 0.6493... 0.5
    K[数值] 0.999 0.856 0.7529 0.6457 0.5198
    相对误差 0.001 0.0063 0.0039 0.0053 0.0396
    DownLoad: CSV

    表 2  自旋$S = 1$的XXZD模型在临界区的Luttinger液体参数K, 固定参数$\varDelta = -0.5$

    Table 2.  Estimates for Luttinger liquid parameter K in the critical phase of spin $S = 1$ XXZD model with the parameter $\varDelta = -0.5$.

    D –0.3 0 0.3 0.5 0.6
    K[数值] 3.3679 3.1275 2.6834 2.4126 2.2745
    DownLoad: CSV

    表 3  自旋S = 2的XXZD模型在临界区的Luttinger液体参数K, 固定参数$D = 1.5$

    Table 3.  Estimates for Luttinger liquid parameter K in the critical phase of spin S = 2 XXZD model with the parameter $D = 1.5$.

    Δ 0.4 0.8 1 1.2 1.6
    K[数值] 1.652 2.5227 2.4096 2.3546 2.1107
    DownLoad: CSV
  • [1]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University)pp3—5

    [2]

    White S R 1992 Phys. Rev. Lett. 69 2863Google Scholar

    [3]

    Landau D P, Binder K 2011 A Guide to Monte-Carlo Simulatios in Statistical Physics (Cambridge: Cambridge University)pp70-73

    [4]

    Evenbly G, Vidal G 2009 Phys. Rev. B 79 144108.

    [5]

    Jordan J, Orus R, Vidal G, Verstraete F, Cirac J I 2008 Phys. Rev. Lett. 101 250602Google Scholar

    [6]

    Singh S, Zhou H Q, Vidal G 2010 New J. Phys. 12 033029Google Scholar

    [7]

    Jiang H C, Weng Z Y, Xiang T 2008 Phys. Rev. Lett. 101 090603Google Scholar

    [8]

    Czarnik P, Dziarmaga J 2015 Phys. Rev. B 92 035120.

    [9]

    Li W, Ran S J, Gong S S, Zhao Y, Xi B, Ye F, Su G 2011 Phys. Rev. Lett. 106 127202Google Scholar

    [10]

    Chen B B, Chen L, Chen Z Y, Li W, Weichselbaum A 2018 Phys. Rev. X 8 031082

    [11]

    Corboz P, Czarnik P, Kapteijns G, Tagliacozzo L 2018 Phys. Rev. X 8 031031

    [12]

    Singh S, Pfeifer R N C, Vidal G 2010 Phys. Rev. A 82 050301Google Scholar

    [13]

    Haghshenas R, Sheng D N 2017 arXiv: 1711.07584v1 [cond-mat.str-el]

    [14]

    Singh S, Pfeifer R N C, Vidal G 2011 Phys. Rev. B 83 115125Google Scholar

    [15]

    Song H F, Rachel S, Hur K Le 2010 Phys. Rev. B 82 012405Google Scholar

    [16]

    Song H F, Rachel S, Flindt C,Klich I, Laflorencie N, Hur K Le 2012 Phys. Rev. B 85 035409Google Scholar

    [17]

    Yang M F 2007 Phys. Rev. B 76 180403(R).

    [18]

    Boschi C D E, Ercolessi E, Ortolani F, Roncaglia M 2003 Eur. Phys. J. B 35 465Google Scholar

    [19]

    Pollmann F, Mukerjee S, Turner A, Moore J E 2009 Phys. Rev. Lett. 102 255701Google Scholar

    [20]

    苏耀恒, 陈爱民, 王洪雷, 相春环 2017 物理学报 66 120301Google Scholar

    Su Y H, Chen A M, Wang H L, Xiang C H 2017 Acta Phys. Sin. 66 120301Google Scholar

    [21]

    Yang C N, Yang C P 1966 Phys. Rev. 150 321Google Scholar

    [22]

    Chen W, Hida K, Sanctuary B C 2003 Phys. Rev. B 67 104401Google Scholar

    [23]

    Kjall J A, Zaletel M P, Mong R S K, Bardarson J H, Pollmann F 2013 Phys. Rev. B 87 235106Google Scholar

  • [1] Lai Hong, Wan Lin-Chun. Dynamic and scalable secret sharing schemes based on matrix product compressed states. Acta Physica Sinica, 2024, 73(18): 180302. doi: 10.7498/aps.73.20240191
    [2] Li Xin-Yue, Qi Juan-Juan, Zhao Dun, Liu Wu-Ming. Soliton solutions of the spin-orbit coupled binary Bose-Einstein condensate system. Acta Physica Sinica, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [3] Chen Ruo-Fan. Time-evolving matrix product operator method and its applications in open quantum system. Acta Physica Sinica, 2023, 72(12): 120201. doi: 10.7498/aps.72.20222267
    [4] Jiao Rong-Zhen, Tang Shao-Jie, Zhang Chao. Analysis of statistical fluctuation in decoy state quantum key distribution system. Acta Physica Sinica, 2012, 61(5): 050302. doi: 10.7498/aps.61.050302
    [5] Lu Dao-Ming. The quantum properties of three-parameter two-mode squeezed number state. Acta Physica Sinica, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [6] Tian Li-Xin, He Ying-Huan, Huang Yi. A novel local-world-like evolving bipartite network model. Acta Physica Sinica, 2012, 61(22): 228903. doi: 10.7498/aps.61.228903
    [7] Wan Bao-Hui, Zhang Peng, Zhang Jing, Di Zeng-Ru, Fan Ying. Bootstrap percolation on bipartite networks. Acta Physica Sinica, 2012, 61(16): 166402. doi: 10.7498/aps.61.166402
    [8] Xiao Hai-Lin, Ouyang Shan, Xie Wu. Quantum turbo product codes. Acta Physica Sinica, 2011, 60(2): 020301. doi: 10.7498/aps.60.020301
    [9] Feng Ai-Xia, Gong Zhi-Qiang, Zhi Rong, Zhou Lei. Topological analysis of temperature networks using bipartite graph model. Acta Physica Sinica, 2010, 59(9): 6689-6696. doi: 10.7498/aps.59.6689
    [10] Ruan Wen, Lei Min-Sheng, Ji Ying-Hua, Xie An-Dong. Quantum effects of the mesoscopic LC electric circuit in thermal Kerr state. Acta Physica Sinica, 2005, 54(5): 2291-2295. doi: 10.7498/aps.54.2291
    [11] Zhang Zhi-Yong, Wang Tai-Hong. Luttinger parameter of carbon nanotubes investigated by shot noise experiment. Acta Physica Sinica, 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [12] Zhang Hai-Yan, GNgele, Ma Hong-Ru. . Acta Physica Sinica, 2002, 51(8): 1892-1896. doi: 10.7498/aps.51.1892
    [13] Cao Tian-De, Huang Qing-Long. . Acta Physica Sinica, 2002, 51(7): 1600-1603. doi: 10.7498/aps.51.1600
    [14] ZHANG HAI-YAN, GERHARD M?GELE, MA HONG-RU. SHORT-TIME DYNAMICS OF TWO-COMPONENTCOLLOIDAL SUSPENSIONS. Acta Physica Sinica, 2001, 50(9): 1810-1817. doi: 10.7498/aps.50.1810
    [15] WANG JI-SUO, SUN CHANG-YONG. QUANTUM FLUCTUATION OF MESOSCOPIC CIRCUIT IN SQUEEZED VACUUM STATE. Acta Physica Sinica, 1997, 46(10): 2007-2009. doi: 10.7498/aps.46.2007
    [16] TAN WEI-HAN, LIU REN-HONG. THE PARABOLA APPROXIMATION TO THE BIFURCATION THEORY. Acta Physica Sinica, 1990, 39(7): 35-39. doi: 10.7498/aps.39.35-2
    [17] CUI SHI-MIN, CAI JIAN-HUA. THEORY OF TWO-DIMENSIONAL FERMI LIQUIDS (Ⅱ)——LANDAU PARAMETERS OF 2-D LIQUID 3He. Acta Physica Sinica, 1990, 39(4): 572-579. doi: 10.7498/aps.39.572
    [18] ZHOU YU-KUI, YUN GUO-HONG. A STUDY ON THE EIGENSTATES OF QUANTUM NONLINEAR SCHR?DINGER MODEL WITH GENERAL SUPERMATRICES. Acta Physica Sinica, 1989, 38(4): 648-652. doi: 10.7498/aps.38.648
    [19] WEN ZHEN-YI. A NEW APPROACH FOR CALCULATING THE MATRIX ELEMENTS OF UNITARY GROUP GENERATOR PRODUCTS. Acta Physica Sinica, 1983, 32(9): 1149-1158. doi: 10.7498/aps.32.1149
    [20] ZHENG ZHAO-BO. AN ALTERNATE PROOF OF THE INFINITE ORDER PERTURBATION THEORY BY MATRIX PARTITION. Acta Physica Sinica, 1981, 30(7): 866-877. doi: 10.7498/aps.30.866
Metrics
  • Abstract views:  7670
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2019
  • Accepted Date:  31 May 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回