Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on velocity of supersonic molecular beam based on microphone

Zhou Mao-Lei Liu Dong Qu Guo-Feng Chen Zhi-Yuan Li Min Wang Yi-Zhou Xu Zi-Xu Han Ji-Feng

Citation:

Experimental study on velocity of supersonic molecular beam based on microphone

Zhou Mao-Lei, Liu Dong, Qu Guo-Feng, Chen Zhi-Yuan, Li Min, Wang Yi-Zhou, Xu Zi-Xu, Han Ji-Feng
PDF
HTML
Get Citation
  • The expansion and transportation of supersonic molecular beams is a complex process of molecular dynamics, and the related parameters are difficult to calculate accurately. Currently there is no rigorous theory to accurately predict the beam expansion process under specific valve conditions, and current researches are less concerned with the spatial evolution of supersonic molecular beam characteristics over long distance. In addition, time-of-flight mass spectrometry is not well suitable for supersonic molecular beam injection in the field of magnetic confinement fusion. Therefore, based on microphone measurements, the average velocities of several supersonic molecular beams (H2, D2, N2, Ar, He, CH4) in the process of free expansion and their evolutions in the far-field space (flight distance/nozzle diameter > 310) are studied in this work. The variations of velocity distribution with gas type, temperature, pressure and expansion distance are obtained. The results show that the velocities of H2, D2 and He beams account for only 54%, 60% and 68% of their ideal limit velocities, respectively, and their velocities decrease rapidly in the far-field space. The velocities of CH4, N2 and Ar beams are very close to their limit velocities, accounting for 85%, 92% and 99% respectively, and their velocities decrease slowly in the far-field space. And the results show that the velocities of the H2 and D2 beams increase with the source pressure, while the velocities of the other four molecular beams decrease slightly with the source pressure. And it is found that the velocity of supersonic beam without skimmer is negatively correlated with the square root of the molecular mass. For the effect of temperature on velocity, the results show that the velocities of H2 and D2 beams increase with the source temperature but are smaller than their limit velocities at given temperature, and the difference is larger for higher temperature. The results of this experiment provide basic data for controlling the parameters of the supersonic molecular beam by adjusting the temperature and pressure of the gas source, which will contribute to the application of supersonic molecular beams in fusion reactor fueling technology. And this study will contribute to further exploration of the evolution of supersonic molecular beam properties in the far-field space.
      Corresponding author: Qu Guo-Feng, quguofeng@scu.edu.cn ; Han Ji-Feng, hanjf@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575121) and the National Magnetic Confinement Fusion Program of China (Grant No. 2014GB125004).
    [1]

    Dunning F B, Hulet R G 1996 Atomic, Molecular, and Optical Physics: Atoms and Molecules (London: Academic Press) Volume 29B, p435

    [2]

    赵健华, 刘晓敏, 刘培启, 胡大鹏 2015 化工机械 42 59

    Zhao J H, Liu X M, Liu P Q, Hu D P 2015 Chem. Mach. 42 59

    [3]

    Farias D, Rieder K 1998 Rep. Prog. Phys. 61 1575Google Scholar

    [4]

    Smalley R E, Ramakrishna B L, Levy D H, Wharton L 1974 J. Chem. Phys. 61 4363Google Scholar

    [5]

    姚良骅, 冯北滨, 冯震, 董贾福, 郦文忠, 徐德明, 洪文玉 2002 物理学报 51 596

    Yao L H, Feng B B, Feng Z, Dong J F, Li W Z, Xu D M, Hong W Y 2002 Acta Phys. Sin. 51 596

    [6]

    姚良骅, 冯北滨, 陈程远, 冯震, 李伟, 焦一鸣 2008 物理学报 57 4159

    Yao L H, Feng B B, Chen C Y, Feng Z, Li W, Jiao Y M 2008 Acta Phys. Sin. 57 4159

    [7]

    Soukhanovskii V A, Kugel H W, Kaita R, Majeski R, Roquemore A L 2004 Rev. Sci. Instrum. 75 4320Google Scholar

    [8]

    Ekinci Y, Knuth E L, Toennies J P 2006 J. Chem. Phys. 125 133409Google Scholar

    [9]

    Christen W, Krause T, Rademann K 2007 Rev. Sci. Instrum. 78 73106Google Scholar

    [10]

    吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏 2017 物理学报 66 195201

    Wu X K, Sun X Q, Liu Y X, Li H D, Zhou Y L, Wang Z H, Feng H 2017 Acta Phys. Sin. 66 195201

    [11]

    董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文 2002 物理学报 51 2074

    Dong J F, Tang N Y, Li W, Luo J L, Guo G C, Zhong Y Z, Liu Y, Fu B Z, Yao L H, Feng B B, Qin Y W 2002 Acta Phys. Sin. 51 2074

    [12]

    Wang Z H, Xu X Q, Xia T Y, Rognlien T D 2014 Nucl. Fusion 54 43019Google Scholar

    [13]

    Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L 2016 Chin. Phys. B 25 106601

    [14]

    Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H, Sun W G 2015 Phys. Plasmas 22 12503Google Scholar

    [15]

    Hagena O F, Varma A K 1968 Rev. Sci. Instrum. 39 47Google Scholar

    [16]

    Haberland H, Buck U, Tolle M 1985 Rev. Sci. Instrum. 56 1712Google Scholar

    [17]

    Christen W, Krause T, Kobin B, Rademann K 2011 J. Phys. Chem. A 115 6997Google Scholar

    [18]

    Christen W 2013 J. Chem. Phys. 139 24202Google Scholar

    [19]

    Irie T, Asunobu T Y, Kashimura H 2003 J. Therm. Sci. 12 132Google Scholar

    [20]

    Tejeda G, Mate B, Fernandez-Sanchez J M, Montero S 1996 Phys. Rev. Lett. 76 34Google Scholar

    [21]

    Teshima K, Sommerfeld M 1987 Exp. Fluids 5 197Google Scholar

    [22]

    Belan M A D P 2004 Astrophys. Space Sci. 293 225Google Scholar

    [23]

    Even U 2014 Adv. Chem. 2014 636042

    [24]

    Wei G, Zhu R, Cheng T, Zhao F 2016 J. Iron Steel Res. Int. 23 997Google Scholar

    [25]

    Christen W, Rademann K, Even U 2010 J. Phys. Chem. A 114 11189Google Scholar

    [26]

    Kornilov O, Toennies J P 2009 Int. J. Mass Spectrom. 280 209Google Scholar

    [27]

    Reisinger T, Greve M M, Eder S D, Bracco G, Holst B 2012 Phys. Rev. A 86 043804Google Scholar

    [28]

    Christen W, Rademann K 2009 Phys. Scripta 80 48127Google Scholar

    [29]

    He L, Yi S, Zhao Y, Tian L, Chen Z 2011 Sci. China: Phys. Mech. Astron. 54 1702Google Scholar

    [30]

    Kerhervé F, Jordan P, Gervais Y, Valière J C, Braud P 2004 Exp. Fluids 37 419Google Scholar

    [31]

    Liu D, Han J F, Chen Z Y, Bai L X, Zhou J X 2016 Rev. Sci. Instrum. 87 123504Google Scholar

    [32]

    Chen Z, Li M, Zhou M, Liu D, Qu G, Wang Y, Han J 2019 J. Fusion Energ. 38 228

    [33]

    Han J, Yang C, Miao J, Fu P, Luo X, Shi M 2010 J. Appl. Phys. 108 64327Google Scholar

    [34]

    Liepmann H W, Roshko A 2001 Elements of Gasdynamics ( New York: Courier Corporation)

    [35]

    赵大为 2009 硕士学位论文(成都: 电子科技大学)

    Zhao D W 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [36]

    Eder S D, Salvador Palau A, Kaltenbacher T, Bracco G, Holst B 2018 Rev. Sci. Instrum. 89 113301Google Scholar

    [37]

    Hagena O F, Obert W 1972 J. Chem. Phys. 56 1793Google Scholar

    [38]

    Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798Google Scholar

    [39]

    Akiyoshi M, Junichi M, Tsuchiya H 2010 J. Plasma Fusion Res. SERIES 9 79

  • 图 1  超声分子束速度测量装置示意图

    Figure 1.  Schematic diagram of supersonic molecular beam velocity measuring device.

    图 2  多次测量定时误差 (a)和频率分布直方图(b)

    Figure 2.  Timing error (a) and frequency distribution histogram (b) of multiple measurements

    图 3  压强P0为50 bar时, 超声分子束速度随轴向距离的变化规律 (a) H2, D2和He的速度结果; (b) N2, Ar和CH4的速度结果

    Figure 3.  The velocity of the supersonic molecular beam varies with the axial distance when the pressure P0 was 50 bar: (a) The velocity results of H2,D2 and He; (b) the velocity results of N2,Ar and CH4.

    图 4  H2, D2和He分子束(a), 以及N2, Ar和CH4分子束(b)的飞行速度随源压强的变化曲线

    Figure 4.  The curves of the velocities of H2, D2 and He molecular beams (a) and N2, Ar and CH4 molecular beams (b) with pressure.

    图 5  六种超声分子束的速度与分子量之间的关系 实心方形■代表在50 bar源压强下速度的测量结果, 空心圆○代表估算的极限速度结果

    Figure 5.  The relationship between the velocities of the six supersonic molecular beams and their molecular weights. The solid square ■ represents the measured velocity at 50 bar source pressure, and the hollow circle ○ represents the estimated limit velocity.

    图 6  H2(a), D2(b)超声束速度随温度的变化结果

    Figure 6.  The variation of supersonic H2(a) and D2(b) beam velocity with temperature.

    表 1  H2, D2, N2, Ar, He和CH4的实验拟合速度和各自极限速度的对比

    Table 1.  Comparison of the experimental fitting velocities and the limit velocities of H2, D2, N2, Ar, He and CH4.

    GasH2D2N2ArHeCH4
    T/℃222624262424
    vfit/m·s–11392—15721083—1234609—727497—5561048—1174847—984
    vlim/m·s–12931208678655717571157
    DownLoad: CSV
  • [1]

    Dunning F B, Hulet R G 1996 Atomic, Molecular, and Optical Physics: Atoms and Molecules (London: Academic Press) Volume 29B, p435

    [2]

    赵健华, 刘晓敏, 刘培启, 胡大鹏 2015 化工机械 42 59

    Zhao J H, Liu X M, Liu P Q, Hu D P 2015 Chem. Mach. 42 59

    [3]

    Farias D, Rieder K 1998 Rep. Prog. Phys. 61 1575Google Scholar

    [4]

    Smalley R E, Ramakrishna B L, Levy D H, Wharton L 1974 J. Chem. Phys. 61 4363Google Scholar

    [5]

    姚良骅, 冯北滨, 冯震, 董贾福, 郦文忠, 徐德明, 洪文玉 2002 物理学报 51 596

    Yao L H, Feng B B, Feng Z, Dong J F, Li W Z, Xu D M, Hong W Y 2002 Acta Phys. Sin. 51 596

    [6]

    姚良骅, 冯北滨, 陈程远, 冯震, 李伟, 焦一鸣 2008 物理学报 57 4159

    Yao L H, Feng B B, Chen C Y, Feng Z, Li W, Jiao Y M 2008 Acta Phys. Sin. 57 4159

    [7]

    Soukhanovskii V A, Kugel H W, Kaita R, Majeski R, Roquemore A L 2004 Rev. Sci. Instrum. 75 4320Google Scholar

    [8]

    Ekinci Y, Knuth E L, Toennies J P 2006 J. Chem. Phys. 125 133409Google Scholar

    [9]

    Christen W, Krause T, Rademann K 2007 Rev. Sci. Instrum. 78 73106Google Scholar

    [10]

    吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏 2017 物理学报 66 195201

    Wu X K, Sun X Q, Liu Y X, Li H D, Zhou Y L, Wang Z H, Feng H 2017 Acta Phys. Sin. 66 195201

    [11]

    董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文 2002 物理学报 51 2074

    Dong J F, Tang N Y, Li W, Luo J L, Guo G C, Zhong Y Z, Liu Y, Fu B Z, Yao L H, Feng B B, Qin Y W 2002 Acta Phys. Sin. 51 2074

    [12]

    Wang Z H, Xu X Q, Xia T Y, Rognlien T D 2014 Nucl. Fusion 54 43019Google Scholar

    [13]

    Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L 2016 Chin. Phys. B 25 106601

    [14]

    Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H, Sun W G 2015 Phys. Plasmas 22 12503Google Scholar

    [15]

    Hagena O F, Varma A K 1968 Rev. Sci. Instrum. 39 47Google Scholar

    [16]

    Haberland H, Buck U, Tolle M 1985 Rev. Sci. Instrum. 56 1712Google Scholar

    [17]

    Christen W, Krause T, Kobin B, Rademann K 2011 J. Phys. Chem. A 115 6997Google Scholar

    [18]

    Christen W 2013 J. Chem. Phys. 139 24202Google Scholar

    [19]

    Irie T, Asunobu T Y, Kashimura H 2003 J. Therm. Sci. 12 132Google Scholar

    [20]

    Tejeda G, Mate B, Fernandez-Sanchez J M, Montero S 1996 Phys. Rev. Lett. 76 34Google Scholar

    [21]

    Teshima K, Sommerfeld M 1987 Exp. Fluids 5 197Google Scholar

    [22]

    Belan M A D P 2004 Astrophys. Space Sci. 293 225Google Scholar

    [23]

    Even U 2014 Adv. Chem. 2014 636042

    [24]

    Wei G, Zhu R, Cheng T, Zhao F 2016 J. Iron Steel Res. Int. 23 997Google Scholar

    [25]

    Christen W, Rademann K, Even U 2010 J. Phys. Chem. A 114 11189Google Scholar

    [26]

    Kornilov O, Toennies J P 2009 Int. J. Mass Spectrom. 280 209Google Scholar

    [27]

    Reisinger T, Greve M M, Eder S D, Bracco G, Holst B 2012 Phys. Rev. A 86 043804Google Scholar

    [28]

    Christen W, Rademann K 2009 Phys. Scripta 80 48127Google Scholar

    [29]

    He L, Yi S, Zhao Y, Tian L, Chen Z 2011 Sci. China: Phys. Mech. Astron. 54 1702Google Scholar

    [30]

    Kerhervé F, Jordan P, Gervais Y, Valière J C, Braud P 2004 Exp. Fluids 37 419Google Scholar

    [31]

    Liu D, Han J F, Chen Z Y, Bai L X, Zhou J X 2016 Rev. Sci. Instrum. 87 123504Google Scholar

    [32]

    Chen Z, Li M, Zhou M, Liu D, Qu G, Wang Y, Han J 2019 J. Fusion Energ. 38 228

    [33]

    Han J, Yang C, Miao J, Fu P, Luo X, Shi M 2010 J. Appl. Phys. 108 64327Google Scholar

    [34]

    Liepmann H W, Roshko A 2001 Elements of Gasdynamics ( New York: Courier Corporation)

    [35]

    赵大为 2009 硕士学位论文(成都: 电子科技大学)

    Zhao D W 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [36]

    Eder S D, Salvador Palau A, Kaltenbacher T, Bracco G, Holst B 2018 Rev. Sci. Instrum. 89 113301Google Scholar

    [37]

    Hagena O F, Obert W 1972 J. Chem. Phys. 56 1793Google Scholar

    [38]

    Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798Google Scholar

    [39]

    Akiyoshi M, Junichi M, Tsuchiya H 2010 J. Plasma Fusion Res. SERIES 9 79

  • [1] Liu Xin, Cai Chen, Dong Zhi-Fei, Deng Xin, Hu Xin-Yu, Qi Zhi-Mei. Fiber-optic microphone based on bionic silicon micro-electro-mechanical system diaphragm. Acta Physica Sinica, 2022, 71(9): 094301. doi: 10.7498/aps.71.20212229
    [2] Yin Jiao, Xiao Guo-Liang, Chen Cheng-Yuan, Feng Bei-Bin, Zhang Yi-Po, Zhong Wu-Lü. Development and applications of schlieren system for measuring characteristics of supersonic molecular beam. Acta Physica Sinica, 2020, 69(21): 215202. doi: 10.7498/aps.69.20201383
    [3] Wang Chuan-Wei, Li Ning, Huang Xiao-Long, Weng Chun-Sheng. Two-stage velocity distribution measurement from multiple projections by tunable diode laser absorption spectrum. Acta Physica Sinica, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [4] Wu Xue-Ke, Sun Xiao-Qin, Liu Yin-Xue, Li Hui-Dong, Zhou Yu-Lin, Wang Zhan-Hui, Feng Hao. Effects of width and density of supersonic molecule beam on penetration depth of tokamak. Acta Physica Sinica, 2017, 66(19): 195201. doi: 10.7498/aps.66.195201
    [5] Pei Xiao-Yang, Peng Hui, He Hong-Liang, Li Ping. Discussion on the physical meaning of free surface velocity curve in ductile spallation. Acta Physica Sinica, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
    [6] Guo Ye-Cai, Zhang Ning, Wu Li-Fu, Sun Xin-Yu. Adaptive weighted constrained least squares algorithm based microphone array robustness beamforming algorithm. Acta Physica Sinica, 2015, 64(17): 174303. doi: 10.7498/aps.64.174303
    [7] Tang Xiong-Gui, Liao Jin-Kun, Li He-Ping, Liu Yong, Liu Yong-Zhi. Design of tunable optical power splitter based on thermal expansion effect. Acta Physica Sinica, 2013, 62(2): 024218. doi: 10.7498/aps.62.024218
    [8] Zhang Qiang, Chen Xin, He Li-Ming, Rong Kang. An experimental study of rectangular under-expanded supersonic jets collision. Acta Physica Sinica, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [9] Feng Bei-Bin, Yao Liang-Hua, Chen Cheng-Yuan, Ji Xiao-Quan, Zhong Wu-Lü, Shi Zhong-Bing, Yu De-Liang, Cui Zheng-Ying, Song Xian-Ming, Duan Xu-Ru. Experimental study of L-H transition triggered by supersonic molecular beam injection in the HL-2A tokamak. Acta Physica Sinica, 2013, 62(1): 015203. doi: 10.7498/aps.62.015203
    [10] Xu Yan, Fan Wei, Chen Bing, Nan Xiang-Hong, Chen Da, Zhou Qiang, Zhang Lu-Yin. Density-density correlation in quasi two-dimensional free expanding Bose-Einstein condensates. Acta Physica Sinica, 2013, 62(21): 216701. doi: 10.7498/aps.62.216701
    [11] Zheng Xing-Wei, Li Jian-Gang, Hu Jian-Sheng, Li Jia-Hong, Cao Bin, Wu Jin-Hua. Investgation of gas puffing and supersonic molecular beam injection density feedback expriments on EAST. Acta Physica Sinica, 2013, 62(15): 155202. doi: 10.7498/aps.62.155202
    [12] Wang Xin-Liang, Chen Jie, Wang Ye-Bing, Gao Feng, Zhang Shou-Gang, Liu Hai-Feng, Chang Hong. Measurement of velocity distribution for strontium atom beam by Zeeman Scanning technology. Acta Physica Sinica, 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [13] Jiao Yi-Ming, Yao Liang-Hua, Feng Bei-Bin, Chen Cheng-Yuan, Zhou Yan, Shi Zhong-Bing, Dong Jia-Qi, Duan Xu-Ru. Impact of injecting positions on penetration and deposition of supersonic molecular beam on Tokamak. Acta Physica Sinica, 2010, 59(10): 7191-7197. doi: 10.7498/aps.59.7191
    [14] Ding Xue-Cheng, Fu Guang-Sheng, Liang Wei-Hua, Chu Li-Zhi, Deng Ze-Chao, Wang Ying-Long. Influence of the initial ablated-particle density on distribution of density and velocity of ablated-particles. Acta Physica Sinica, 2010, 59(5): 3331-3335. doi: 10.7498/aps.59.3331
    [15] Yao Liang-Hua, Feng Bei-Bin, Chen Cheng-Yuan, Feng Zhen, Li Wei, Jiao Yi-Ming. Recent results of SMBI on the HL-2A tokamak with divertor configuration. Acta Physica Sinica, 2008, 57(7): 4159-4165. doi: 10.7498/aps.57.4159
    [16] Shi Zhong-Bing, Yao Liang-Hua, Ding Xuan-Tong, Duan Xu-Ru, Feng Bei-Bin, Liu Ze-Tian, Xiao Wei-Wen, Sun Hong-Juan, Li Xu, Li Wei, Chen Cheng-Yuan, Jiao Yi-Ming. Experimental study of injection depth and fuelling effects during supersonic molecular beam injection on the HL-2A tokamak. Acta Physica Sinica, 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [17] Jiao Yi-Ming, Zhou Yan, Yao Liang-Hua, Dong Jia-Qi. Penetration and attenuation of SMB fueling in tokamak plasma. Acta Physica Sinica, 2004, 53(4): 1123-1128. doi: 10.7498/aps.53.1123
    [18] Dong Jia-Fu, Tang Nian-Yi, Li Wei, Luo Jun-Lin, Guo Gan-Cheng, Zhong Yun-Ze, Liu Yi, Fu Bing-Zhong, Yao Liang-Ye, Feng Bin-Bin, Qin Yun-Wen. . Acta Physica Sinica, 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
    [19] Yao Liang-Ye, Feng Bei-Bin, Feng Zhen, Dong Jia-Fu, Li Wen-Zhong, Xu De-Ming, Hong Wen-Yu. . Acta Physica Sinica, 2002, 51(3): 596-602. doi: 10.7498/aps.51.596
    [20] ZHANG JUN, GU PEI-JUN. FREE EXPANSION OF PLASMA WITH THREE AND MULTIPLE ELECTRON TEMPERATURES AND PRODUCTION OF FAST IONS. Acta Physica Sinica, 1993, 42(7): 1098-1105. doi: 10.7498/aps.42.1098
Metrics
  • Abstract views:  8197
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2019
  • Accepted Date:  16 May 2019
  • Available Online:  01 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回