Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mixed injection mechanism assisted cascaded laser wakefield accelerator

Tan Fang Zhang Xiao-Hui Zhu Bin Li Gang Wu Yu-Chi Yu Ming-Hai Yang Yue Yan Yong-Hong Yang Jing Fan Wei Dong Ke-Gong Lu Feng Gu Yu-Qiu

Citation:

Mixed injection mechanism assisted cascaded laser wakefield accelerator

Tan Fang, Zhang Xiao-Hui, Zhu Bin, Li Gang, Wu Yu-Chi, Yu Ming-Hai, Yang Yue, Yan Yong-Hong, Yang Jing, Fan Wei, Dong Ke-Gong, Lu Feng, Gu Yu-Qiu
PDF
HTML
Get Citation
  • Femtosecond electron bunches can be produced by laser plasma wakefield accelerators, with energy tunable from tens of MeV to a few GeV. In order to produce stable mono-energetic electron bunches, a critical issue is to control the injection of electron into the wakefield. The ionization injection is one of the most effective methods of controlling the injection, which is usually a continuous process. So, the electron bunches produced through ionization injection usually possess large energy spread. In order to optimize the ionization injection technique and produce stable monoenergetic wakefield electron beams, experimental studies are conducted on our 45 TW laser facility. In this work, a mixed injection mechanism assisted cascaded laser wakefield accelerator is presented. Based on a double-nozzle cascaded accelerator, the influences of ionization injection, shock wave front injection and their combination are experimentally studied. The results show that the lower threshold of the injection can be substantially reduced. The ionization injection is restricted within the shock wave front. As a result, mono-energetic electron bunches with reduced absolute energy spread can be stably produced. Under the most optimal conditions, the central energy and energy spread are (63.24 ± 6.12) MeV and (13.0 ± 3.9) MeV. The charge quantity of the electron bunches is (5.99 ± 3.10) pC. The minimum emitting anglular spread is (3.6 × 3.8) mrad.
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported the Presidential Foundation of the China Academy of Engineering Physics (Grant No. 2014-1-017), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1630246), the Science Challenge Project, China (Grant No. JCKY2016212A505), and the National Key Research and Development Program of China (Grant No. 016YFA0401100).
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    徐慧, 盛政明, 张杰 2007 物理学报 56 968Google Scholar

    Xu H, Sheng Z M, Zhang J 2007 Acta Phys. Sin. 56 968Google Scholar

    [3]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [4]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A B, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszyanski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [5]

    Geddes C G R, Toth C, Tilborg J V, Esarey E, Schroeder C B, Bruhwiler D L, Nieter C, Cary J R, Leemans W P 2004 Nature 431 538Google Scholar

    [6]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [7]

    Clayton C E, Ralph J E, Albert F, Fonseca R A, Glenzer S H, Joshi C, Lu W, Marsh K A, Martins S F, Mori W B, Pak A, Tsung F S, Pollock B B, Ross J S, Silva L O, Froula D H 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [8]

    Wang X M, Zgadzaj R, Fazel N, Li Z Y, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nat. Commun. 4 1988Google Scholar

    [9]

    Kim H T, Pae K H, Cha H J, I Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [10]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [11]

    Catravas P, Esarey E, Leemans W P 2001 Meas. Sci. Technology 12 1828Google Scholar

    [12]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2013 Nat. Photonics 8 28

    [13]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [14]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A Di, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [15]

    Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar

    [16]

    Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003Google Scholar

    [17]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [18]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106Google Scholar

    [19]

    Yu C H, Qi R, Wang W T, Liu J S, Li W T, Wang C, Zhang Z J, Liu J Q, Qin Z Y, Fang M, Feng K, Wu Y, Tian Y, Xu Yi, Wu F X, Leng Y X, Weng X F, Wang J H, Wei F L, Yi Y C, Song Z H, Li R X, Xu Z Z 2016 Sci. Rep. 6 29518Google Scholar

    [20]

    Modena A, Najmudin Z, Dangor A E, Clayton C E, Marsh C A, Joshi C, Malka V, Darrow C B, Danson C, Neely D, Walsh F N 1995 Nature 377 606Google Scholar

    [21]

    Tzeng K C, Mori W B, Katsouleas T 1997 Phys. Rev. Lett. 79 5258Google Scholar

    [22]

    Bulanov S V, Pegoraro F, Pukhov A M, Sakharov A S 1997 Phys. Rev. Lett. 78 4205Google Scholar

    [23]

    Gordon D, Tzeng K C, Clayton C E, Dangor A E, Malka V, Marsh K A, Modena A, Mori W B, Muggli P, Najmudin Z, Neely D, Danson C, Joshi C 1998 Phys. Rev. Lett. 80 2133Google Scholar

    [24]

    Kostyukov I, Pukhov A, Kiselev S 2004 Phys. Plasmas 11 5256Google Scholar

    [25]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002Google Scholar

    [26]

    Osterhoff J, Popp A, Major Z, Marx B, Rowlands-Rees T P, Fuchs M, Geissler M, Hörlein R, Hidding B, Becker S, Peralta E A, Schramm U, Grüner F, Habs D, Krausz F, Hooker S M, Karsch S 2008 Phys. Rev. Lett. 101 085002Google Scholar

    [27]

    Chen M, Esarey E, Schroeder C B, Geddes C G R, Leemans W P 2012 Phys. Plasmas 19 033101Google Scholar

    [28]

    Rowlands-Rees T P, Kamperidis C, Kneip S, Gonsalves A J, Mangles S P D, Gallacher J G, Brunetti E, Ibbotson T, Murphy C D, Foster P S, Streeter M J V, Budde F, Norreys P A, Jaroszynski D A, Krushelnick K, Najmudin Z, Hooker S M 2008 Phys. Rev. Lett. 100 105005Google Scholar

    [29]

    Pak A, Marsh K A, Martins S F, Lu W, Mori W B, Joshi C 2010 Phys. Rev. Lett. 104 025003Google Scholar

    [30]

    McGuffey C, Thomas A G R, Schumaker W, Matsuoka T, Chvykov V, Dollar F J, Kalintchenko G, Yanovsky V, Maksimchuk A, Krushelnick K 2010 Phys. Rev. Lett. 104 025004Google Scholar

    [31]

    Esarey E, Hubbard R F, Leemans W P, Ting A, Sprangle P 1997 Phys. Rev. Lett. 79 2682Google Scholar

    [32]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737Google Scholar

    [33]

    Kotaki H, Daito I, Kando M, Hayashi Y, Kawase K, Kameshima T, Fukuda Y, Homma T, Ma J, Chen L M, Esirkepov T Zh, Pirozhkov A S, Koga J K, Faenov A, Pikuz T, Kiriyama H, Okada H, Shimomura T, Nakai Y, Tanoue M, Sasao H, Wakai D, Matsuura H, Kondo S, Kanazawa S, Sugiyama A, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 194803Google Scholar

    [34]

    Bulanov S, Naumova N, Pegoraro F, Sakai J 1998 Phys. Rev. E 58 R5257Google Scholar

    [35]

    Geddes C G R, Nakamura K, Plateau G R, Toth C, Cormier-Michel E, Esarey E, Schroeder C B, Cary J R, Leemans W P 2008 Phys. Rev. Lett. 110 215004

    [36]

    Faure J, Rechatin C, Lundh O, Ammoura L, Malka V 2010 Phys. Plasmas 17 083107Google Scholar

    [37]

    Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, van Tilborg J, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar

    [38]

    Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S, Veisz L 2013 Phys. Rev. Lett. 110 185006Google Scholar

    [39]

    Suk H, Barov N, Rosenzweig J B, Esarey E 2001 Phys. Rev. Lett. 86 1011Google Scholar

    [40]

    Tomassini P, Galimberti M, Giulietti A, Giulietti D, Gizzi L A, Labate L, Pegoraro F 2003 Phys. Rev. Spec. Top. Accel. Beams 6 121301Google Scholar

    [41]

    Kim J U, Hafz N, Suk H 2004 Phys. Rev. E 69 026409Google Scholar

    [42]

    Chien T Y, Chang C L, Lee C H, Lin J Y, Wang J, Chen S Y 2005 Phys. Rev. Lett. 94 115003Google Scholar

    [43]

    Schmid K, Buck A, Sears C M S, Mikhailova J M, Tautz R, Herrmann D, Geissler M, Krausz F, Veisz L 2010 Phys. Rev. Spec. Top. Accel. Beams 13 091301Google Scholar

    [44]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001Google Scholar

    [45]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X, Xu Z Z 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [46]

    Leemans W, Esarey E 2009 Phys. Today 62 44

    [47]

    Schroeder C B, Esarey E, Geddes C G R, Benedetti C, Leemans W P 2010 Phys. Rev. Spec. Top. Accel. Beams 13 101301Google Scholar

    [48]

    董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方 2010 物理学报 596 8733Google Scholar

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 596 8733Google Scholar

    [49]

    Thaury C, Guillaume E, Lifschitz A, Phuoc K T, Hansson M, Grittani G, Gautier J, Goddet J P, Tafzi A, Lundh O, Malka V 2015 Sci. Rep. 5 16310Google Scholar

    [50]

    Golovin G, Chen S, Powers N, Liu C, Banerjee S, Zhang J, Zeng M, Sheng Z, Umstadter D 2015 Phys. Rev. Spec. Top. Accel. Beams 18 011301Google Scholar

  • 图 1   (a) 喷嘴设计及实验排布; (b) 气体密度分布侧视二维图; (c) 2 mm高处气体密度对应电子密度的一维分布

    Figure 1.   (a) The gas jet designment and the experimental layout; (b) the side view of the gas density distribution; (c) the one dimensional electron density at a height of 2 mm from the gas jet.

    图 2  电子束斑 (上)单喷嘴、纯He气结果; (下)双喷嘴无刀边、混合气结果

    Figure 2.  Electron angular distribution for ((a)−(e)) single stage gas jet and ((f)−(j)) dual-stage gas jet.

    图 3  电子束斑 (a)−(e) He气结果; (f)−(j) He气混入2.5% N2气结果

    Figure 3.  The electron angular distribution for (a)−(e) pure He and (f)−(j) the mixed gas of He with 2.5% N2.

    图 4  喷气气压650 kPa时发射角最小的电子束斑

    Figure 4.  The spot size for shot 0562 when the jet pressure is 650 kPa.

    图 5  喷气气压650 kPa时连续打靶5发, 磁谱仪测量到的电子能谱

    Figure 5.  Electron energy spectra for continuous 5 shots under jet pressure of 650 kPa.

    图 6  等离子体中电子在纵向相空间(x-γVx)的分布

    Figure 6.  The Distribution of electrons in longitudinal phase space (x-γVx).

    表 1  喷气气压650 kPa时连续打靶6发得到的电子束斑参数, θx,, θy为出射方向, σx, σy为角分布光斑的半高全宽直径

    Table 1.  The emitting direction θx, θy and the FWHM angular spread σx, σy of the electron angular distribution for continuous 6 shots under jet pressure of 650 kPa.

    发次号θx/mradθy/mradσx/mradσy/mrad
    558–25.528.98.55.6
    559–22.127.35.05.6
    560–23.523.36.24.8
    561–19.023.36.55.1
    562–18.124.23.83.6
    563–19.719.46.44.4
    DownLoad: CSV

    表 2  喷气气压650 kPa时连续打靶5发得到的电子能谱参数

    Table 2.  The central energy, charge and energy spread of the electrons for continuous 5 shots when the jet pressure is 650 kPa.

    发次号中心能量/MeV电量/pC能散FWHM/MeV
    57066.76.510
    57166.19.417
    57258.22.06.9
    57354.29.214.3
    574712.8616.6
    DownLoad: CSV
  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    徐慧, 盛政明, 张杰 2007 物理学报 56 968Google Scholar

    Xu H, Sheng Z M, Zhang J 2007 Acta Phys. Sin. 56 968Google Scholar

    [3]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [4]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A B, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszyanski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [5]

    Geddes C G R, Toth C, Tilborg J V, Esarey E, Schroeder C B, Bruhwiler D L, Nieter C, Cary J R, Leemans W P 2004 Nature 431 538Google Scholar

    [6]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [7]

    Clayton C E, Ralph J E, Albert F, Fonseca R A, Glenzer S H, Joshi C, Lu W, Marsh K A, Martins S F, Mori W B, Pak A, Tsung F S, Pollock B B, Ross J S, Silva L O, Froula D H 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [8]

    Wang X M, Zgadzaj R, Fazel N, Li Z Y, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nat. Commun. 4 1988Google Scholar

    [9]

    Kim H T, Pae K H, Cha H J, I Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [10]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [11]

    Catravas P, Esarey E, Leemans W P 2001 Meas. Sci. Technology 12 1828Google Scholar

    [12]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2013 Nat. Photonics 8 28

    [13]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [14]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A Di, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [15]

    Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar

    [16]

    Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003Google Scholar

    [17]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [18]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106Google Scholar

    [19]

    Yu C H, Qi R, Wang W T, Liu J S, Li W T, Wang C, Zhang Z J, Liu J Q, Qin Z Y, Fang M, Feng K, Wu Y, Tian Y, Xu Yi, Wu F X, Leng Y X, Weng X F, Wang J H, Wei F L, Yi Y C, Song Z H, Li R X, Xu Z Z 2016 Sci. Rep. 6 29518Google Scholar

    [20]

    Modena A, Najmudin Z, Dangor A E, Clayton C E, Marsh C A, Joshi C, Malka V, Darrow C B, Danson C, Neely D, Walsh F N 1995 Nature 377 606Google Scholar

    [21]

    Tzeng K C, Mori W B, Katsouleas T 1997 Phys. Rev. Lett. 79 5258Google Scholar

    [22]

    Bulanov S V, Pegoraro F, Pukhov A M, Sakharov A S 1997 Phys. Rev. Lett. 78 4205Google Scholar

    [23]

    Gordon D, Tzeng K C, Clayton C E, Dangor A E, Malka V, Marsh K A, Modena A, Mori W B, Muggli P, Najmudin Z, Neely D, Danson C, Joshi C 1998 Phys. Rev. Lett. 80 2133Google Scholar

    [24]

    Kostyukov I, Pukhov A, Kiselev S 2004 Phys. Plasmas 11 5256Google Scholar

    [25]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002Google Scholar

    [26]

    Osterhoff J, Popp A, Major Z, Marx B, Rowlands-Rees T P, Fuchs M, Geissler M, Hörlein R, Hidding B, Becker S, Peralta E A, Schramm U, Grüner F, Habs D, Krausz F, Hooker S M, Karsch S 2008 Phys. Rev. Lett. 101 085002Google Scholar

    [27]

    Chen M, Esarey E, Schroeder C B, Geddes C G R, Leemans W P 2012 Phys. Plasmas 19 033101Google Scholar

    [28]

    Rowlands-Rees T P, Kamperidis C, Kneip S, Gonsalves A J, Mangles S P D, Gallacher J G, Brunetti E, Ibbotson T, Murphy C D, Foster P S, Streeter M J V, Budde F, Norreys P A, Jaroszynski D A, Krushelnick K, Najmudin Z, Hooker S M 2008 Phys. Rev. Lett. 100 105005Google Scholar

    [29]

    Pak A, Marsh K A, Martins S F, Lu W, Mori W B, Joshi C 2010 Phys. Rev. Lett. 104 025003Google Scholar

    [30]

    McGuffey C, Thomas A G R, Schumaker W, Matsuoka T, Chvykov V, Dollar F J, Kalintchenko G, Yanovsky V, Maksimchuk A, Krushelnick K 2010 Phys. Rev. Lett. 104 025004Google Scholar

    [31]

    Esarey E, Hubbard R F, Leemans W P, Ting A, Sprangle P 1997 Phys. Rev. Lett. 79 2682Google Scholar

    [32]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737Google Scholar

    [33]

    Kotaki H, Daito I, Kando M, Hayashi Y, Kawase K, Kameshima T, Fukuda Y, Homma T, Ma J, Chen L M, Esirkepov T Zh, Pirozhkov A S, Koga J K, Faenov A, Pikuz T, Kiriyama H, Okada H, Shimomura T, Nakai Y, Tanoue M, Sasao H, Wakai D, Matsuura H, Kondo S, Kanazawa S, Sugiyama A, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 194803Google Scholar

    [34]

    Bulanov S, Naumova N, Pegoraro F, Sakai J 1998 Phys. Rev. E 58 R5257Google Scholar

    [35]

    Geddes C G R, Nakamura K, Plateau G R, Toth C, Cormier-Michel E, Esarey E, Schroeder C B, Cary J R, Leemans W P 2008 Phys. Rev. Lett. 110 215004

    [36]

    Faure J, Rechatin C, Lundh O, Ammoura L, Malka V 2010 Phys. Plasmas 17 083107Google Scholar

    [37]

    Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, van Tilborg J, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar

    [38]

    Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S, Veisz L 2013 Phys. Rev. Lett. 110 185006Google Scholar

    [39]

    Suk H, Barov N, Rosenzweig J B, Esarey E 2001 Phys. Rev. Lett. 86 1011Google Scholar

    [40]

    Tomassini P, Galimberti M, Giulietti A, Giulietti D, Gizzi L A, Labate L, Pegoraro F 2003 Phys. Rev. Spec. Top. Accel. Beams 6 121301Google Scholar

    [41]

    Kim J U, Hafz N, Suk H 2004 Phys. Rev. E 69 026409Google Scholar

    [42]

    Chien T Y, Chang C L, Lee C H, Lin J Y, Wang J, Chen S Y 2005 Phys. Rev. Lett. 94 115003Google Scholar

    [43]

    Schmid K, Buck A, Sears C M S, Mikhailova J M, Tautz R, Herrmann D, Geissler M, Krausz F, Veisz L 2010 Phys. Rev. Spec. Top. Accel. Beams 13 091301Google Scholar

    [44]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001Google Scholar

    [45]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X, Xu Z Z 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [46]

    Leemans W, Esarey E 2009 Phys. Today 62 44

    [47]

    Schroeder C B, Esarey E, Geddes C G R, Benedetti C, Leemans W P 2010 Phys. Rev. Spec. Top. Accel. Beams 13 101301Google Scholar

    [48]

    董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方 2010 物理学报 596 8733Google Scholar

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 596 8733Google Scholar

    [49]

    Thaury C, Guillaume E, Lifschitz A, Phuoc K T, Hansson M, Grittani G, Gautier J, Goddet J P, Tafzi A, Lundh O, Malka V 2015 Sci. Rep. 5 16310Google Scholar

    [50]

    Golovin G, Chen S, Powers N, Liu C, Banerjee S, Zhang J, Zeng M, Sheng Z, Umstadter D 2015 Phys. Rev. Spec. Top. Accel. Beams 18 011301Google Scholar

  • [1] Zhao Yue-Qi, Cui Pei-Lin, Li Jian-Long, Li Bo-Yuan, Zhu Xin-Zhe, Chen Min, Liu Zhen-Yu. Simulation study on gas flow in curved capillary used in laser wakefield acceleration. Acta Physica Sinica, 2023, 72(18): 184701. doi: 10.7498/aps.72.20230893
    [2] Zhang Xiao-Hui, Wu Yu-Chi, Zhu Bin, Wang Shao-Yi, Yan Yong-Hong, Tan Fang, Yu Ming-Hai, Yang Yue, Li Gang, Zhang Jie, Wen Jia-Xing, Zhou Wei-Min, Su Jing-Qin, Gu Yu-Qiu. Application of low flow rate micro gas cell nozzle in laser wakefield acceleration. Acta Physica Sinica, 2023, 72(3): 035202. doi: 10.7498/aps.72.20221868
    [3] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] Zhao Liang-Chao. Transmission efficiency and beam reception of the SESRI 300 MeV synchrotron injection line. Acta Physica Sinica, 2022, 71(11): 112901. doi: 10.7498/aps.71.20212112
    [5] Ye Han-Sheng, Gu Yu-Qiu, Huang Wen-Hui, Wu Yu-Chi, Tan Fang, Zhang Xiao-Hui, Wang Shao-Yi. Parameter optimization of self-reflecting all-laser-driven Thomson scattering based on laser wakefield acceleration. Acta Physica Sinica, 2021, 70(8): 085204. doi: 10.7498/aps.70.20210549
    [6] Jiang Kang-Nan, Feng Ke, Ke Lin-Tong, Yu Chang-Hai, Zhang Zhi-Jun, Qin Zhi-Yong, Liu Jian-Sheng, Wang Wen-Tao, Li Ru-Xin. High-quality laser wakefield electron accelerator. Acta Physica Sinica, 2021, 70(8): 084103. doi: 10.7498/aps.70.20201993
    [7] Zhu Xin-Zhe, Liu Wei-Yuan, Chen Min. Effects of slant angle of sharp plasma-vacuum boundary on electron injection in laser wakefield acceleration. Acta Physica Sinica, 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [8] Wang Tong, Wang Xiao-Fang. An analytic approach for density gradient injection in laser wake field acceleration. Acta Physica Sinica, 2016, 65(4): 044102. doi: 10.7498/aps.65.044102
    [9] Zhang Feng, Huang Shuo, Li Xiao-Feng, Yu Qin, Gu Yan-Jun, Kong Qing. Effect of self-injected electrons driven by paralleled drive electron bunches. Acta Physica Sinica, 2013, 62(24): 242901. doi: 10.7498/aps.62.242901
    [10] Li Yu-Tong, Liu Feng, Zhang Yi, Lin Xiao-Xuan, Wang Shou-Jun, Wang Zhao-Hua, Li Ying-Jun, Sheng Zheng-Ming, Xu Miao-Hua, Wei Zhi-Yi, Zhang Jie, Zheng Jun, Meng Li-Min. Enhancement of ion generation in low-contrast laser-foil interactions by defocusing. Acta Physica Sinica, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [11] Zhang Bao-Han, Wang Xiao-Fang, Dong Ke-Gong, Gu Yu-Qiu, Zhu Bin, Wu Yu-Chi, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Jiao Chun-Ye, Wen Xian-Lun. Experimental generation of 58 MeV quasi-monoenergetic electron beam by ultra-intense femto-second laser wakefield. Acta Physica Sinica, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [12] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [13] Wang Jian, Gu Yu-Qiu, Cai Da-Feng, Jiao Chun-Ye, Wu Yu-Chi, He Ying-Ling, Teng Jian, Yang Xiang-Dong, Wang Lei, Zhao Zong-Qing. Photon acceleration in the laser wakefield. Acta Physica Sinica, 2008, 57(10): 6471-6475. doi: 10.7498/aps.57.6471
    [14] Li Bai-Wen, Zheng Chun-Yang, Song Min, Liu Zhan-Jun. Stimulated Raman cascade-into-photon condensation and ultra-intense EM solitons in laser plasma interaction. Acta Physica Sinica, 2006, 55(10): 5325-5337. doi: 10.7498/aps.55.5325
    [15] Xu Han, Chang Wen-Wei, Yin Yan, Zhuo Hong-Bin. PIC simulation of the wake field acceleration driven by triangle-shaped laser pulse. Acta Physica Sinica, 2004, 53(3): 818-823. doi: 10.7498/aps.53.818
    [16] Zhang Jing-Yi, Zhao Zheng. . Acta Physica Sinica, 2002, 51(10): 2399-2406. doi: 10.7498/aps.51.2399
    [17] WANG JIA-XIANG, HO YU-KUN, FENG LIANG. ELECTRON ACCELERATION IN THE CONE-SHAPED LASER FIELD. Acta Physica Sinica, 1996, 45(8): 1264-1274. doi: 10.7498/aps.45.1264
    [18] LI YI. THE WAKE FIELD ACCELERATION IN THERMAL PLASMA. Acta Physica Sinica, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [19] PAN ZHENG-YING, LI RONG-WU. COLLISION CASCADES INDUCED BY LOW ENERGY CLUSTERS IMPACTING ON METALLIC THIN FILMS (II)——THE ACCELERATION OF CLUSTER ATOMS. Acta Physica Sinica, 1994, 43(10): 1726-1733. doi: 10.7498/aps.43.1726
    [20] WANG WEI-YUAN, XIA GUAN-QUN, LU JIAN-GUO, SHAO YONG-FU, QIAO YONG. CARRIER PROFILE TAIL IN SILICON IMPLANTED Cr-DOPED SEMI-INSULATING GaAs SUBSTRATE. Acta Physica Sinica, 1985, 34(3): 402-407. doi: 10.7498/aps.34.402
Metrics
  • Abstract views:  6802
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  02 April 2019
  • Accepted Date:  20 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回