Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deflection effect of electromagnetic field generated byWeibel instability on proton probe

Du Bao Cai Hong-Bo Zhang Wen-Shuai Chen Jing Zou Shi-Yang Zhu Shao-Ping

Citation:

Deflection effect of electromagnetic field generated byWeibel instability on proton probe

Du Bao, Cai Hong-Bo, Zhang Wen-Shuai, Chen Jing, Zou Shi-Yang, Zhu Shao-Ping
PDF
HTML
Get Citation
  • The electric and magnetic fields generated by the Weibel instability, most of which have a tube-like structure, are of importance for many relevant physical processes in the astrophysics and the inertial confinement fusion. Experimentally, proton radiography is a commonly used method to diagnose the Weibel instability, where the proton deflection introduced from the self-generated electric field is usually ignored. This assumption, however, is in conflict with the experimental observations by Quinn, Fox and Huntington, et al. because the magnetic field with a tube-like structure cannot introduce parallel flux striations on the deflection plane in the proton radiography. In this paper, we re-examine the nature of the proton radiography of the Weibel instability numerically. Two symmetric counterstreaming plasma flows are used to generate the electron Weibel instability with the three-dimensional particle-in-cell simulations. The proton radiography of the Weibel instability generated electric and magnetic fields are calculated with the ray tracing method. Three cases are considered andcompared: only the self-generated electric field E is included, only the self-generated magnetic field B is included, both the electric field E and magnetic field B are included. It is shown that when only E is included, the probe proton flux density perturbation on the detection plane, i.e., δn/n0, is much larger than that when only B is included. Also, when both E and B are included, δn/n0 is almost the same as that when only E is included. This suggests that in the proton radiography of the Weibel instability generated electric and magnetic fields, the deflection from the electric field dominates the radiography, whereas the magnetic field has an ignorable influence. Our conclusion is quite different from that obtained on the traditional assumption that the electric field is ignorable in the radiography. This mainly comes from the spatial structure of the Weibel instability generated magnetic field, which is tube-like and points to the azimuthal direction around the current filaments. When the probe protons pass through the field region, the deflection from the azimuthal magnetic field can be compensated for completely by itself along the passing trajectories especially if the deflection distance inside the field region is small. Whereas for the electric field, which is in the radial direction, the deflection to the probe protons will not be totally compensated for and will finally introduce an evident flux density perturbation into the detection plane. This understanding can beconducive to the comprehension of the experimental results about the proton radiography of the Weibel instability.
      Corresponding author: Cai Hong-Bo, Cai_hongbo@iapcm.ac.cn ; Zhu Shao-Ping, zhu_shaoping@iapcm.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016005), the National Key R&D Program of China (Grant No. 2016YFA0401100), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1730449), and the National Natural Science Foundation of China (Grant No. 11575030)
    [1]

    Weibel E S 1959 Phys. Rev. Lett. 2 83Google Scholar

    [2]

    Fried B D 1959 Phys. Fluids 2 337

    [3]

    Honda M, Meyer-ter-Vehn J, Pukhov A 2000 Phys. Rev. Lett. 85 2128Google Scholar

    [4]

    Ross J S, Park H S, Berger R, Divol L, Kugland N L, Rozmus W, Ryutov D, Glenzer S H 2013 Phys. Rev. Lett. 110 145005Google Scholar

    [5]

    Fiuza F, Fonseca R A, Tonge J, Mori W B, Silva L O1 2012 Phys. Rev. Lett. 108 235004Google Scholar

    [6]

    Ardaneh K, Cai D S, Nishikawa K I, Lembége B 2015 Astrophys. J. 811 57Google Scholar

    [7]

    Quinn K, Romagnani L, Ramakrishna B, Sarri G, Dieckmann M E, Wilson P A, Fuchs J, Lancia L, Pipahl A, Toncian T, Willi O, Clarke R J, Notley M, Macchi A, Borghesi M 2012 Phys. Rev. Lett. 108 135001Google Scholar

    [8]

    Kugland N L, Ryutov D D, Chang P Y, Drake R P, Fiksel G, Froula D H, Glenzer S H, Gregori G, Grosskopf M, Koenig M, Kuramitsu Y, Kuranz C, Levy M C, Liang E, Meinecke J, Miniati F, Morita T, Pelka A, Plechaty C, Presura R, Ravasio A, Remington B A, Reville B, Ross J S, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2012 Nat. Phys. 8 809Google Scholar

    [9]

    Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2013 Phys. Rev. Lett. 111 225002Google Scholar

    [10]

    Huntington C M, Fiuza F, Ross J S, Zylstra A B, Drake R P, Froula D H, Gregori G, Kugland N L, Kuranz C C, Levy M C, Li C K, Meinecke J, Morita T, Petrasso R, Plechaty C, Remington B A, Ryutov D D, SakawaY, Spitkovsky A, Takabe H, Park S H 2015 Nat. Phys. 11 173Google Scholar

    [11]

    Tzoufras M, Ren C, Tsung F S, Tonge J W, Mori W B, Fiore M, Fonseca R A, Silva L O 2006 Phys. Rev. Lett. 96 105002Google Scholar

    [12]

    Dieckmann M E 2009 Plasma Phys. Control. Fusion 51 124042Google Scholar

    [13]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instruments 83 101301Google Scholar

    [14]

    Wang W W, Cai H B, Teng J, Chen J, He S K, Shan L Q, Lu F, Wu Y C, Zhang B, Hong W, Bi B, Zhang F, Liu D X, Xue F B, Li B Y, Liu H J, He W, Jiao J L, Dong K G, Zhang F Q, He Y L, Cui B, Xie N, Yuan Z Q, Tian C, Wang X D, Zhou K N, Deng Z G, Zhang Z M, Zhou W M, Cao L F, Zhang B H, Zhu S P, He X T, Gu Y Q 2018 Phys. Plasmas 25 083111Google Scholar

    [15]

    Bret A, Gremillet L, Dieckmann M E 2010 Phys. Plasmas 17 120501Google Scholar

    [16]

    Gao L, Nilson M P, Igumenshchev I V, Haines M G, Froula D H, Betti R, Meyerhofer D D 2015 Phys. Rev. Lett. 114 215003Google Scholar

    [17]

    Du B, Wang X F 2018 AIP Adv. 8 125328Google Scholar

    [18]

    Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001Google Scholar

    [19]

    Cagas P, Hakim A, Scales W, Srinivasan B 2017 Phys. Plasmas 24 112116Google Scholar

    [20]

    Alves E P, Zrake J, Fiuza F 2018 Phys. Rev. Lett. 121 245101Google Scholar

    [21]

    Sentoku Y, Mima K, Sheng Z M, Kaw P, Nishihara K, Nishikawa K 2002 Phys. Rev. E 65 046408Google Scholar

    [22]

    Shukla C, Kumar A, Das A, Patel B G 2018 Phys. Plasmas 25 022123Google Scholar

    [23]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [24]

    Cecchetti C A, Borghesi M, Fuchs J, Schurtz G, Kar S, Macchi A, Romagnani, Wilson P A, Antici P, Jung R, Osterholtz J, Pipahl C, Willi O, Schiavi A, Notley M, Neely D 2009 Phys. Plasmas 16 043102Google Scholar

  • 图 1  Weibel不稳定性的质子照相示意图

    Figure 1.  Schematic diagram of the proton radiography of the Weibel instability

    图 2  Weibel不稳定性 (a)自生磁场By和(b)自生电场Ext = 1.06 ps时的三维空间分布

    Figure 2.  Three demensional distributions of the Weibel instability generated (a) magnetic field By and (b) electric field Ex at t = 1.06 ps

    图 3  Weibel不稳定性自生磁场和电场能量随着时间的演化

    Figure 3.  Evolution of the energy of the Weibel instability generated magnetic and electric fields.

    图 4  t = 1.06 ps时, z = 0平面上(a)磁场强度|B|、(b)电场强度|E|、(c)磁场方向和(d)电场方向的分布情况以及y = 0平面上(e) y向磁场By和(f) y向电场Ey的分布情况

    Figure 4.  Spatial distributions of (a) the magnetic field strength |B|, (b) the electric field strength |E|, (c) the direction of B and (d) the direction of E on the z = 0 plane, (e) the y component of the magnetic field By and (f) the y component of the electric field Ey on the y = 0 plane at t = 1.06 ps.

    图 5  t = 4.78 ps时, z = 0平面上(a)磁场强度|B|、(b)电场强度|E|、(c)磁场方向和(d)电场方向的分布情况以及y = 0平面上(e) y向磁场By和(f) y向电场Ey的分布情况

    Figure 5.  Spatial distributions of (a) the magnetic field strength |B|, (b) the electric field strength |E|, (c) the direction of B and (d) the direction of E on the z = 0 plane, (e) the y component of the magnetic field By and (f) the y component of the electric field Ey on the y = 0 plane at t = 4.78 ps.

    图 6  t = 1.06 ps时, (a)只考虑电场E、(b)只考虑磁场B以及(c)同时考虑电场E和磁场B三种情况下探测面上的质子通量密度扰动分布信息

    Figure 6.  Proton flux density perturbations on the detection plane when (a) only the electric field is included, (b) only the magnetic field is included and (c) both the electric and magnetic fields are included at t = 1.06 ps.

    图 7  t = 4.78 ps时(a)只考虑电场E、(b)只考虑磁场B以及(c)同时考虑电场E和磁场B三种情况下探测面上的质子通量密度扰动分布信息

    Figure 7.  Proton flux density perturbations on the detection plane when (a) only the electric field is included, (b) only the magnetic field is included and (c) both the electric and magnetic fields are included at t = 4.78 ps.

  • [1]

    Weibel E S 1959 Phys. Rev. Lett. 2 83Google Scholar

    [2]

    Fried B D 1959 Phys. Fluids 2 337

    [3]

    Honda M, Meyer-ter-Vehn J, Pukhov A 2000 Phys. Rev. Lett. 85 2128Google Scholar

    [4]

    Ross J S, Park H S, Berger R, Divol L, Kugland N L, Rozmus W, Ryutov D, Glenzer S H 2013 Phys. Rev. Lett. 110 145005Google Scholar

    [5]

    Fiuza F, Fonseca R A, Tonge J, Mori W B, Silva L O1 2012 Phys. Rev. Lett. 108 235004Google Scholar

    [6]

    Ardaneh K, Cai D S, Nishikawa K I, Lembége B 2015 Astrophys. J. 811 57Google Scholar

    [7]

    Quinn K, Romagnani L, Ramakrishna B, Sarri G, Dieckmann M E, Wilson P A, Fuchs J, Lancia L, Pipahl A, Toncian T, Willi O, Clarke R J, Notley M, Macchi A, Borghesi M 2012 Phys. Rev. Lett. 108 135001Google Scholar

    [8]

    Kugland N L, Ryutov D D, Chang P Y, Drake R P, Fiksel G, Froula D H, Glenzer S H, Gregori G, Grosskopf M, Koenig M, Kuramitsu Y, Kuranz C, Levy M C, Liang E, Meinecke J, Miniati F, Morita T, Pelka A, Plechaty C, Presura R, Ravasio A, Remington B A, Reville B, Ross J S, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2012 Nat. Phys. 8 809Google Scholar

    [9]

    Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2013 Phys. Rev. Lett. 111 225002Google Scholar

    [10]

    Huntington C M, Fiuza F, Ross J S, Zylstra A B, Drake R P, Froula D H, Gregori G, Kugland N L, Kuranz C C, Levy M C, Li C K, Meinecke J, Morita T, Petrasso R, Plechaty C, Remington B A, Ryutov D D, SakawaY, Spitkovsky A, Takabe H, Park S H 2015 Nat. Phys. 11 173Google Scholar

    [11]

    Tzoufras M, Ren C, Tsung F S, Tonge J W, Mori W B, Fiore M, Fonseca R A, Silva L O 2006 Phys. Rev. Lett. 96 105002Google Scholar

    [12]

    Dieckmann M E 2009 Plasma Phys. Control. Fusion 51 124042Google Scholar

    [13]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instruments 83 101301Google Scholar

    [14]

    Wang W W, Cai H B, Teng J, Chen J, He S K, Shan L Q, Lu F, Wu Y C, Zhang B, Hong W, Bi B, Zhang F, Liu D X, Xue F B, Li B Y, Liu H J, He W, Jiao J L, Dong K G, Zhang F Q, He Y L, Cui B, Xie N, Yuan Z Q, Tian C, Wang X D, Zhou K N, Deng Z G, Zhang Z M, Zhou W M, Cao L F, Zhang B H, Zhu S P, He X T, Gu Y Q 2018 Phys. Plasmas 25 083111Google Scholar

    [15]

    Bret A, Gremillet L, Dieckmann M E 2010 Phys. Plasmas 17 120501Google Scholar

    [16]

    Gao L, Nilson M P, Igumenshchev I V, Haines M G, Froula D H, Betti R, Meyerhofer D D 2015 Phys. Rev. Lett. 114 215003Google Scholar

    [17]

    Du B, Wang X F 2018 AIP Adv. 8 125328Google Scholar

    [18]

    Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001Google Scholar

    [19]

    Cagas P, Hakim A, Scales W, Srinivasan B 2017 Phys. Plasmas 24 112116Google Scholar

    [20]

    Alves E P, Zrake J, Fiuza F 2018 Phys. Rev. Lett. 121 245101Google Scholar

    [21]

    Sentoku Y, Mima K, Sheng Z M, Kaw P, Nishihara K, Nishikawa K 2002 Phys. Rev. E 65 046408Google Scholar

    [22]

    Shukla C, Kumar A, Das A, Patel B G 2018 Phys. Plasmas 25 022123Google Scholar

    [23]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [24]

    Cecchetti C A, Borghesi M, Fuchs J, Schurtz G, Kar S, Macchi A, Romagnani, Wilson P A, Antici P, Jung R, Osterholtz J, Pipahl C, Willi O, Schiavi A, Notley M, Neely D 2009 Phys. Plasmas 16 043102Google Scholar

  • [1] Xia Xu, Yang Juan, Fu Yu-Liang, Wu Xian-Ming, Geng Hai, Hu Zhan. Numerical simulation of influence of magnetic field on plasma characteristics and surface current of ion source of 2-cm electron cyclotron resonance ion thruster. Acta Physica Sinica, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [2] Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Focusing effect of channel target on ultra-intense laser-accelerated proton beam. Acta Physica Sinica, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [3] Wang Xin-Bo, Zhang Xiao-Ning, Li Yun, Cui Wan-Zhao, Zhang Hong-Tai, Li Yong-Dong, Wang Hong-Guang, Zhai Yong-Gui, Liu Chun-Liang. Particle simulation and analysis of threshold for multicarrier multipactor. Acta Physica Sinica, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [4] Wang Hong-Guang, Zhai Yong-Gui, Li Ji-Xiao, Li Yun, Wang Rui, Wang Xin-Bo, Cui Wan-Zhao, Li Yong-Dong. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions. Acta Physica Sinica, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [5] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [6] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [7] Chen Zhao-Quan, Yin Zhi-Xiang, Chen Ming-Gong, Liu Ming-Hai, Xu Gong-Lin, Hu Ye-Lin, Xia Guang-Qing, Song Xiao, Jia Xiao-Fen, Hu Xi-Wei. Particle-in-cell simulation on surface-wave discharge process influenced by gas pressure and negative-biased voltage along ion sheath layer. Acta Physica Sinica, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [8] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [9] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Qiao Hai-Liang, Guo Wei-Jie, Zhang Dian-Hui. Optimal design of high-power microwave source based on particle simulation and genetic algorithms. Acta Physica Sinica, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [10] Dong Ye, Dong Zhi-Wei, Yang Wen-Yuan, Zhou Qian-Hong, Zhou Hai-Jing. Effects of transverse electromagnetic field distribution in the multipactor discharge on dielectric window surface. Acta Physica Sinica, 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [11] Wang Hui-Hui, Liu Da-Gang, Meng Lin, Liu La-Qun, Yang Chao, Peng Kai, Xia Meng-Zhong. The numerical study of full three-dimensional particle in cell/Monte Carlo with gas ionization. Acta Physica Sinica, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [12] Zou De-Bin, Zhuo Hong-Bin, Shao Fu-Qiu, Yin Yan, Ma Yan-Yun, Tian Cheng-Lin, Xu Han, Ouyang Jian-Ming, Xie Xiang-Yun, Chen De-Peng. Theory and simulation of laser pulse trapping and amplifying in the interaction with a thin foil and a solid target. Acta Physica Sinica, 2012, 61(4): 045202. doi: 10.7498/aps.61.045202
    [13] Guo Fan, Li Yong-Dong, Wang Hong-Guang, Liu Chun-Liang, Hu Yi-Xiang, Zhang Peng-Fei, Ma Meng. Particle-in-cell simulation of outer magnetically insulated transmission line of Z-pinch accelerator. Acta Physica Sinica, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [14] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai. The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [15] Gong Hua-Rong, Gong Yu-Bin, Wei Yan-Yu, Tang Chang-Jian, Xue Dong-Hai, Wang Wen-Xiang. Analysis of ion noise with beam-wave interaction in klystron by two dimensional particle simulation method. Acta Physica Sinica, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [16] Zhuo Hong-Bin, Hu Qing-Feng, Liu Jie, Chi Li-Hua, Zhang Wen-Yong. Quasi-static particle simulation of short pulse laser-plasma interaction. Acta Physica Sinica, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [17] Zheng Chun-Yang, Liu Zhan-Jun, Li Ji-Wei, Zhang Ai-Qing, Pei Wen-Bing. Spatio temporal evolution of electron beam instability in collisionless plasmas. Acta Physica Sinica, 2005, 54(5): 2138-2146. doi: 10.7498/aps.54.2138
    [18] Gong Yu-Bin, Zhang Zhang, Wei Yan-Yu, Meng Fan-Bao, Fan Zhi-Kai, Wang Wen-Xiang. Simulation of pulse shortening phenomena in high power microwave tube using PIC method. Acta Physica Sinica, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
    [19] Sheng Zheng-Ming, Zhang Jie, Yu Wei. Generation of low frequency electromagnetic solitons in plasmas near the critical density with ultrashort intense laser pulses. Acta Physica Sinica, 2003, 52(1): 125-134. doi: 10.7498/aps.52.125
    [20] Jian Guang-De, Dong Jia-Qi. Particle simulation method for the electron temperature gradient instability in toroidal plasmas. Acta Physica Sinica, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
Metrics
  • Abstract views:  8459
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  21 May 2019
  • Accepted Date:  03 July 2019
  • Available Online:  01 September 2019
  • Published Online:  20 September 2019

/

返回文章
返回