Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Imaging performance of fractal structuresparse aperture arrays

Hao Wei-Qian Liang Zhong-Cheng Liu Xiao-Yao Zhao Rui Kong Mei-Mei Guan Jian-Fei Zhang Yue

Citation:

Imaging performance of fractal structuresparse aperture arrays

Hao Wei-Qian, Liang Zhong-Cheng, Liu Xiao-Yao, Zhao Rui, Kong Mei-Mei, Guan Jian-Fei, Zhang Yue
PDF
HTML
Get Citation
  • The angular resolution of optical system is limited by the ratio of the wavelength to the aperture of the entrance pupil, indicating that the optical system with large aperture has a high spatial resolution. Sparse aperture imaging is one of the effective solutions to the problem that the telescope is bulky, heavy and difficult to manufacture. According to the self-similarity and multi-scale characteristics of fractal configuration, we propose a sparse aperture array and analyze its performance for synthetic aperture imaging system. In the array Golay-3 is used as a structural unit to expand a multi-layered fractal configuration in a self-similar manner. Given the analytical expression of the pupil function which is reduced by dimensionless parameters, we calculate the modulation transfer functions (MTFs), the practical cut-off frequencies and the middle spatial frequency characteristics of the fractal configuration under different fill factors and different outer layer rotational angles. We analyze both the MTF values and the performance parameters of the fractal structure for the cases of N = 3, 9, and 18, respectively. The results show that the decrease of fill factor does not significantly change the MTF curve nor the practical cutoff frequency in a range of fill factor between 0.0952 and 0.2246. The outer layer rotational angle has a periodicity, and the change in the angle has no large influence on the practical cutoff frequency. When the reduced aperture parameter is $ {d_0} = 1$ and the fill factor is 22.46%, the middle spatial frequency of N = 18 array is more stable and the practical cut-off frequency is higher. Using the fractal self-similarity, the aperture of the system can be expanded effectively while maintaining the middle spatial frequency characteristics. The computing results are of scale invariance due to the adoption of the reduced aperture parameter.
      Corresponding author: Liang Zhong-Cheng, zcliang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61775102)
    [1]

    吴泉英 2006 博士学位论文 (苏州: 苏州大学)

    Wu Q Y 2006 Ph. D. Dissertation (Suzhou: Suzhou University) (in Chinese)

    [2]

    陈海亭, 江月松, 钟宇 2005 光学学报 25 1616Google Scholar

    Chen H T, Jiang Y S, Zhong Y 2005 Acta Opt. Sin. 25 1616Google Scholar

    [3]

    赵娟, 王大勇, 张亚新, 耿则勋, 陶世荃 2009 中国激光 36 934

    Zao J, Wang D Y, Zhang Y X, Geng Z X, Tao S K 2009 Chin. J. Lasers 36 934

    [4]

    刘丽, 江月松 2013 综合孔径成像原理与应用 (北京: 国防工业出版社) 第48−54页

    Liu L, Jiang Y S 2013 Principle and Application of Synthetic Aperture Imaging (Beijing: National Defense Industry Press) pp48−54 (in Chinese)

    [5]

    苏显渝, 李继陶 信息光学(北京: 科学出版社)第20−26页

    Su X Y, Li J T 1999 Information Opitics (Beijing: Science Press) pp20−26 (in Chinese)

    [6]

    Meinel A B 1970 Appl. Opt. 9 2501Google Scholar

    [7]

    Chung S, Spie M 2004 Opt. Eng. 43 2156Google Scholar

    [8]

    Fiete R D 2002 Opt. Eng. 41 1957Google Scholar

    [9]

    Zhou C, Wang Z 2018 Opt. Eng. 26 6973

    [10]

    易红伟, 李英才, 樊超 2007 光子学报 36 2062

    Yi H W, Li Y C, Fan C 2007 Acta. Photonica Sin. 36 2062

    [11]

    Miller N J, Dierking M P, Duncan B D 2007 Appl. Opt. 46 5933Google Scholar

    [12]

    Golay M J E 1971 J. Opt. Soc. Am. 61 272Google Scholar

    [13]

    Cornwell T J 1988 IEEE Trans. Antennas Propag. 36 1165Google Scholar

    [14]

    Cassaing F, Mugnier L M 2018 Opt. Lett. 43 4555

    [15]

    Tcherniavski I, Kahrizi M 2005 Opt. Lett. 44 103201

    [16]

    钱霖, 吴泉英, 吴峰, 沈为民 2005 光学学报 25 1030Google Scholar

    Qian L, Wu Q Y, Wu F, Shen W N 2005 Acta Opt. Sin. 25 1030Google Scholar

    [17]

    韩骥, 王大勇, 刘汉承, 伏西洋, 郭红锋, 陶世荃 2007 光电子·激光 18 649

    Han J, Wang D Y, Liu H C, Fu X Y, Guo H F, Tao S K 2007 Optronics Lasers 18 649

    [18]

    Liu L, Jiang Y S, Wang H Y, He Y T 2011 Opt. Eng. 50 53202Google Scholar

    [19]

    刘丽, 江月松, 王长伟 2009 光学学报 29 2774

    Liu L, Jiang Y S, Wang C W 2009 Acta Opt. Sin. 29 2774

    [20]

    刘政, 王胜千, 饶长辉 2012 物理学报 61 039501Google Scholar

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin. 61 039501Google Scholar

    [21]

    龙伟军, 王治乐, 周彦平 2004 光学学报 24 1009Google Scholar

    Long H W, Wang L Z, Zhou Y P 2004 Acta Opt. Sin. 24 1009Google Scholar

    [22]

    李兰芳 2004 博士学位论文 (南京: 南京理工大学)

    Liu L F 2004 Ph. D. Dissertatio (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [23]

    刘肖尧, 梁忠诚, 郝未倩, 赵瑞, 孔梅梅, 陈陶, 张月 2019 光学学报 39 0811003

    Liu X Y, Liang Z C, Hao W Q, Zhao R, Kong M M, Chen T, Zhang Y 2019 Acta Opt. Sin. 39 0811003

    [24]

    周程灏, 王治乐, 朱峰 2017 中国光学 10 25

    Zhou C H, Wang Z L, Zhu F 2017 Chin. Opt. 10 25

    [25]

    朱华, 姬翠翠 2011分形理论及其应用 (北京: 科学出版社) 第10−16页

    Zhu H, Ji C C 2011 Fractal Theory and Application (Beijing: Science Press) pp10−16 (in Chinese)

  • 图 1  分形阵列结构

    Figure 1.  Fractal array configuration.

    图 2  结构特征 (a)子孔径直径与填充因子曲线图; (b)结构层数与包围圆半径关系

    Figure 2.  Configuration characteristics: (a) Sub-aperture diameter and fill factor curve; (b) the relationship of the number of fractal configuration and the radius of aperture.

    图 3  分形阵列MTF(F = 22.46%) (a)三维MTF; (b) MTF俯视图

    Figure 3.  MTF of fractal array (F = 22.46%): (a) There-dimensional MTF; (b) top-view MTF.

    图 4  分形结构随填充因子变化MTF曲线 (a)沿fx归一化频率方向; (b)沿fy归一化频率方向

    Figure 4.  MTF curves of fractal array with different fill factor: (a) Normalized frequency along fx - axis; (b) normalized frequency along fy - axis.

    图 5  分形阵列随外环旋转角度变化MTF曲线 (a)沿fx归一化频率方向; (b)沿fy归一化频率方向

    Figure 5.  MTF curves of fractal array with different outer layer rotational angles: (a) Normalized frequency along fx - axis; (b) normalized frequency along fy - axis.

    图 6  实际截止频率随外层旋转角的变化曲线

    Figure 6.  The curve of the practical frequency with outer layer rotational angles.

    图 7  N = 3, N = 9阵列结构

    Figure 7.  N = 3, N = 9 array configuration.

    图 8  3种阵列的MTF曲线(F = 22.46%) (a)沿fx归一化频率方向; (b)沿fy归一化频率方向

    Figure 8.  MTF curves of three kinds of array configuration (F = 22.46%): (a) Normalized frequency along fx - axis; (b) normalized frequency along fy - axis.

    表 1  分形阵列在不同填充因子下的特性指标

    Table 1.  Characteristics of fractal array with different fill factors.

    ${d_0}$0.50.60.70.80.91.0
    填充因子0.09520.12190.14850.17470.20010.2246
    实际截止频率0.45180.62840.63500.63820.63820.6382
    中频特性0.05600.06320.05070.07260.06830.0632
    DownLoad: CSV

    表 2  3种阵列的特性指数

    Table 2.  Characteristics of three kinds of array configuration.

    阵列结构N = 3N = 9N = 18
    实际截止频率0.27780.27780.6382
    中频特性0.15150.05710.0632
    DownLoad: CSV
  • [1]

    吴泉英 2006 博士学位论文 (苏州: 苏州大学)

    Wu Q Y 2006 Ph. D. Dissertation (Suzhou: Suzhou University) (in Chinese)

    [2]

    陈海亭, 江月松, 钟宇 2005 光学学报 25 1616Google Scholar

    Chen H T, Jiang Y S, Zhong Y 2005 Acta Opt. Sin. 25 1616Google Scholar

    [3]

    赵娟, 王大勇, 张亚新, 耿则勋, 陶世荃 2009 中国激光 36 934

    Zao J, Wang D Y, Zhang Y X, Geng Z X, Tao S K 2009 Chin. J. Lasers 36 934

    [4]

    刘丽, 江月松 2013 综合孔径成像原理与应用 (北京: 国防工业出版社) 第48−54页

    Liu L, Jiang Y S 2013 Principle and Application of Synthetic Aperture Imaging (Beijing: National Defense Industry Press) pp48−54 (in Chinese)

    [5]

    苏显渝, 李继陶 信息光学(北京: 科学出版社)第20−26页

    Su X Y, Li J T 1999 Information Opitics (Beijing: Science Press) pp20−26 (in Chinese)

    [6]

    Meinel A B 1970 Appl. Opt. 9 2501Google Scholar

    [7]

    Chung S, Spie M 2004 Opt. Eng. 43 2156Google Scholar

    [8]

    Fiete R D 2002 Opt. Eng. 41 1957Google Scholar

    [9]

    Zhou C, Wang Z 2018 Opt. Eng. 26 6973

    [10]

    易红伟, 李英才, 樊超 2007 光子学报 36 2062

    Yi H W, Li Y C, Fan C 2007 Acta. Photonica Sin. 36 2062

    [11]

    Miller N J, Dierking M P, Duncan B D 2007 Appl. Opt. 46 5933Google Scholar

    [12]

    Golay M J E 1971 J. Opt. Soc. Am. 61 272Google Scholar

    [13]

    Cornwell T J 1988 IEEE Trans. Antennas Propag. 36 1165Google Scholar

    [14]

    Cassaing F, Mugnier L M 2018 Opt. Lett. 43 4555

    [15]

    Tcherniavski I, Kahrizi M 2005 Opt. Lett. 44 103201

    [16]

    钱霖, 吴泉英, 吴峰, 沈为民 2005 光学学报 25 1030Google Scholar

    Qian L, Wu Q Y, Wu F, Shen W N 2005 Acta Opt. Sin. 25 1030Google Scholar

    [17]

    韩骥, 王大勇, 刘汉承, 伏西洋, 郭红锋, 陶世荃 2007 光电子·激光 18 649

    Han J, Wang D Y, Liu H C, Fu X Y, Guo H F, Tao S K 2007 Optronics Lasers 18 649

    [18]

    Liu L, Jiang Y S, Wang H Y, He Y T 2011 Opt. Eng. 50 53202Google Scholar

    [19]

    刘丽, 江月松, 王长伟 2009 光学学报 29 2774

    Liu L, Jiang Y S, Wang C W 2009 Acta Opt. Sin. 29 2774

    [20]

    刘政, 王胜千, 饶长辉 2012 物理学报 61 039501Google Scholar

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin. 61 039501Google Scholar

    [21]

    龙伟军, 王治乐, 周彦平 2004 光学学报 24 1009Google Scholar

    Long H W, Wang L Z, Zhou Y P 2004 Acta Opt. Sin. 24 1009Google Scholar

    [22]

    李兰芳 2004 博士学位论文 (南京: 南京理工大学)

    Liu L F 2004 Ph. D. Dissertatio (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [23]

    刘肖尧, 梁忠诚, 郝未倩, 赵瑞, 孔梅梅, 陈陶, 张月 2019 光学学报 39 0811003

    Liu X Y, Liang Z C, Hao W Q, Zhao R, Kong M M, Chen T, Zhang Y 2019 Acta Opt. Sin. 39 0811003

    [24]

    周程灏, 王治乐, 朱峰 2017 中国光学 10 25

    Zhou C H, Wang Z L, Zhu F 2017 Chin. Opt. 10 25

    [25]

    朱华, 姬翠翠 2011分形理论及其应用 (北京: 科学出版社) 第10−16页

    Zhu H, Ji C C 2011 Fractal Theory and Application (Beijing: Science Press) pp10−16 (in Chinese)

  • [1] Deng Wen-Juan, Zhu Bin, Wang Zhuang-Fei, Peng Xin-Cun, Zou Ji-Jun. Resolution characteristics of varying doping and varying composition AlxGa1–xAs/GaAs reflective photocathodes. Acta Physica Sinica, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [2] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] Liu Shang-Kuo, Wang Tao, Li Kun, Cao Kun, Zhang Xi-Bin, Zhou Yan, Zhao Jian-Ke, Yao Bao-Li. Influence of spectral characteristics of light sources on measuring space camera modulation transfer function. Acta Physica Sinica, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [4] Zhang Mei, Li Kui-Nian, Li Yang, Sheng Liang, Zhang Yan-Hong. Spatial resolution of novel liquid scintillating capillary array. Acta Physica Sinica, 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [5] Zheng Xin, Wu Peng-Fei, Rao Rui-Zhong. Image quality analysis method under background radiation in turbid atmosphere. Acta Physica Sinica, 2018, 67(8): 088701. doi: 10.7498/aps.67.20172625
    [6] Zhang Min-Rui, He Zheng-Quan, Wang Tao, Tian Jin-Shou. Analysis of the influence of diattenuation on optical imaging system by using the theory of vector plane wave spectrum. Acta Physica Sinica, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [7] Duan Ya-Xuan, Liu Shang-Kuo, Chen Yong-Quan, Xue Xun, Zhao Jian-Ke, Gao Li-Min. A method to measure the modulation transfer function of Bayer filter color camera. Acta Physica Sinica, 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [8] Yuan Zheng, Dong Jian-Jun, Li Jin, Chen Tao, Zhang Wen-Hai, Cao Zhu-Rong, Yang Zhi-Wen, Wang Jing, Zhao Yang, Liu Shen-Ye, Yang Jia-Min, Jiang Shao-En. Calibration of the dynamic spatial resolution of framing image-converter. Acta Physica Sinica, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [9] Shu Pan-Pan, Wang Wei, Tang Ming, Shang Ming-Sheng. Discriminability of node influence in flower fractal scale-free networks. Acta Physica Sinica, 2015, 64(20): 208901. doi: 10.7498/aps.64.208901
    [10] Deng Wen-Juan, Peng Xin-Cun, Zou Ji-Jun, Jiang Shao-Tao, Guo Dong, Zhang Yi-Jun, Chang Ben-Kang. Resolution characteristic of graded band-gap AlGaAs/GaAs transmission-mode photocathodes. Acta Physica Sinica, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [11] Xiao Xiao, Zhang Zhi-You, Xiao Zhi-Gang, Xu De-Fu, Deng Chi. The study on optical transfer function of silver superlens. Acta Physica Sinica, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [12] Yuan Yong-Teng, Hao Yi-Dan, Hou Li-Fei, Tu Shao-Yong, Deng Bo, Hu Xin, Yi Rong-Qing, Cao Zhu-Rong, Jiang Shao-En, Liu Shen-Ye, Ding Yong-Kun, Miao Wen-Yong. The study of hydrodynamic instability growth measurement. Acta Physica Sinica, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [13] Zhang Rong-Fu, Wang Tao, Pan Chao, Wang Liang-Liang, Zhuang Song-Lin. Extension characteristics of the depth of field for wavefront coding system. Acta Physica Sinica, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [14] Xiangli Bin, Yuan Yan, Lü Qun-Bo. Spectral transfer function of the Fourier transform spectral imager. Acta Physica Sinica, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [15] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Zhang Yi-Jun, Qiao Jian-Liang. Resolution characteristic of exponential-doping GaAs photocathodes. Acta Physica Sinica, 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [16] Qi Xun-Jun, Lin Bin, Cao Xiang-Qun, Chen Yu-Qing. Study of modular transfer function-based optieal low-pass filter evaluation model and experiment. Acta Physica Sinica, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [17] Huang Lei, Sun Jian-An, Dou Fu-Quan, Duan Wen-Shan, Liu Xing-Xia. New variable separation solutions, localized structures and fractals in the (3+1)-dimensional nonlinear Burgers system. Acta Physica Sinica, 2007, 56(2): 611-619. doi: 10.7498/aps.56.611
    [18] Tian Jin-Shou, Zhao Bao-Sheng, Wu Jian-Jun, Zhao Wei, Liu Yun-Quan, Zhang Jie. Theoretical calculation of the modulation transfer function in a femoto-second electron diffraction system. Acta Physica Sinica, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [19] Zhu Jia-Min, Ma Zheng-Yi, Zheng Chun-Long. Localized fractal structure of the (2+1)-dimensional Broer-Kaup equations. Acta Physica Sinica, 2004, 53(10): 3248-3251. doi: 10.7498/aps.53.3248
    [20] Xu Yao, Li Zhi-Hong, Fan Wen-Hao, Wu Dong, Sun Yu-Han, Wang Jun, Dong Bao-Zhong. Two fractal structures of methyl-modified Silica gels by SAXS. Acta Physica Sinica, 2003, 52(2): 442-447. doi: 10.7498/aps.52.442
Metrics
  • Abstract views:  8667
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2019
  • Accepted Date:  15 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回