Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analytical solution of three-dimensional Fourier transform frequency spectrum for three-level potassium atomic gas

Zhao Chao-Ying Tan Wei-Han

Citation:

Analytical solution of three-dimensional Fourier transform frequency spectrum for three-level potassium atomic gas

Zhao Chao-Ying, Tan Wei-Han
PDF
HTML
Get Citation
  • With the development of laser technology in the field of optics, ultra-fast optics has become an important research field. Compared with the traditional technology, ultrafast optics can be realized not only under shorter pulse function, but also on a smaller scale, which can more quickly reflect the dynamic process. We present an analytical calculation of the full three-dimensional (3D) coherent spectrum with a finite duration two-dimensional (2D) Gaussian pulse envelope. Our starting point is the solution of the optical Bloch equations for three-level potassium atomic gas in the 3D time domain by using the projection-slice theorem, error function and Fourier-shift theorem of 3D Fourier transform. These principles are used to calculate and simplify the third-order polarization equation generated by the device, and the analytical calculation of three-dimensional Fourier transform frequency spectrum at T = 0 is obtained. We simulate the analytic solution by using mathematics software. By comparing the simulations with the experimental results, with the homogeneous line-width fixed, we can obtain the relationship among the in-homogeneous broadening, the correlation diagonal coefficients and the three-dimensional spectrum characteristics, which can be identified quantitatively by fitting the slices of three-dimensional Fourier transform spectrum peaks in an appropriate direction. The results show that the three-dimensional Fourier transform spectrum will extend along the diagonal direction with the increasing of the in-homogeneous broadening, and the spectrogram progressively becomes a circle with the increasing of the diagonal correlation coefficient, and the amplitude also gradually turns smaller. According to the analytical solution, we give a complete two-dimensional spectrum of the T = 0 interface. The results can be fit to the experimental 3D coherent spectrum for arbitrary inhomogeneity.
      Corresponding author: Zhao Chao-Ying, zchy49@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11504074) and the Key Laboratory of Quantum Optics, Ministry of Education, China (Grant No. KF201801)
    [1]

    Ernst R R, Bodenhausen G, Wokaun A 1987 Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford: Clarendon Press)

    [2]

    Jonas D M 2003 Annu. Rev. Phys. Chem. 54 425Google Scholar

    [3]

    Siemens M E, Moody G, Li H B, Bristow A D, Cundiff S T 2010 Opt. Express 18 17699Google Scholar

    [4]

    Fecko C J, Eaves J D, Loparo J J, Tokmakoff A, Geissler P L 2003 Science 301 1698Google Scholar

    [5]

    Turner D B, Wen P, Arias D H, Nelson K A, Li H B, Moody G, Siemens M E, Cundiff S T 2012 Phys. Rev. B 85 201303Google Scholar

    [6]

    Cundiff S T, Bristow A D, Siemen M, Li H B, Moody G, Karaiskaj D, Dai X C, Zhang T H 2012 IEEE J. Sel. Top Quant. 18 318Google Scholar

    [7]

    Nardin G, Moody G, Singh R, Autry T M, Li H B, Morier-Genoud F, Cundiff S T 2014 Phys. Rev. Lett. 112 046402Google Scholar

    [8]

    Moody G, Akimov I A, Li H B, Singh R, Yakovlev D R, Karczewski G, Wiater M, Wojtowicz T, Bayer M, Cundiff S T 2014 Phys. Rev. Lett. 112 097401Google Scholar

    [9]

    Li H B, Bristow A D, Siemens M E, Moody G, Cundiff S T 2013 Nat. Commun. 4 1390Google Scholar

    [10]

    Bell J D, Conrad R, Siemens M E 2015 Opt. Lett. 4 1157

    [11]

    Titze M, Li H B 2017 Phys. Rev. A 96 032508Google Scholar

    [12]

    Dai X C, Bristow A D, Cundiff S T 2010 Phys. Rev. A 82 052503Google Scholar

    [13]

    Dai X C, Richter M, Li H B, Bristow A D, Falvo C, Mukamel S, Cundiff S T 2012 Phys. Rev. Lett. 108 193201Google Scholar

    [14]

    赵威, 周肇宇, 杨金新, 戴星灿 2015 物理学进展 35 177

    Zhao W, Zhou Z Y, Yang J X, Dai X C 2015 Prog. Phys. 35 177

    [15]

    Zhu W D, Wang R, Zhang C F, Wang G D, Liu Y L, Zhao W, Dai X C, Wang X Y, Cerullo G, Cundiff S T, Xiao M 2017 Opt. Express 25 21115Google Scholar

    [16]

    Zhao W, Qin Z Y, Zhang C F, Wang G D, Li B, Dai X C, Xiao M 2019 J. Phys. Chem. Lett. 10 1251Google Scholar

    [17]

    Huang T Y, Li X H, Shum P P, Wang Q J, Shao X G, Wang L L, Li H Z, Wu Z F, Dong X Y 2015 Opt. Express 23 340Google Scholar

    [18]

    Wang L, Li X H, Wang C, Luo W F, Feng T C, Zhang Y, Zhang H 2019 Chem. Nanomater. Bio. 5 1233

    [19]

    Liu J S, Li X H, Guo Y X, Qyyum A, Shi Z J, Feng T C, Zhang Y, Jiang C X, Liu X F 2019 Small 15 1902811Google Scholar

    [20]

    Zhao Y, Guo P L, Li X H, Jin Z W 2019 Carbon 149 336Google Scholar

    [21]

    Garrett-Roe S, Hamm P 2009 J. Chem. Phys. 130 164510Google Scholar

    [22]

    Mukherjee S S, Skoff D R, Middleton C T, Zanni M T 2013 J. Chem. Phys. 139 144205Google Scholar

    [23]

    李淳飞 2009 非线性光学 (北京: 电子工业出版社) 第57页

    Li C F 2009 Nonlinear Optics (Beijing: Electronics industry Press) p57 (in Chinese)

  • 图 1  四波混频原理图

    Figure 1.  Four wave mixing schematic.

    图 2  (a) 二维时域; (b) 光子回波信号的频率坐标; (c) 二维时域投影在对应于沿${\hat \omega _{{t'}}}$的切片的对角线上; (d)沿${\hat \omega _{{\tau '}}}$的切片对应的交叉对角线上的二维时域投影

    Figure 2.  (a) 2D time; (b) frequency coordinates for photon echo signals; (c) 2D time projection onto the diagonal corresponding to a slice along ${\hat \omega _{{t'}}}$; (d) 2D time projection onto the cross diagonal corresponding to a slice along ${\hat \omega _{{\tau '}}}$.

    图 3  ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = 0.2\;{\rm{ THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, $R = 1$${S_{C{\rm{1}}}}\left( {{\omega _t}, {\omega _\tau }} \right)$频谱图 (a)实部; (b)虚部; (c)模

    Figure 3.  The three-dimensional Fourier transform spectrum ${S_{C{\rm{1}}}}\left( {{\omega _t}, {\omega _\tau }} \right)$ with ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = 0.2\;{\rm{ THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, $R = 1$: (a) Real part; (b) imaginary part; (c) module.

    图 4  ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, $R = 0.5$${S_{C2}}\left( {{\omega _t}, {\omega _\tau }} \right)$频谱图 (a)实部; (b)虚部; (c)模

    Figure 4.  The three-dimensional Fourier transform spectrum ${S_{C2}}\left( {{\omega _t}, {\omega _\tau }} \right)$ with ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = 0.2\;{\rm{ THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, $R = 0.5$: (a) Real part; (b) imaginary part; (c) module.

    图 5  ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05 \;{\rm{THz}}$, $R = 1$${S_{C3, E{\rm{3}}}}\left( {{\omega _t}, {\omega _\tau }} \right)$频谱图 (a)实部; (b)虚部; (c)模

    Figure 5.  The three-dimensional Fourier transform spectrum ${S_{C3, E{\rm{3}}}}\left( {{\omega _t}, {\omega _\tau }} \right)$ with ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = $ 0.05 THz, $R = 1$: (a) Real part; (b) imaginary part; (c) module.

    图 6  ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, $R = 0.5$${S_{C4, E4}}\left( {{\omega _t}, {\omega _\tau }} \right)$频谱图 (a)实部; (b)虚部; (c)模

    Figure 6.  The three-dimensional Fourier transform spectrum ${S_{C4, E4}}\left( {{\omega _t}, {\omega _\tau }} \right)$ with ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = $ 0.05 THz, $R = 0.5$ (a) Real part; (b) imaginary part; (c) module.

    图 7  三维傅里叶转换频谱图 (a) 参考文献[11]中的图5(a), ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05 \;{\rm{THz}}$, ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$, (b)$R = 1$; (c)$R = 0.5$

    Figure 7.  Three-dimensional Fourier transform spectrum: (a) Fig. 5(a) in Ref. [11], ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05 \;{\rm{THz}}$, ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}} = $ 0.2 THz; (b)$R = 1$; (c)$R = 0.5$.

    图 8  R不同时, 三维傅里叶转换频谱, ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$ (a)$R = 1$; (b)$R = 0.5$

    Figure 8.  The three-dimensional Fourier transform spectrum with ${\varGamma _{10}} = {\varGamma _{{\rm{2}}0}} = 0.05\;{\rm{THz}}$, ${\text{δ}} {\omega _{10}} = 0.3\;{\rm{THz}}$, ${\text{δ}} {\omega _{20}} = 0.2\;{\rm{THz}}$ for different R: (a) $R = 1$; (b) $R = 0.5$.

    表 1  非均匀展宽和对角线相关系数之间的关系

    Table 1.  The relation between in-homogeneous line-width and the diagonal correlation coefficient.

    xyz
    ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}}$, $R = {\rm{1}}$0${\rm{4}}{\text{δ}} \omega _{10}^2$0
    ${\text{δ}} {\omega _{10}} = {\text{δ}} {\omega _{20}}$, $R \ne {\rm{1}}$$2\left( {1 - R} \right){\text{δ}} \omega _{10}^2$$2\left( {{\rm{1}} + R} \right){\text{δ}} \omega _{10}^2$0
    ${\text{δ} } {\omega _{10} } = m{\text{δ} } {\omega _{20} },$$R = {\rm{1}}$${\left(1 - \dfrac{1}{m}\right)^2}{\text{δ}} \omega _{10}^2$${\left(1 + \dfrac{1}{m}\right)^2}{\text{δ}} \omega _{10}^2$$\left(1- \dfrac{1}{{{m^2}}}\right){\text{δ}} \omega _{10}^2$
    ${\text{δ} } {\omega _{10} } = m{\text{δ} } {\omega _{20} },$$R \ne {\rm{1}}$$\dfrac{{({m^2} - 2 Rm + 1)}}{{{m^2}}}{\text{δ}} \omega _{10}^2$$\dfrac{{({m^2} + 2 Rm + 1)}}{{{m^2}}}{\text{δ}} \omega _{10}^2$$\left(1 - \dfrac{1}{{{m^2}}}\right){\text{δ}} \omega _{10}^2$
    DownLoad: CSV
  • [1]

    Ernst R R, Bodenhausen G, Wokaun A 1987 Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford: Clarendon Press)

    [2]

    Jonas D M 2003 Annu. Rev. Phys. Chem. 54 425Google Scholar

    [3]

    Siemens M E, Moody G, Li H B, Bristow A D, Cundiff S T 2010 Opt. Express 18 17699Google Scholar

    [4]

    Fecko C J, Eaves J D, Loparo J J, Tokmakoff A, Geissler P L 2003 Science 301 1698Google Scholar

    [5]

    Turner D B, Wen P, Arias D H, Nelson K A, Li H B, Moody G, Siemens M E, Cundiff S T 2012 Phys. Rev. B 85 201303Google Scholar

    [6]

    Cundiff S T, Bristow A D, Siemen M, Li H B, Moody G, Karaiskaj D, Dai X C, Zhang T H 2012 IEEE J. Sel. Top Quant. 18 318Google Scholar

    [7]

    Nardin G, Moody G, Singh R, Autry T M, Li H B, Morier-Genoud F, Cundiff S T 2014 Phys. Rev. Lett. 112 046402Google Scholar

    [8]

    Moody G, Akimov I A, Li H B, Singh R, Yakovlev D R, Karczewski G, Wiater M, Wojtowicz T, Bayer M, Cundiff S T 2014 Phys. Rev. Lett. 112 097401Google Scholar

    [9]

    Li H B, Bristow A D, Siemens M E, Moody G, Cundiff S T 2013 Nat. Commun. 4 1390Google Scholar

    [10]

    Bell J D, Conrad R, Siemens M E 2015 Opt. Lett. 4 1157

    [11]

    Titze M, Li H B 2017 Phys. Rev. A 96 032508Google Scholar

    [12]

    Dai X C, Bristow A D, Cundiff S T 2010 Phys. Rev. A 82 052503Google Scholar

    [13]

    Dai X C, Richter M, Li H B, Bristow A D, Falvo C, Mukamel S, Cundiff S T 2012 Phys. Rev. Lett. 108 193201Google Scholar

    [14]

    赵威, 周肇宇, 杨金新, 戴星灿 2015 物理学进展 35 177

    Zhao W, Zhou Z Y, Yang J X, Dai X C 2015 Prog. Phys. 35 177

    [15]

    Zhu W D, Wang R, Zhang C F, Wang G D, Liu Y L, Zhao W, Dai X C, Wang X Y, Cerullo G, Cundiff S T, Xiao M 2017 Opt. Express 25 21115Google Scholar

    [16]

    Zhao W, Qin Z Y, Zhang C F, Wang G D, Li B, Dai X C, Xiao M 2019 J. Phys. Chem. Lett. 10 1251Google Scholar

    [17]

    Huang T Y, Li X H, Shum P P, Wang Q J, Shao X G, Wang L L, Li H Z, Wu Z F, Dong X Y 2015 Opt. Express 23 340Google Scholar

    [18]

    Wang L, Li X H, Wang C, Luo W F, Feng T C, Zhang Y, Zhang H 2019 Chem. Nanomater. Bio. 5 1233

    [19]

    Liu J S, Li X H, Guo Y X, Qyyum A, Shi Z J, Feng T C, Zhang Y, Jiang C X, Liu X F 2019 Small 15 1902811Google Scholar

    [20]

    Zhao Y, Guo P L, Li X H, Jin Z W 2019 Carbon 149 336Google Scholar

    [21]

    Garrett-Roe S, Hamm P 2009 J. Chem. Phys. 130 164510Google Scholar

    [22]

    Mukherjee S S, Skoff D R, Middleton C T, Zanni M T 2013 J. Chem. Phys. 139 144205Google Scholar

    [23]

    李淳飞 2009 非线性光学 (北京: 电子工业出版社) 第57页

    Li C F 2009 Nonlinear Optics (Beijing: Electronics industry Press) p57 (in Chinese)

  • [1] Xu Xiao-Yin, Liu Sheng-Shuai, Jing Jie-Tai. Amplification of entangled beam based on four-wave mixing process. Acta Physica Sinica, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [2] Zhai Shu-Qin, Kang Xiao-Lan, Liu Kui. Quantum steering based on cascaded four-wave mixing processes. Acta Physica Sinica, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [3] Amplification of entangled beam based on four-wave mixing process. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211324
    [4] Yu Sheng, Liu Huan-Zhang, Liu Sheng-Shuai, Jing Jie-Tai. Generation of quadripartite entanglement based on four-wave mixing process and linear beam splitter. Acta Physica Sinica, 2020, 69(9): 090303. doi: 10.7498/aps.69.20200040
    [5] Wan Feng, Wu Bao-Jian, Cao Ya-Min, Wang Yu-Hao, Wen Feng, Qiu Kun. Analytical method for four wave mixing in space-frequency multiplexing optical fibers. Acta Physica Sinica, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [6] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] Cao Ya-Min, Wu Bao-Jian, Wan Feng, Qiu Kun. Principle and noise performance of optical phase arithmetic devices using four wave mixing. Acta Physica Sinica, 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [8] Sun Jiang, Chang Xiao-Yang, Zhang Su-Heng, Xiong Zhi-Qiang. Theoretical study of atom collision by two-nondegenerate four-wave mixing. Acta Physica Sinica, 2016, 65(15): 154206. doi: 10.7498/aps.65.154206
    [9] Li Shu-Biao, Wu Bao-Jian, Wen Feng, Han Rui. Research on magnetic control mechanism of four-wave mixing in highly nonlinear fiber. Acta Physica Sinica, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [10] Zhang Bing, Liu Zhi-Xue, Xu Wan-Chao. Lasing without inversion with considering spontaneously generated coherence. Acta Physica Sinica, 2013, 62(16): 164207. doi: 10.7498/aps.62.164207
    [11] Li Bo, Tan Zhong-Wei, Zhang Xiao-Xing. Simulation and analysis of time lens using cross phase modulation and four-wave mixing. Acta Physica Sinica, 2012, 61(1): 014203. doi: 10.7498/aps.61.014203
    [12] Sun Jiang, Sun Juan, Wang Ying, Su Hong-Xin. Measurement of the argon-gas-induced broadening and shifting of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [13] Sun Jiang, Liu Peng, Sun Juan, Su Hong-Xin, Wang Ying. Study of the satellite line in measurement of the argon -gas-induced broadening of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [14] Wang Yan-Bin, Xiong Chun-Le, Hou Jing, Lu Qi-Sheng, Peng Yang, Chen Zi-Lun. Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers. Acta Physica Sinica, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [15] Li Pei-Li, Huang De-Xiu, Zhang Xin-Liang. Ultrahigh-speed all-optical encoder based on four-wave mixing in semiconductor optical amplifiers with PolSK modulated signals. Acta Physica Sinica, 2009, 58(3): 1785-1792. doi: 10.7498/aps.58.1785
    [16] Yang Lei, Li Xiao-Ying, Wang Bao-Shan. Experimental schemes for developing fiber-based source of entangled photon pairs. Acta Physica Sinica, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [17] Deng Li, Sun Zhen-Rong, Lin Wei-Zhu, Wen Jin-Hui. The stimulated Raman scattering and the four wave mixing in the generation of sub-10 fs pulses. Acta Physica Sinica, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [18] Zhu Cheng-Yu, Lü Zhi-Wei, He Wei-Ming, Ba De-Xin, Wang Yu-Lei, Gao Wei, Dong Yong-Kang. Theoretical study on temporal behavior of Brillouin-enhanced four-wave mixing. Acta Physica Sinica, 2007, 56(1): 229-235. doi: 10.7498/aps.56.229
    [19] Sun Jiang, Zuo Zhan-Chun, Guo Qing-Lin, Wang Ying-Long, Huai Su-Fang, Wang Ying, Fu Pan-Ming. Observation of Rydberg series of neutral barium by two-photon resonent nondegenerate four-wave mixing. Acta Physica Sinica, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [20] Sun Jiang, Zuo Zhan-Chun, Mi Xin, Yu Zu-He, Wu Ling-An, Fu Pan-Ming. Two-photon resonant nondegenerate four-wave mixing via quantum interference. Acta Physica Sinica, 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
Metrics
  • Abstract views:  7018
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2019
  • Accepted Date:  21 October 2019
  • Published Online:  20 January 2020

/

返回文章
返回