Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of bright polarization squeezed light at cesium D2 line based on optical parameter amplifier

Zuo Guan-Hua Yang Chen Zhao Jun-Xiang Tian Zhuang-Zhuang Zhu Shi-Yao Zhang Yu-Chi Zhang Tian-Cai

Citation:

Generation of bright polarization squeezed light at cesium D2 line based on optical parameter amplifier

Zuo Guan-Hua, Yang Chen, Zhao Jun-Xiang, Tian Zhuang-Zhuang, Zhu Shi-Yao, Zhang Yu-Chi, Zhang Tian-Cai
PDF
HTML
Get Citation
  • Quantum light field is very important source in quantum optics and quantum precision measurement, and the generation of quantum state of light is significant in quantum storage, quantum metrology and studying the interaction between nonclassical light and matter. The polarization squeezed light near the atomic transition has great potential applications in the precise measurement of magnetic field as its Stokes parameter’s noise is less than the standard quantum limit (SQL). Therefore, it is very important to generate the polarization squeezed light at atomic transition. We report in this paper the experiment on generating the bright polarization squeezed light at cesium D2 line based on an optical parametric amplifier (OPA). The experimental system includes the following three parts: 1) a second harmonic generator (SHG), 2) an OPA, and 3) a detection system. The OPA has a similar structure to the SHG system with four-mirror ring cavity in which only the fundamental wave is resonant. A nonlinear type-I periodically-poled KTiOPO4 (PPKTP) crystal with a size of 1 mm × 2 mm × 20 mm is placed in the center of the cavity waist and its temperature is precisely controlled. The OPA is pumped by the 426 nm blue light which is generated by SHG and this OPA is operating below the threshold. The squeezed light at cesium D2 line is produced when the crystal temperature is at its optimum phase-matching temperature and the OPA cavity is stabilized based on resonance. The generated squeezed light is combined with the coherent light on a polarizing beam splitter (PBS) to obtain the polarized squeezed light for either ${\hat S_2} $ or ${\hat S_3} $ of the Stokes parameter by controlling the type of squeezed light (parametric amplification or de-amplification) and the relative phase (0 or π/2) of two beams. And for ${\hat S_1} $, the amplitude-squeezed light (corresponding to parametric de-amplification) is the ${\hat S_1} $ squeezed light. The maximum squeezing of 4.3 dB (actually 5.2 dB) is observed in a bandwidth range of 2-10 MHz. At present, the squeezing is mainly limited by the escape efficiency of OPA and the detection efficiency, and the OPA escape efficiency is mainly limited by the blue-light-induced loss of PPKTP crystal and the thermal effect of crystal. In the optical atomic magnetometer, increasing the signal-to-noise ratio (SNR) of the system can effectively improve the sensitivity of the magnetic field measurement. This bright polarization squeezed light is expected to be used in the optical cesium atomic magnetometer to improve the sensitivity of the magnetometer.
      Corresponding author: Zhang Yu-Chi, yczhang@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of Chnia (Grant No. 2017TFA0304502), the National Natural Science Foundation of China (Grant Nos. 11634008, 11674203, 11574187), and Shanxi Province “1331Project” Key Discipline Construction Program
    [1]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602Google Scholar

    [2]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472Google Scholar

    [3]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020Google Scholar

    [4]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar

    [5]

    Seshadreesan K P, Anisimov P M, Lee H, Dowling J P 2011 New J. Phys. 13 083026Google Scholar

    [6]

    Hou L L, Sui Y X, Wang S, Xu X F 2019 Chin. Phys. B 28 044203Google Scholar

    [7]

    Kr4420 1990 Phys. Rev. A 42 4177Google Scholar

    [8]

    Gao J R, Cui F Y, Xue C Y, Xie C D, Peng K C 1998 Opt. Lett. 23 870Google Scholar

    [9]

    Hong C K, Mandel L 1985 Phys. Rev. A 32 974Google Scholar

    [10]

    Bowen W P, Schnabel R, Bachor H A, Lam P K 2002 Phys. Rev. Lett. 88 093601Google Scholar

    [11]

    Zhang T C, Hou Z J, Wang J M, Xie C D, Peng K C 1996 Chin. Phys. Lett. 13 734Google Scholar

    [12]

    Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr. 91 053001Google Scholar

    [13]

    Wolfgramm F, Cerè A, Beduini F A, Predojević A, Koschorreck M, Mitchell M W 2010 Phys. Rev. Lett. 105 053601Google Scholar

    [14]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153Google Scholar

    [15]

    Chirkin A S, Orlov A A, Parashchuk D Y 1993 Quantum Electron. 23 870Google Scholar

    [16]

    Hald J, Sørensen J L, Schori C, Polzik E S 1999 Phys. Rev. Lett. 83 1319Google Scholar

    [17]

    Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102Google Scholar

    [18]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [19]

    Wen X, Han Y S, Liu J Y, He J, Wang J M 2017 Opt. Express 25 020737Google Scholar

    [20]

    Heersink J, Gaber T, Lorenz S, Glöckl O, Korolkova N, Leuchs G 2003 Phys. Rev. A 68 013815Google Scholar

    [21]

    Barreiro S, Valente P, Failache H, Lezama A 2011 Phys. Rev. A 84 033851Google Scholar

    [22]

    Bowen W P, Treps N, Buchler B C et al. 2003 Phys. Rev. A 67 032302

    [23]

    Agha I H, Messin G, Grangier P 2010 Opt. Express 18 4198Google Scholar

    [24]

    Matsko A B, Novikova I, Welch G R, Budker D, Kimball D F, Rochester S M 2002 Phys. Rev. A 66 043815Google Scholar

    [25]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [26]

    Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306Google Scholar

    [27]

    Schnabel R, Bowen W P, Treps N, Ralph T C, Bachor H-A, Lam P K 2003 Phys. Rev. A 67 012316Google Scholar

    [28]

    田剑锋 2018 博士学位论文(太原: 山西大学)

    Tian J F 2018 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [29]

    Tian J F, Zuo G H, Zhang Y C, Li G, Zhang P F, Zhang T C 2017 Chin. Phys. B 26 124206Google Scholar

    [30]

    Tian J F, Yang C, Xue J, Zhang Y C, Li G, Zhang T C 2016 J. Opt. 18 055506Google Scholar

    [31]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

    [32]

    Black E D 2001 Am. J. Phys. 69 79Google Scholar

    [33]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802Google Scholar

    [34]

    Hansson G, Karlsson H, Wang S, Laurell F 2000 Appl. Opt. 39 5058Google Scholar

  • 图 1  量子化的庞加莱球和斯托克斯参量图示

    Figure 1.  Diagrammatic illustration of the quantum Poincaré sphere and Stokes parameters.

    图 2  四个斯托克斯参量的测量装置. PBS, 偏振分束棱镜; $\lambda /2$$\lambda /4$分别是半波片和四分之波片; 加号和减号分别代表电流信号相加减; SA, 频谱分析仪

    Figure 2.  Apparatus required to measure four Stokes parameters. PBS, polarizing beam splitter; $\lambda /2$ and $\lambda /4$, half-and quarter-wave plates, respectively; the plus and minus signs imply that an electrical sum or difference has been taken; SA, Spectrum analyzer.

    图 3  明亮偏振压缩光合成装置

    Figure 3.  Apparatus used to produce the bright polarizationsqueezed beam.

    图 4  实验装置图

    Figure 4.  Schematic of experimental setup.

    图 5  参量增益随泵浦光功率的变化, 其中绿(红)色实点是参量放大(缩小)的实验结果. 实线是理论拟合结果

    Figure 5.  Parametric gain versus pump power, where green (red) solid dots denote the experimental results of amplified (deamplified) gain. The solid lines represent the theoretical results.

    图 6  扫描本地光相位时得到的噪声. 谱仪中心频率为2 MHz, 分辨率带宽(RBW)为100 kHz, 视频带宽(VBW)为500 Hz

    Figure 6.  Noise power when scanning the local beam phase. The spectrum analyzer’s center frequency is 2 MHz with RBW = 100 kHz and VBW = 500 Hz.

    图 7  不同斯托克斯参量的噪声测量结果. 其中左图是测量的斯托克斯参量的噪声谱, 已归一化到标准量子噪声基准. 右图是与之对应的噪声分布球及投影噪声分布, 其中蓝色椭球体代表噪声球, 椭圆表示噪声球投影到各个面上的噪声分布. 红色虚线表示相干光对应的噪声, 蓝色实线表示偏振压缩光 (a) ${\hat S_2}$压缩; (b) ${\hat S_3}$压缩; (c) ${\hat S_1}$压缩

    Figure 7.  Measured noise results for different Stokes parameters. The results on the left are the measured variance spectra of Stokes parameters normalized to quantum noise limit. The results on the right are the corresponding diagrammatic illustration of the Stokes parameters’ variance ellipsoid, and the blue ellipsoid is the noise ball, and these ellipses are the noise projections at each plane. The red dashed circles represent the noise of the coherent state and the blue solid circles show the squeezing. (a) Squeezing for Stokes parameter ${\hat S_2}$; (b) Squeezing for Stokes parameter ${\hat S_3}$; (c) Squeezing for Stokes parameter ${\hat S_1}$.

    表 1  影响OPA产生压缩和探测过程的实验参数

    Table 1.  Factors of effecting squeezing from the OPA and the detection system.

    参数
    传输效率0.99
    量子效率0.95
    干涉效率0.986
    逃逸率0.73
    归一化泵浦因子0.71
    归一化测量频率0.18
    DownLoad: CSV
  • [1]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602Google Scholar

    [2]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472Google Scholar

    [3]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020Google Scholar

    [4]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar

    [5]

    Seshadreesan K P, Anisimov P M, Lee H, Dowling J P 2011 New J. Phys. 13 083026Google Scholar

    [6]

    Hou L L, Sui Y X, Wang S, Xu X F 2019 Chin. Phys. B 28 044203Google Scholar

    [7]

    Kr4420 1990 Phys. Rev. A 42 4177Google Scholar

    [8]

    Gao J R, Cui F Y, Xue C Y, Xie C D, Peng K C 1998 Opt. Lett. 23 870Google Scholar

    [9]

    Hong C K, Mandel L 1985 Phys. Rev. A 32 974Google Scholar

    [10]

    Bowen W P, Schnabel R, Bachor H A, Lam P K 2002 Phys. Rev. Lett. 88 093601Google Scholar

    [11]

    Zhang T C, Hou Z J, Wang J M, Xie C D, Peng K C 1996 Chin. Phys. Lett. 13 734Google Scholar

    [12]

    Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr. 91 053001Google Scholar

    [13]

    Wolfgramm F, Cerè A, Beduini F A, Predojević A, Koschorreck M, Mitchell M W 2010 Phys. Rev. Lett. 105 053601Google Scholar

    [14]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153Google Scholar

    [15]

    Chirkin A S, Orlov A A, Parashchuk D Y 1993 Quantum Electron. 23 870Google Scholar

    [16]

    Hald J, Sørensen J L, Schori C, Polzik E S 1999 Phys. Rev. Lett. 83 1319Google Scholar

    [17]

    Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102Google Scholar

    [18]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [19]

    Wen X, Han Y S, Liu J Y, He J, Wang J M 2017 Opt. Express 25 020737Google Scholar

    [20]

    Heersink J, Gaber T, Lorenz S, Glöckl O, Korolkova N, Leuchs G 2003 Phys. Rev. A 68 013815Google Scholar

    [21]

    Barreiro S, Valente P, Failache H, Lezama A 2011 Phys. Rev. A 84 033851Google Scholar

    [22]

    Bowen W P, Treps N, Buchler B C et al. 2003 Phys. Rev. A 67 032302

    [23]

    Agha I H, Messin G, Grangier P 2010 Opt. Express 18 4198Google Scholar

    [24]

    Matsko A B, Novikova I, Welch G R, Budker D, Kimball D F, Rochester S M 2002 Phys. Rev. A 66 043815Google Scholar

    [25]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [26]

    Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306Google Scholar

    [27]

    Schnabel R, Bowen W P, Treps N, Ralph T C, Bachor H-A, Lam P K 2003 Phys. Rev. A 67 012316Google Scholar

    [28]

    田剑锋 2018 博士学位论文(太原: 山西大学)

    Tian J F 2018 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [29]

    Tian J F, Zuo G H, Zhang Y C, Li G, Zhang P F, Zhang T C 2017 Chin. Phys. B 26 124206Google Scholar

    [30]

    Tian J F, Yang C, Xue J, Zhang Y C, Li G, Zhang T C 2016 J. Opt. 18 055506Google Scholar

    [31]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

    [32]

    Black E D 2001 Am. J. Phys. 69 79Google Scholar

    [33]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802Google Scholar

    [34]

    Hansson G, Karlsson H, Wang S, Laurell F 2000 Appl. Opt. 39 5058Google Scholar

  • [1] Han Ya-Shuai, Zhang Xiao, Zhang Zhao, Qu Jun, Wang Jun-Min. Analysis of squeezed light source in band of alkali atom transitions based on cascaded optical parametric amplifiers. Acta Physica Sinica, 2022, 71(7): 074202. doi: 10.7498/aps.71.20212131
    [2] Liu Kui, Ma Long, Su Bi-Da, Li Jia-Ming, Sun Heng-Xin, Gao Jiang-Rui. Generation of continuous variable frequency comb entanglement based on nondegenerate optical parametric amplifier. Acta Physica Sinica, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [3] Luo Jun-Wen, Wu De-Wei, Li Xiang, Zhu Hao-Nan, Wei Tian-Li. Continuous variable polarization entanglement in microwave domain. Acta Physica Sinica, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [4] Lü Ming-Tao, Yan Ming-Yue, Ai Bao-Quan, Gao Tian-Fu, Zheng Zhi-Gang. Stokes efficiency in the overdamped Brownian ratchet. Acta Physica Sinica, 2017, 66(22): 220501. doi: 10.7498/aps.66.220501
    [5] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Qu Jun-Le, Niu Han-Ben. Research on coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [6] Zhang Sai-Wen, Chen Dan-Ni, Liu Shuang-Long, Liu Wei, Niu Han-Ben. Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging. Acta Physica Sinica, 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [7] Wang Mei-Jie, Jia Wei-Guo, Zhang Si-Yuan, Menke Nei-Mu-Le, Yang Jun, Zhang Jun-Ping. Effect of Raman gain on the state of polarization evolution in a low-birefringence fiber. Acta Physica Sinica, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [8] You Lang-Fang, Ling Wei-Jun, Li Ke, Zhang Ming-Xia, Zuo Yin-Yan, wang Yi-Shan. High efficient CEP-stabilized infrared optical parametric amplifier made from a BBO single crystal. Acta Physica Sinica, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [9] Yan Xiao-Bo, Yang Liu, Tian Xue-Dong, Liu Yi-Mou, Zhang Yan. Optomechanically induced transparency and normal mode splitting in an optical parametric amplifier cavity. Acta Physica Sinica, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [10] Ma Jun, Yuan Cao-Jin, Feng Shao-Tong, Nie Shou-Ping. Full-field detection of polarization state based on multiplexing digital holography. Acta Physica Sinica, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [11] Shen Xiang-Wei, Yu Chong-Xiu, Sang Xin-Zhu, Yuan Jin-Hui, Han Ying, Xia Chang-Ming, Hou Lan-Tian, Rao Fen, Xia Min, Yin Xiao-Li. High efficient anti-Stokes signal conversion in photonic crystal fiber. Acta Physica Sinica, 2012, 61(4): 044203. doi: 10.7498/aps.61.044203
    [12] Qiu Wei, Ma Ying-Chi, Lü Pin, Liu Dian, Xu Xiao-Juan, Zhang Cheng-Hua. Slowdown of group velocity of light pulse in erbium-doped optical fiber amplifier under no absorption loss at a room temperature. Acta Physica Sinica, 2012, 61(9): 094204. doi: 10.7498/aps.61.094204
    [13] Zhao Chao-Ying, Tan Wei-Han. Quantum fluctuations of the optical parametric amplification system under the consideration of dispersion. Acta Physica Sinica, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [14] Zeng Shu-Guang, Zhang Bin. Inverse problem of optical parametric chirped pulse amplification. Acta Physica Sinica, 2009, 58(4): 2476-2481. doi: 10.7498/aps.58.2476
    [15] Entanglement property of two-mode cavity field in a nondegenerate four-wave mixing system. Acta Physica Sinica, 2007, 56(12): 6970-6975. doi: 10.7498/aps.56.6970
    [16] Dong Chuan-Hua. The quantum description of polarization states of light and its evolutions in the processes of interaction with atoms. Acta Physica Sinica, 2005, 54(2): 687-695. doi: 10.7498/aps.54.687
    [17] Sun Tao, Huang Jin-Sheng, Zhang Wei-Li, Wang Qing-Yue. . Acta Physica Sinica, 2002, 51(10): 2281-2285. doi: 10.7498/aps.51.2281
    [18] TANG LI-JIA, CAI XI-JIE, LIN ZUN-QI. CONTROL OF PULSE SHAPE IN “SHENGGUANG II” MAIN AMPLIFERS. Acta Physica Sinica, 2001, 50(6): 1075-1079. doi: 10.7498/aps.50.1075
    [19] TAN WEI-HAN, ZHANG WEI-PING, TAN WEI-SI. ENHANCED SQUEEZING OF THE INTRACAVITY LIGHT FIELD PRODUCED IN PARAMETRIC AMPLIFICATION VIA LASER INJECTION. Acta Physica Sinica, 1990, 39(10): 1555-1562. doi: 10.7498/aps.39.1555
    [20] SHEN GUANG-MING, GAO TIAN-MING, MAO JING-HUAI. AN ANALYSIS OF FUNDAMENTAL AND SUB-HARMONIC PUMPING PARAMETRIC AMPLIFIERS. Acta Physica Sinica, 1963, 19(6): 384-397. doi: 10.7498/aps.19.384
Metrics
  • Abstract views:  9168
  • PDF Downloads:  113
  • Cited By: 0
Publishing process
  • Received Date:  02 July 2019
  • Accepted Date:  07 September 2019
  • Available Online:  05 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回