Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of high-quality circular Airy beams in laser resonator

Zhu Yi-Fan Geng Tao

Citation:

Generation of high-quality circular Airy beams in laser resonator

Zhu Yi-Fan, Geng Tao
PDF
HTML
Get Citation
  • A scheme for forming high-quality circular Airy beams inside the laser resonator is presented theoretically. The desired circular Airy beam can be generated when the common reflective mirror is replaced by a designed diffractive optical element. The mode generated in the proposed cavity can be stimulated by using the so-called eigenvector method. The calculated results show that the parameters of the beams can be controlled by changing the phase distribution of the diffractive optical element. The loss of the generated mode is very low, which is close to that of the fundamental Gaussian mode. The purity of the generated mode is very high, which is much better than that from the phase-only encoding method in Fourier space. The phase distribution of the diffractive optical element needs designing for a fixed resonator length. In practice, the real resonator length may not be equal to the designed resonator length. Thus, the influence of the alignment error of the resonator length is discussed in detail. The results show that the diffraction loss of the proposed system is still very small even when the error reaches up to 2 mm. Meanwhile, the purity of the generated mode decreases little. Then, the influence of etching depth errors and the decenter of the reflective mirrors are discussed in detail. Here we assume that the fluctuations are randomly distributed. The value of the maximum fluctuation is used to represent the etching depth error degree. The results show that the diffraction loss of the proposed system is more sensitive to production error, and the purity of the generated mode is more sensitive to alignment error. Thus, we estimate that the maximum etching depth error should be less than six percent of the wavelength, and the vertical distance between the centers of the two reflective mirrors should be less than 7 μm if one wants to obtain high-quality CAB with high efficiency. The requirements for precision are acceptable for existing microfabrication and operation technologies.
      Corresponding author: Geng Tao, Tao_Geng@hotmail.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB352001), the Special Funds of the Major Scientific Instruments Equipment Development of China (Grant No. 2012YQ17000408), and the Natural Science Foundation of Shanghai, China (Grant No. 16ZR144600)
    [1]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901Google Scholar

    [2]

    Minovich A E, Klein A E, Neshev D N, Pertsch T, Kivshar Y S, Christodoulides D N 2014 Laser. Photon. Rev. 8 221Google Scholar

    [3]

    Qian J, Liu B Y, Sun H X, Yuan S Q, Yu X Z 2017 Chin. Phys. B 26 114304Google Scholar

    [4]

    崔省伟, 陈子阳, 胡克磊, 蒲继雄 2013 物理学报 62 094205Google Scholar

    Cui S W, Chen Z Y, Hu K L, Pu J X 2013 Acta Phys. Sin. 62 094205Google Scholar

    [5]

    张泽, 刘京郊, 张鹏, 倪培根, Prakash J, 胡洋, 姜东升, Christodoulides D N, 陈志刚 2013 物理学报 62 034209Google Scholar

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209Google Scholar

    [6]

    Guo Y H, Huang Y J, Li X, Pu M B, Gao P, Jin J J, Ma X L, Luo X G 2019 Adv. Opt. Mater. 7 1900503Google Scholar

    [7]

    Li Z, Cheng H, Liu Z, Chen S, Tian J 2016 Adv. Opt. Mater. 4 1230Google Scholar

    [8]

    Fan Q, Zhu W, Liang Y, Huo P, Zhang C, Agrawal A, Huang K, Luo X, Lu Y, Qiu C, Lezec H J, Xu T 2019 Nano Lett. 19 1158Google Scholar

    [9]

    Efremidis N K, Christodoulides D N 2010 Opt. Lett. 35 4045Google Scholar

    [10]

    Papazoglou D G, Efremidis N K, Christodoulides D N, Tzortzakis S 2011 Opt. Lett. 36 1842Google Scholar

    [11]

    Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C 2016 Optica 3 605Google Scholar

    [12]

    Manousidaki M, Papazoglou D G, Farsari M, Tzortzakis S 2016 Optica 3 525Google Scholar

    [13]

    Manousidaki M, Fedorov V Y, Papazoglou D G, Farsari M, Tzortzakis S 2018 Opt. Lett. 4 3

    [14]

    Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z 2011 Opt. Lett. 36 2883Google Scholar

    [15]

    Davis J A, Cottrell D M, Zinn J M 2013 Appl. Opt. 52 1888Google Scholar

    [16]

    Davis J A, Cottrell D M, Sand D 2012 Opt. Express 20 13302Google Scholar

    [17]

    刘正楠, 耿滔, 邓攀 2019 中国激光 46 0209001

    Liu Z N, Geng T, Deng P 2019 Chin. J. Lasers 46 0209001

    [18]

    Fox A G, Li T 1961 Bell System Techical Journal 40 453Google Scholar

    [19]

    Chao J, Li B, Cheng Y, Wang Y 2007 Opt. Laser Technol. 39 490Google Scholar

    [20]

    Cheng Y Y, Wang Y Q, Hu J, Li J R 2004 Opt. Commun. 234 1Google Scholar

    [21]

    Bélanger P A, Paré C 1991 Opt. Lett. 16 1057Google Scholar

    [22]

    Leger J R, Chen D, Wang Z 1994 Opt. Lett. 19 108Google Scholar

    [23]

    Jiang Y, Zhu X, Yu W, Shao H, Zheng W, Lu X 2015 Opt. Express 23 29834Google Scholar

    [24]

    Li N, Jiang Y, Huang K, Lu X 2014 Opt. Express 22 22847Google Scholar

    [25]

    Zhou W, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process 13 600Google Scholar

  • 图 1  (a) CAB初始面的光强分布; (b) CAB初始面的相位分布; (c) CAB的侧面光强分布

    Figure 1.  (a) Intensity distributions of the CAB at the initial plane; (b) phase distributions of the CAB at the initial plane; (c) intensity distributions of the CAB during propagation in the r-z plane.

    图 2  谐振腔示意图

    Figure 2.  Schematic of the laser resonator configuration for CAB generation.

    图 3  不同参数条件下, 使用Fox-Li方法计算获得的腔内光场模式分布 (a) r0 = 1 mm, w = 0.2 mm和a = 0.15; (b) r0 = 1.1 mm, w = 0.22 mm和a = 0.17; (c) r0 = 1.2 mm, w = 0.25 mm和a = 0.2

    Figure 3.  Calculation results of the intensity distributions of the modes by using Fox-Li method with different parameters: (a) r0 = 1 mm, w = 0.2 mm and a = 0.15; (b) r0 = 1.1 mm, w = 0.22 mm and a = 0.17; (c) r0 = 1.2 mm, w = 0.25 mm and a = 0.2.

    图 4  理想CAB和使用不同方法产生的光束的径向光强分布 (a) r0 = 1 mm, w = 0.2 mm和a = 0.15; (b) r0 = 1.1 mm, w = 0.22 mm和a = 0.17; (c) r0 = 1.2 mm, w = 0.25 mm和a = 0.2

    Figure 4.  Radial intensity distributions of the ideal CAB and the beams produced by different methods: (a) r0 = 1 mm, w = 0.2 mm and a = 0.15; (b) r0 = 1.1 mm, w = 0.22 mm and a = 0.17; (c) r0 = 1.2 mm, w = 0.25 mm and a = 0.2.

    图 5  理想CAB和使用不同方法产生的光束的光轴光强分布 (a) r0 = 1 mm, w = 0.2 mm和a = 0.15; (b) r0 = 1.1 mm, w = 0.22 mm和a = 0.17; (c) r0 = 1.2 mm, w = 0.25 mm和a = 0.2

    Figure 5.  On-axis intensity contrast of the ideal CAB and the beams produced by different methods: (a) r0 = 1 mm, w = 0.2 mm and a = 0.15; (b) r0 = 1.1 mm, w = 0.22 mm and a = 0.17; (c) r0 = 1.2 mm, w = 0.25 mm and a = 0.2.

    图 6  光束参数为${r_0} = 1\;{\rm{mm}}$, $w = 0.2\;{\rm{mm}}$$a = 0.15$时, 系统对准误差对产生光束质量的影响 (a)基模的$\left| \gamma \right|$以及S与腔长误差${\delta _{\rm{l}}}$的关系; (b)基模的$\left| \gamma \right|$以及S与同轴度误差${\delta _{\rm{d}}}$的关系

    Figure 6.  The influence of the alignment errors on formation of the fundamental mode with ${r_0} = 1\;{\rm{mm}}$, $w = 0.2\;{\rm{mm}}$ and $a = 0.15$: (a) $\left| \gamma \right|$ and S of the fundamental mode as a function of $\delta_{\rm l}$; (b) $\left| \gamma \right|$ and S of the fundamental mode as a function of $\delta _{\rm d}$

    图 7  基模的$\left| \gamma \right|$以及S${\delta _{\rm{h}}}$的关系

    Figure 7.  $\left| \gamma \right|$ and S of the fundamental mode as a function of ${\delta _{\rm{h}}}$.

    表 1  不同参数条件下的衍射光学元件上的相位分布和计算获得的最大3个$\left| \gamma \right|$对应模式的光强分布

    Table 1.  The phase distributions of the diffractive optical elements, the three largest $\left| \gamma \right|$ and the calculated intensity distributions of corresponding modes with different parameters.

    CAB的参数衍射光学元件上的相位分布/rad$\left| \gamma \right|$光强分布
    r0 = 1 mm
    w = 0.2 mm
    a = 0.15
    0.9972
    0.9898
    0.9898
    r0 = 1.1 mm
    w = 0.22 mm
    a = 0.17
    0.9970
    0.9845
    0.9845
    r0 = 1.2 mm
    w = 0.25 mm
    a = 0.2
    0.9960
    0.9804
    0.9804
    DownLoad: CSV
  • [1]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901Google Scholar

    [2]

    Minovich A E, Klein A E, Neshev D N, Pertsch T, Kivshar Y S, Christodoulides D N 2014 Laser. Photon. Rev. 8 221Google Scholar

    [3]

    Qian J, Liu B Y, Sun H X, Yuan S Q, Yu X Z 2017 Chin. Phys. B 26 114304Google Scholar

    [4]

    崔省伟, 陈子阳, 胡克磊, 蒲继雄 2013 物理学报 62 094205Google Scholar

    Cui S W, Chen Z Y, Hu K L, Pu J X 2013 Acta Phys. Sin. 62 094205Google Scholar

    [5]

    张泽, 刘京郊, 张鹏, 倪培根, Prakash J, 胡洋, 姜东升, Christodoulides D N, 陈志刚 2013 物理学报 62 034209Google Scholar

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209Google Scholar

    [6]

    Guo Y H, Huang Y J, Li X, Pu M B, Gao P, Jin J J, Ma X L, Luo X G 2019 Adv. Opt. Mater. 7 1900503Google Scholar

    [7]

    Li Z, Cheng H, Liu Z, Chen S, Tian J 2016 Adv. Opt. Mater. 4 1230Google Scholar

    [8]

    Fan Q, Zhu W, Liang Y, Huo P, Zhang C, Agrawal A, Huang K, Luo X, Lu Y, Qiu C, Lezec H J, Xu T 2019 Nano Lett. 19 1158Google Scholar

    [9]

    Efremidis N K, Christodoulides D N 2010 Opt. Lett. 35 4045Google Scholar

    [10]

    Papazoglou D G, Efremidis N K, Christodoulides D N, Tzortzakis S 2011 Opt. Lett. 36 1842Google Scholar

    [11]

    Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C 2016 Optica 3 605Google Scholar

    [12]

    Manousidaki M, Papazoglou D G, Farsari M, Tzortzakis S 2016 Optica 3 525Google Scholar

    [13]

    Manousidaki M, Fedorov V Y, Papazoglou D G, Farsari M, Tzortzakis S 2018 Opt. Lett. 4 3

    [14]

    Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z 2011 Opt. Lett. 36 2883Google Scholar

    [15]

    Davis J A, Cottrell D M, Zinn J M 2013 Appl. Opt. 52 1888Google Scholar

    [16]

    Davis J A, Cottrell D M, Sand D 2012 Opt. Express 20 13302Google Scholar

    [17]

    刘正楠, 耿滔, 邓攀 2019 中国激光 46 0209001

    Liu Z N, Geng T, Deng P 2019 Chin. J. Lasers 46 0209001

    [18]

    Fox A G, Li T 1961 Bell System Techical Journal 40 453Google Scholar

    [19]

    Chao J, Li B, Cheng Y, Wang Y 2007 Opt. Laser Technol. 39 490Google Scholar

    [20]

    Cheng Y Y, Wang Y Q, Hu J, Li J R 2004 Opt. Commun. 234 1Google Scholar

    [21]

    Bélanger P A, Paré C 1991 Opt. Lett. 16 1057Google Scholar

    [22]

    Leger J R, Chen D, Wang Z 1994 Opt. Lett. 19 108Google Scholar

    [23]

    Jiang Y, Zhu X, Yu W, Shao H, Zheng W, Lu X 2015 Opt. Express 23 29834Google Scholar

    [24]

    Li N, Jiang Y, Huang K, Lu X 2014 Opt. Express 22 22847Google Scholar

    [25]

    Zhou W, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process 13 600Google Scholar

  • [1] Hou Lei, Guan Shu-Yang, Yin Jun, Zhang Yu-Jun, Xiao Yi-Ming, Xu Wen, Ding Lan. High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system. Acta Physica Sinica, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [2] Xu Ping, Xu Hai-Dong, Yang Tuo, Huang Hai-Xuan, Zhang Xu-Lin, Yuan Xia, Xiao Yu-Fei, Li Xiong-Chao, Wang Meng-Yu. Handwritten digit recognition by three-layer diffractive neural network. Acta Physica Sinica, 2022, 71(18): 184207. doi: 10.7498/aps.71.20220536
    [3] Lu Li-Dan, Zhu Lian-Qing, Zeng Zhou-Mo, Cui Yi-Ping, Zhang Dong-Liang, Yuan Pei. Progress of silicon photonic devices-based Fano resonance. Acta Physica Sinica, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [4] Xie Jing, Zhang Jun-Yong, Yue Yang, Zhang Yan-Li. Focusing properties of Lucas sieves. Acta Physica Sinica, 2018, 67(10): 104201. doi: 10.7498/aps.67.20172260
    [5] Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Yin Yi-heng. Design and performance analysis of microcavity-enhanced graphene photodetector. Acta Physica Sinica, 2016, 65(13): 138501. doi: 10.7498/aps.65.138501
    [6] Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Liu Kai-Ming, Yin Yi-Heng. Design and performance analysis of THz microcavity-enhanced graphene photodetector. Acta Physica Sinica, 2016, 65(16): 168101. doi: 10.7498/aps.65.168101
    [7] Li Pei, Wang Fu-Zhong, Zhang Li-Zhu, Zhang Guang-Lu. Influence of left-handed material on the resonant frequency of resonant cavity. Acta Physica Sinica, 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [8] Yu Bin, Li Heng, Chen Dan-Ni, Niu Han-Ben. Design, fabrication, and experimental demonstration of a diffractive optical element with long depth of field for nanoscale three-dimensional multi-molecule tracking. Acta Physica Sinica, 2013, 62(15): 154206. doi: 10.7498/aps.62.154206
    [9] Lei Chao-Jun, Yu Sheng, Li Hong-Fu, Niu Xin-Jian, Liu Ying-Hui, Hou Shen-Yong, Zhang Tian-Zhong. Study on gradually-varying cavity for a gyrotron. Acta Physica Sinica, 2012, 61(18): 180202. doi: 10.7498/aps.61.180202
    [10] Fang Jin-Yong, Huang Hui-Jun, Zang Zhi-Qiang, Huang Wen-Hua, Jiang Wei-Hua. High power microwave pulse compression systembased on cylindrical resonant cavity. Acta Physica Sinica, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [11] Bai Ning-Feng, Hong Wei, Sun Xiao-Han. Composite defect electromagnetic band gap cavity. Acta Physica Sinica, 2011, 60(1): 018401. doi: 10.7498/aps.60.018401
    [12] Liu Chang, Luo Yao-Tian, Tang Chang-Jian, Liu Pu-Kun. Electromagnetic mode analysis on the cold characteristics of photonic-band-gap resonant cavity loaded in gyrotron. Acta Physica Sinica, 2009, 58(12): 8174-8179. doi: 10.7498/aps.58.8174
    [13] Liu Yang, Gong Hua-Rong, Wei Yan-Yu, Gong Yu-Bin, Wang Wen-Xiang, Liao Fu-Jiang. An effective method for suppressing the mode competition in a rectangular cavity loaded with photonic crystals. Acta Physica Sinica, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [14] Yang Rui, Xie Yong-Jun, Wang Peng, Yang Tong-Min. Subwavelength cavity resonator microstrip antennas based on left-and right-handed metamaterial bilayered substrates. Acta Physica Sinica, 2007, 56(8): 4504-4508. doi: 10.7498/aps.56.4504
    [15] Luo Xiong, Liao Cheng, Meng Fan-Bao, Zhang Yun-Jian. Resonance effect on a coaxial vircator. Acta Physica Sinica, 2006, 55(11): 5774-5778. doi: 10.7498/aps.55.5774
    [16] Zhang Yan-Li, Zhao Yi-Qiong, Zhan Qi-Wen, Li Yong-Ping. Study of 3D optical chain with highly focused vector beam. Acta Physica Sinica, 2006, 55(3): 1253-1258. doi: 10.7498/aps.55.1253
    [17] Zhang Jun, Zhong Hui-Huang. Investigation on longitudinal mode selection in O-type HPM devices. Acta Physica Sinica, 2005, 54(1): 206-210. doi: 10.7498/aps.54.206
    [18] Cheng Yuan-Ying, Wang You-Qing, Hu Jin, Li Jia-Rong. A novel eigenvector method for calculation of optical resonator modes and beam propagation. Acta Physica Sinica, 2004, 53(8): 2576-2582. doi: 10.7498/aps.53.2576
    [19] LU XUAN-HUI, HUANG KAI-KAI. THE RESEARCH ON IMPROVING THE CHARACTERISTICS OF LASER OUTPUT WITH DIFFRACTIVE OPTICAL ELEMENTS. Acta Physica Sinica, 2001, 50(8): 1409-1414. doi: 10.7498/aps.50.1409
    [20] YE BI-QING, MA ZHONG-LIN. THE THERMO-OPTIC EFFECT OF AN OPTICAL ELEMENT IN LASER RESONATOR. Acta Physica Sinica, 1980, 29(6): 756-763. doi: 10.7498/aps.29.756
Metrics
  • Abstract views:  8465
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2019
  • Accepted Date:  16 September 2019
  • Available Online:  05 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回