Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Distinguishing node propagation influence by expected index of finite step propagation range

Li Xin Zhao Cheng-Li Liu Yang-Yang

Citation:

Distinguishing node propagation influence by expected index of finite step propagation range

Li Xin, Zhao Cheng-Li, Liu Yang-Yang
PDF
HTML
Get Citation
  • On-line social networks have gradually become an indispensable tool for people. Identifying nodes with high influence in the network as an initial source of communication is of great significance in social perception and rumor control. According to the independent cascade model, in this paper we present an index describing the finite step propagation range expectation as the degree of propagation, and design an efficient recursive algorithm. Based on the local topology information, the index combines the propagation probability to characterize the influence, which can better reflect the propagation influence of a single node. For a single propagation source influence ordering problem, the node degree of propagation and propagation capability are better consistent with each other. And the propagation degree can well describe the propagation influence of nodes under different networks and propagation probabilities. For maximizing the multi-propagation source influence, in this paper we propose a propagation-based heuristic algorithm which is called propagation discount algorithm. This algorithm makes the joint influence of multiple propagation sources maximized. Finally, in this paper we apply the above method to three real networks, showing better effects than the classic indicators and methods. The algorithm has three advantages. First, the expected value of the final propagation range of each node in the small network can be accurately calculated. Second, the degree of propagation fully considers the local topology of the node and belongs to a locality indicator. Third, the indicator combines the effect of propagation probability and yields good outcomes under different networks and propagation probabilities.
      Corresponding author: Li Xin, 287998116@qq.com
    [1]

    Fershtman M 1997 Soc. Networks 19 193

    [2]

    Chen D B, Lu L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [3]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [4]

    Bavelas A 1950 J. Acoust. Soc. Am. 22 725Google Scholar

    [5]

    Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G 1997 J. Phys. Chem. B 101 9463

    [6]

    闵磊, 刘智, 唐向阳 2015 物理学报 64 088901

    Min L, Liu Z, Tang X Y 2015 Acta Phys. Sin. 64 088901

    [7]

    Domingos P, Richardson M 2001 Proceedings of KDD'01 ACM SIG KDD International Conference on Knowledge Discovery and Data Mining San Francisco, CA, USA, August 26−29, 2001 p57

    [8]

    Kempe D, Kleinberg J, Tardos E 2003 Proc. 9th ACM SIGKDD Intl. Conf. On Knowledge Discovery and Data Mining New Washington, DC, USA, August 24−27, 2003 p137

    [9]

    Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N 2007 Proc. 13 th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining USA, August 24−27, 2007 p420

    [10]

    Chen W, Wang Y, Yang S 2009 Proc. 15th ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining Paris, France, June 28−July 1, 2009 p199

    [11]

    Sheikhahmadi A, Nematbakhsh M A, Shokrollahi A 2015 Physica A 436 833

    [12]

    Kimura M, Saito K 2006 Knowledge-Based Intelligent Information and Engineering Systems: 10th international conference Bournemouth, UK, October 9−11, 2006 p259

    [13]

    Chen W, Wang C, Wang Y 2010 Proc. 16th ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining WashingtonDC, USA, July 25−28, 2010 p1029

    [14]

    Wang Y, Cong G, Song G 2010 Proc. 16th ACM SIGKDD Intl. Conf. on Knowledge discovery and mining Washington DC, USA, July 25−28, 2010 p1039

    [15]

    Li D, Xu Z M, Chakraborty N 2014 PloS One 9 e102199Google Scholar

    [16]

    Hu Y Q, Ji S G, Jin Y L, Feng L, Stanley H E, Havlin S 2018 PNAS 115 7468Google Scholar

    [17]

    Lancichinetti A, Fortunato S 2009 Phys. Rev. E 80 056117

    [18]

    Leskovec J, Lang K, Dasgupta A, Mahoney M W 2009 Internet Mathematics 6 29Google Scholar

    [19]

    Lapata M 2006 Comput. Linguist. 32 471Google Scholar

    [20]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

  • 图 1  一个简单网络例子 (a)网络图; (b)图(a)对应的传播树

    Figure 1.  A simple network example: (a) The network diagram; (b) the corresponding propagation tree of (a).

    图 2  (a)不同仿真次数下的近似传播期望值和传播度随时间的变化; (b)不同仿真次数的近似传播期望值与传播度的方差变化

    Figure 2.  (a) Approximate propagation expectation and the degree of propagation over time for different simulation times; (b) variance of the approximate propagation expectation and the degree of propagation of different simulation times.

    图 3  图1中的网络各节点4阶传播度(归一化)随传播概率变化

    Figure 3.  Changes of the 4th degree of propagation (normali-zed) of network node in Fig. 1 with the propagation pro-bability.

    图 4  基于传播度的节点影响力极大化算法流程图

    Figure 4.  Flow chart of node influence maximization algorithm based on propagation degree.

    图 5  (a)−(c) 分别反映了Deezer网络随机挑选若干节点的传播能力与度, 二阶传播度, 三阶传播度的关系, 其中β = 0.06; (d)−(f) 分别反映了Deezer网络随机挑选若干节点全局传播概率(参见文献[12])与度, 二阶传播度, 三阶传播度的对应情况, 其中β = 0.12(这里通过仿真实验不难发现该网络的渗流阈值介于0.06和0.12之间)

    Figure 5.  (a)−(c): Respectively reflects the relationship between the propagation capacity and degree, second-order propagation, and third-order propagation of several nodes randomly selected by the Deezer network, where β = 0.06; (d)−(f): Respectively reflects the global propagation probability of randomly selected nodes by the Deezer network (see reference[12]) Correspondence with degrees, second-order propagation, and third-order propagation, where β = 0.12 (here, it is not difficult to find through the simulation experiments that the percolation threshold of the network is between 0.06 and 0.12)

    图 6  不同传播概率下度, 二阶、三阶传播度与仿真传播能力的kendall’s tau系数

    Figure 6.  Kendall’s tau coefficient for different propagation probabilities, second-order, third-order propagation and simulation propagation ability.

    图 7  (a)在Email-Enron网络中, 传播概率为0.02的情况下二阶传播度和全局传播概率p的关系; (b)各指标在不同概率下与传播能力的kendall’s tau系数

    Figure 7.  (a) The relationship between the second-order propagation degree and the global propagation probability p in the case of the Email-Enron network with a propagation probability of 0.02; (b) the kendall's tau coefficient of each indicator with different propagation rates and propagation capabilities.

    图 8  (a)在Facebook网络中, 传播概率为0.09的情况下二阶传播度和全局传播概率p的关系; (b)各指标在不同概率下与传播能力的kendall’s tau系数

    Figure 8.  (a) The relationship between the second-order propagation degree and the global propagation probability p in the case of a Facebook network with a propagation probability of 0.09; (b) the kendall's tau coefficient of each indicator with different propagation rates and propagation capabilities.

    图 9  在Deezer网络中(a)不同算法下传播范围随所选种子节点数量的变化和(b)不同算法下全局传播概率随种子节点数量的变化, 其中候选节点为度为6, 7, 8的9792个节点

    Figure 9.  In the Deezer network, (a) the variation of the propagation range with the number of selected seed nodes under different algorithms; (b) the variation of the global propagation probability with the number of seed nodes under different algorithms. The candidate nodes are 9792 nodes with a degree of 6, 7 and 8.

    图 10  (a), (b)和(c), (d)分别比较了Email-Enron, Facebook网络在不同算法下所选种子节点的传播性能

    Figure 10.  (a), (b), and (c), (d), respectively, compare the propagation performance of Email-Enron, the selected seed node of the Facebook network under different algorithms.

    表 1  联合概率算法

    Table 1.  Joint probability algorithm

    辅助算法二联合概率算法
    输入时间t, 节点u以及对于u的序号集W
    输出联合概率${{{f}}_{{t}}}\left( {{{{u}}_{{W}}}} \right)$
    1.if W只含一个元素 then
    2.找到该节点的双亲节点${{{v}}_{\left( {{i}} \right)}}$
    3.${{{f}}_{{t}}}\left( {{{{u}}_{{W}}}} \right) = {{{f}}_{{{t}} - {{1}}}}\left( {{{{v}}_{\left( {{i}} \right)}}} \right) \times {{\beta }} \times \left( {{{1}} - {{{p}}_{{{t}} - {{1}}}}\left( {{u}} \right)} \right)$
    4.else
    5.找到传播树种${{{P}}_{{t}}}$代序号集为Wu节点, 记其双亲节点为${{{v}}_{{1}}}, {{{v}}_{{2}}}, \cdots , {{{v}}_{{l}}}$, 出现次数为$ m_1, $$ m_2, \cdots , m_l$, 这些路径对于双亲节点的序号集分别为${{{X}}_{{1}}}, {{{X}}_{{2}}}, \cdots , {{{X}}_{{l}}}$, 对于节点u的序号集分别为${{{Y}}_{{1}}}, {{{Y}}_{{2}}}, \cdots {{{Y}}_{{l}}}$.
    6.for ${{j}} = 0 \to {{l}}$ do
    7.${{{f}}_{{t}}}\left( {{{{u}}_{{{{Y}}_{{j}}}}}} \right) = {{F}}\left( {{{t}} - {{1}}, {{{v}}_{{j}}}, {{{X}}_{{j}}}} \right) \times {{\beta }}$
    8.end for
    9.${{{f}}_{{t}}}\left( {{{{u}}_{{W}}}} \right) = \left[ {{{1}} - \mathop \prod \nolimits_{{{j}} = {{1}}}^{{l}} \left( {{{1}} - {{{f}}_{{t}}}\left( {{{{u}}_{{{{Y}}_{{j}}}}}} \right)} \right)} \right] \times \left( {{{1}} - {{{p}}_{{{t}} - {{1}}}}\left( {{u}} \right)} \right)$
    10.end if
    11.return ${{{f}}_{{t}}}\left( {{{{u}}_{{W}}}} \right)$
    DownLoad: CSV

    表 2  种子节点s阶传播度的算法流程伪代码

    Table 2.  Pseudocode of the algorithm flow for s order progpagation of the seed node.

    递推算法求种子节点s阶传播度
    输入seed, ${{\beta }}$, s
    输出${{{d}}_{{s}}}$
    1.${\rm Tree }_{s} = {\rm FTree }(\rm seed)$ %获取节点${{seed}}$的s阶传播树
    2.赋初值${ { {p} }_{ {0} } }\left( { { {\rm seed} } } \right) = { { {f} }_{ {0} } }\left( { { {\rm seed} } } \right) = { {1} }$, 其他情况${{{p}}_{{t}}}\left( {{u}} \right) = {{{f}}_{{t}}}\left( {{u}} \right) = {{0}}$
    3.for ${{t}} = {{1}} \to {{s}}$ do
    4.for ${{{u}}_{{y}}} \in {{{P}}_{{t}}}$ do %遍历传播树中${{{P}}_{{t}}}$代的个体
    5.获得${{{u}}_{{y}}}$的双亲节点${{{v}}_{{x}}}$ %表示节点u所在传播树层中第xu节点
    6.${{{f}}_{{t}}}\left( {{{{u}}_{{y}}}} \right) = {{{f}}_{{{t}} - {{1}}}}\left( {{{{v}}_{{x}}}} \right) \times {{\beta }} \times \left( {{{1}} - {{{p}}_{{{t}} - {{1}}}}\left( {{u}} \right)} \right)$
    7.end for
    8.for ${{u}} \in {{{P}}_{{t}}}$ do
    9.获得u的序号集W %指${{{P}}_{{t}}}$代节点u出现次序构成的集合
    10.计算联合概率${{{f}}_{{t}}}\left( {{u}} \right) = {{F}}\left( {{{t}}, {{u}}, {{W}}} \right)$
    11.end for
    12.for $u \in {\rm Tree}_{s}$ do
    13.${{{p}}_{{t}}}\left( {{u}} \right) = {{{p}}_{{{t}} - 1}}\left( {{u}} \right) + {{{f}}_{{t}}}\left( {{u}} \right)$
    14.end for
    15.end for
    16.${ { {d} }_{ {s} } }\left( { { \rm{seed} } } \right) = \mathop \sum \nolimits_{ {u} } { { {p} }_{ {s} } }\left( { {u} } \right)$
    17.return ${{{d}}_{{s}}}$
    DownLoad: CSV
  • [1]

    Fershtman M 1997 Soc. Networks 19 193

    [2]

    Chen D B, Lu L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [3]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [4]

    Bavelas A 1950 J. Acoust. Soc. Am. 22 725Google Scholar

    [5]

    Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G 1997 J. Phys. Chem. B 101 9463

    [6]

    闵磊, 刘智, 唐向阳 2015 物理学报 64 088901

    Min L, Liu Z, Tang X Y 2015 Acta Phys. Sin. 64 088901

    [7]

    Domingos P, Richardson M 2001 Proceedings of KDD'01 ACM SIG KDD International Conference on Knowledge Discovery and Data Mining San Francisco, CA, USA, August 26−29, 2001 p57

    [8]

    Kempe D, Kleinberg J, Tardos E 2003 Proc. 9th ACM SIGKDD Intl. Conf. On Knowledge Discovery and Data Mining New Washington, DC, USA, August 24−27, 2003 p137

    [9]

    Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N 2007 Proc. 13 th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining USA, August 24−27, 2007 p420

    [10]

    Chen W, Wang Y, Yang S 2009 Proc. 15th ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining Paris, France, June 28−July 1, 2009 p199

    [11]

    Sheikhahmadi A, Nematbakhsh M A, Shokrollahi A 2015 Physica A 436 833

    [12]

    Kimura M, Saito K 2006 Knowledge-Based Intelligent Information and Engineering Systems: 10th international conference Bournemouth, UK, October 9−11, 2006 p259

    [13]

    Chen W, Wang C, Wang Y 2010 Proc. 16th ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining WashingtonDC, USA, July 25−28, 2010 p1029

    [14]

    Wang Y, Cong G, Song G 2010 Proc. 16th ACM SIGKDD Intl. Conf. on Knowledge discovery and mining Washington DC, USA, July 25−28, 2010 p1039

    [15]

    Li D, Xu Z M, Chakraborty N 2014 PloS One 9 e102199Google Scholar

    [16]

    Hu Y Q, Ji S G, Jin Y L, Feng L, Stanley H E, Havlin S 2018 PNAS 115 7468Google Scholar

    [17]

    Lancichinetti A, Fortunato S 2009 Phys. Rev. E 80 056117

    [18]

    Leskovec J, Lang K, Dasgupta A, Mahoney M W 2009 Internet Mathematics 6 29Google Scholar

    [19]

    Lapata M 2006 Comput. Linguist. 32 471Google Scholar

    [20]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

  • [1] Li Jiang, Liu Ying, Wang Wei, Zhou Tao. Identifying influential nodes in spreading process in higher-order networks. Acta Physica Sinica, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] Yang Li, Song Yu-Rong, Li Yin-Wei. Network structure optimization algorithm for information propagation considering edge clustering and diffusion characteristics. Acta Physica Sinica, 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [3] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Hou Lü-Lin. An improved evaluating method of node spreading influence in complex network based on information spreading probability. Acta Physica Sinica, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [4] Xiao Yun-Peng, Li Song-Yang, Liu Yan-Bing. An information diffusion dynamic model based on social influence and mean-field theory. Acta Physica Sinica, 2017, 66(3): 030501. doi: 10.7498/aps.66.030501
    [5] Han Zhong-Ming, Chen Yan, Li Meng-Qi, Liu Wen, Yang Wei-Jie. An efficient node influence metric based on triangle in complex networks. Acta Physica Sinica, 2016, 65(16): 168901. doi: 10.7498/aps.65.168901
    [6] Wu Yue, Du Ya-Jun, Chen Xiao-Liang, Li Xian-Yong. Newly exposed conflicting news based network opinion reversal. Acta Physica Sinica, 2016, 65(3): 030502. doi: 10.7498/aps.65.030502
    [7] Min Lei, Liu Zhi, Tang Xiang-Yang, Chen Mao, Liu San-Ya. Evaluating influential spreaders in complex networks by extension of degree. Acta Physica Sinica, 2015, 64(8): 088901. doi: 10.7498/aps.64.088901
    [8] Wang Jin-Long, Liu Fang-Ai, Zhu Zhen-Fang. An information spreading model based on relative weight in social network. Acta Physica Sinica, 2015, 64(5): 050501. doi: 10.7498/aps.64.050501
    [9] Wang Xiao-Juan, Song Mei, Guo Shi-Ze, Yang Zi-Long. Information spreading in correlated microblog reposting network based on directed percolation theory. Acta Physica Sinica, 2015, 64(4): 044502. doi: 10.7498/aps.64.044502
    [10] Hu Qing-Cheng, Zhang Yong, Xu Xin-Hui, Xing Chun-Xiao, Chen Chi, Chen Xin-Hua. A new approach for influence maximization in complex networks. Acta Physica Sinica, 2015, 64(19): 190101. doi: 10.7498/aps.64.190101
    [11] Liu Shu-Xin, Ji Xin-Sheng, Liu Cai-Xia, Guo Hong. A complex network evolution model for network growth promoted by information transmission. Acta Physica Sinica, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    [12] Huang Fei-Hu, Peng Jian, Ning Li-Miao. Opinion evolution model of social network based on information entropy. Acta Physica Sinica, 2014, 63(16): 160501. doi: 10.7498/aps.63.160501
    [13] Wang Chao, Liu Cheng-Yuan, Hu Yuan-Ping, Liu Zhi-Hong, Ma Jian-Feng. Stability of information spreading over social network. Acta Physica Sinica, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [14] Hu Qing-Cheng, Yin Yan-Shen, Ma Peng-Fei, Gao Yang, Zhang Yong, Xing Chun-Xiao. A new approach to identify influential spreaders in complex networks. Acta Physica Sinica, 2013, 62(14): 140101. doi: 10.7498/aps.62.140101
    [15] Li Yong-Jun, Liu Zun, Yu Hui. Advisor-advisee relationship identification based on maximum entropy model. Acta Physica Sinica, 2013, 62(16): 168902. doi: 10.7498/aps.62.168902
    [16] Zhao Jia, Yu Li, Li Jing-Ru. Node influence calculation mechanism based on Bayesian and semiring algebraic model in social networks. Acta Physica Sinica, 2013, 62(13): 130201. doi: 10.7498/aps.62.130201
    [17] Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei. Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [18] Xiong Xi, Hu Yong. Research on the dynamics of opinion spread based on social network services. Acta Physica Sinica, 2012, 61(15): 150509. doi: 10.7498/aps.61.150509
    [19] Zhang Yan-Chao, Liu Yun, Zhang Hai-Feng, Cheng Hui, Xiong Fei. The research of information dissemination model on online social network. Acta Physica Sinica, 2011, 60(5): 050501. doi: 10.7498/aps.60.050501
    [20] Li Ming-Jie, Wu Ye, Liu Wei-Qing, Xiao Jing-Hua. Short message spreading in complex networks and longevity of short message. Acta Physica Sinica, 2009, 58(8): 5251-5258. doi: 10.7498/aps.58.5251
Metrics
  • Abstract views:  7655
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2019
  • Accepted Date:  30 October 2019
  • Published Online:  20 January 2020

/

返回文章
返回