Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pulsar candidate selection based on self-normalizing neural networks

Kang Zhi-Wei Liu Tuo Liu Jin Ma Xin Chen Xiao

Citation:

Pulsar candidate selection based on self-normalizing neural networks

Kang Zhi-Wei, Liu Tuo, Liu Jin, Ma Xin, Chen Xiao
PDF
HTML
Get Citation
  • Pulsar candidate selection is an important step in the search task of pulsars. The traditional candidate selection is heavily dependent on human inspection. However, the human inspection is a subjective, time consuming, and error-prone process. A modern radio telescopes pulsar survey project can produce totally millions of candidates, so the manual selection becomes extremely difficult and inefficient due to a large number of candidates. Therefore, this study focuses on machine learning developed in recent years. In order to improve the efficiency of pulsar candidate selection, we propose a candidate selection method based on self-normalizing neural networks. This method uses three techniques: self-normalizing neural networks, genetic algorithm and synthetic minority over-sampling technique. The self-normalizing neural networks can improve the identification accuracy by applying deep neural networks to pulsar candidate selection. At the same time, it solves the problem of gradient disappearance and explosion in the training process of deep neural networks by using its self-normalizing property, which greatly accelerates the training process. In addition, in order to eliminate the redundancy of the sample data, we use genetic algorithm to choose sample features of pulsar candidates. The genetic algorithm for feature selection can be summarized into three steps: initializing population, assessing population fitness, and generating new populations. Decoding the individual with the largest fitness value in the last generation population, we can obtain the best subset of features. Due to radio frequency interference or noise, there are a large number of non-pulsar signals in candidates, and only a few real pulsar signals exist there. Aiming at solving the severe class imbalance problem, we use the synthetic minority over-sampling technique to increase the pulsar candidates (minority class) and reduce the imbalance degree of data. By using k-nearest neighbor and linear interpolation to insert a new sample between two minority classes of samples that are close to each other according to certain rules, we can prevent the classifier from becoming biased towards the abundant non-pulsar class (majority class). Experimental results on three pulsar candidate datasets show that the self-normalizing neural network has higher accuracy and faster convergence speed than the traditional artificial neural network in the deep structure, By using the genetic algorithm and synthetic minority over-sampling technique, the selection performance of pulsar candidates can be effectively improved.
      Corresponding author: Kang Zhi-Wei, jt_zwkang@hnu.edu.cn
    [1]

    孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡 2013 物理学报 62 109701Google Scholar

    Sun H F, Xie K, Li X P, Fang H Y, Liu X P, Fu L Z, Sun H J, Xue M F 2013 Acta Phys. Sin. 62 109701Google Scholar

    [2]

    Heiles C, Li D, Mcclure-Griffiths N, Qian L, Liu S 2019 Res. Astron. Astrophys. 19 5Google Scholar

    [3]

    Yi S X, Zhang S N 2016 Sci. China, Phys. Mech. Astron. 59 689511Google Scholar

    [4]

    Liu J, Ning X L, Ma X, Fang J C 2019 IEEE Trans. Aerosp. Electron. Syst. 55 2556Google Scholar

    [5]

    康志伟, 吴春艳, 刘劲, 马辛, 桂明臻 2018 物理学报 67 099701Google Scholar

    Kang Z W, Wu C Y, Liu J, Ma X, Gui M Z 2018 Acta Phys. Sin. 67 099701Google Scholar

    [6]

    房建成, 宁晓琳, 刘劲 2017 航天器自主天文导航原理与技术 (第二版) (北京: 国防工业出版社) 第8页

    Fang J C, Ning X L, Liu J 2017 Principles and Methods of Spacecraft Celestial Navigation (2nd Ed.) (Beijing: National Defense Industry Press) p8 (in Chinese)

    [7]

    Hewish A, Bell S J, Pilkington J D H, Scott P F, Collins R A 1968 Nature 217 709Google Scholar

    [8]

    Thornton D 2013 Ph. D. Dissertation (Manchester: University of Manchester)

    [9]

    Stovall K, Lynch R S, Ransom S M, et al. 2014 Astrophys. J. 791 67Google Scholar

    [10]

    Manchester R N, Lyne A G, Camilo F, Bell J F, Kaspi V M, D'Amico N, McKay N P F, Crawford F, Stairs I H, Possenti A, Kramer M, Sheppard D C 2001 Mon. Not. R. Astron. Soc. 328 17Google Scholar

    [11]

    Keith M, Jameson A, Van Straten W, Bailes M, Johnston S, Kramer M, Possenti A, Bates S, Bhat N, Burgay M 2010 Mon. Not. R. Astron. Soc. 409 619Google Scholar

    [12]

    van Leeuwen J, Stappers B W 2010 Astron. Astrophys. 509 A7Google Scholar

    [13]

    许余云, 李菂, 刘志杰, 王晨, 王培, 张蕾, 潘之辰 2017 天文学进展 35 304Google Scholar

    Xu Y Y, Li D, Liu Z J, Wang C, Wang P, Zhang L, Pan Z C 2017 Prog. Astron. 35 304Google Scholar

    [14]

    王元超, 郑建华, 潘之辰, 李明涛 2018 深空探测学报 5 203

    Wang Y C, Zheng J H, Pan Z C, Li M T 2018 J. Deep Space Explor. 5 203

    [15]

    Lee K J, Stovall K, Jenet F A, Martinez J, Dartez L P, Mata A, Lunsford G, Cohen S, Biwer C M, Rohr M D 2013 Mon. Not. R. Astron. Soc. 433 688Google Scholar

    [16]

    Mohamed T M 2018 Futur. Comput. Inf. J. 3 1

    [17]

    Eatough R P, Molkenthin N, Kramer M, Noutsos A, Keith M J, Stappers B W, Lyne A G 2010 Mon. Not. R. Astron. Soc. 407 2443Google Scholar

    [18]

    Bates S D, Bailes M, Barsdell B R, Bhat N D R, Burgay M, Burke-Spolaor S, Champion D J, Coster P, D'Amico N, Jameson A, Johnston S, Keith M J, Kramer M, Levin L, Lyne A, Milia S, Ng C, Nietner C, Possenti A, Stappers B, Thornton D, van Straten W 2012 Mon. Not. R. Astron. Soc. 427 1052Google Scholar

    [19]

    Zhu W W, Berndsen A, Madsen E C, et al. 2014 Astrophys. J. 781 117Google Scholar

    [20]

    Lyon R J, Stappers B W, Cooper S, Brooke J M, Knowles J D 2016 Mon. Not. R. Astron. Soc. 459 1104Google Scholar

    [21]

    Wang H F, Zhu W W, Guo P, Li D, Feng S B, Yin Q, Miao C C, Tao Z Z, Pan Z C, Wang P, Zheng X, Deng X D, Liu Z J, Xie X Y, Yu X H, You S P, Zhang H 2019 Sci. China, Phys. Mech. Astron. 62 959507Google Scholar

    [22]

    Klambauer G, Unterthiner T, Mayr A, Hochreiter S 2017 Advances in Neural Information Processing Systems, Long Beach, USA, December 4–9, 2017 p971

    [23]

    Oh I S, Lee J S, Moon B R 2004 IEEE Trans. Pattern Anal. Mach. Intell. 26 1424Google Scholar

    [24]

    Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W P 2002 J. Artif. Intell. Res. 16 321Google Scholar

    [25]

    Morello V, Barr E D, Bailes M, Flynn C M, Keane E F, van Straten W 2014 Mon. Not. R. Astron. Soc. 443 1651Google Scholar

    [26]

    Yao Y, Xin X, Guo P 2016 12th International Conference on Computational Intelligence and Security, Wuxi, China, December 16–19, 2016 p120

    [27]

    Nan R D, Li D, Jin C J, Wang Q M, Zhu L C, Zhu W B, Zhang H Y, Yue Y L, Qian L 2011 Int. J. Mod. Phys. D. 20 989Google Scholar

  • 图 1  SELU激活函数

    Figure 1.  SELU activation function.

    图 2  GMO_SNN候选体选择算法流程图

    Figure 2.  GMO_SNN candidate selection algorithm.

    图 3  SNN与ANN损失函数的对比

    Figure 3.  Comparison of the loss function between SNN and ANN.

    表 1  脉冲星候选体数据集

    Table 1.  Pulsar candidate datasets.

    数据集非脉冲星数脉冲星数总样本数
    HTRU 189996119691192
    HTRU 216259163917898
    LOTAAS 14987665053
    DownLoad: CSV

    表 2  特征描述

    Table 2.  Feature description.

    编号特征编号特征
    1P12轮廓直方图最大值/高斯拟合的最大值
    2DM13对轮廓求导后的直方图与轮廓直方图的偏移量
    3S/N14$S/N/\sqrt {\left( {P - W} \right)/W} $
    4W15拟合$S/N/\sqrt {\left( {P - W} \right)/W} $
    5用sin曲线拟合脉冲轮廓的卡方值16DM拟合值与DM最优值取余
    6用sin2曲线拟合脉冲轮廓的卡方值17DM曲线拟合的卡方值
    7高斯拟合脉冲轮廓的卡方值18峰值处对应的所有频段值的均方根
    8高斯拟合脉冲轮廓的半高宽19任意两个频段线性相关度的均值
    9双高斯拟合脉冲轮廓的卡方值20线性相关度的和
    10双高斯拟合脉冲轮廓的平均半高宽21脉冲轮廓的波峰数
    11脉冲轮廓直方图对0的偏移量22脉冲轮廓减去均值后的面积
    DownLoad: CSV

    表 3  不同隐藏层数下的分类效果

    Table 3.  Classification results with the different hidden layers.

    隐藏层数F1-score/%
    282.48
    489.58
    894.56
    994.20
    DownLoad: CSV

    表 4  不同批次大小下的分类效果

    Table 4.  Classification results with the different batch size.

    批次大小F1-score/%运行时间/s
    1694.8774
    3294.5643
    6493.9023
    12891.0511
    DownLoad: CSV

    表 5  不同学习速率的分类效果

    Table 5.  Classification results with the different learning rates.

    隐藏层数F1-score/%
    0.1无法收敛
    0.0194.29
    0.00194.55
    0.000184.10
    DownLoad: CSV

    表 6  不同方法在3个数据集上的分类效果

    Table 6.  Classification results with different methods on three datasets.

    数据集模型Accuracy/%Recall/%Precison/%F1-score/%FPR/%G-mean/%
    HTRU 1SNN99.8292.4493.4592.940.0896.11
    GA_SNN99.8592.4595.1993.800.0696.12
    MO_SNN99.8194.2397.9496.050.0597.05
    GMO_SNNNNNNNNN99.8595.3298.5196.890.0497.61
    HTRU 2SNN98.3087.7393.9390.730.5993.38
    GA_SNN98.3088.9192.8690.840.7193.96
    MO_SNN97.8992.1795.0893.600.9595.54
    GMO_SNNNNNNNNN98.0392.5395.5894.030.0895.78
    LOTAAS 1SNN99.9293.75100.0096.770.0896.79
    GA_SNN99.92100.0093.3396.550100.00
    MO_SNN99.69100.0087.1093.100.3199.84
    GMO_SNN100.00100.00100.00100.000100.00
    DownLoad: CSV
  • [1]

    孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡 2013 物理学报 62 109701Google Scholar

    Sun H F, Xie K, Li X P, Fang H Y, Liu X P, Fu L Z, Sun H J, Xue M F 2013 Acta Phys. Sin. 62 109701Google Scholar

    [2]

    Heiles C, Li D, Mcclure-Griffiths N, Qian L, Liu S 2019 Res. Astron. Astrophys. 19 5Google Scholar

    [3]

    Yi S X, Zhang S N 2016 Sci. China, Phys. Mech. Astron. 59 689511Google Scholar

    [4]

    Liu J, Ning X L, Ma X, Fang J C 2019 IEEE Trans. Aerosp. Electron. Syst. 55 2556Google Scholar

    [5]

    康志伟, 吴春艳, 刘劲, 马辛, 桂明臻 2018 物理学报 67 099701Google Scholar

    Kang Z W, Wu C Y, Liu J, Ma X, Gui M Z 2018 Acta Phys. Sin. 67 099701Google Scholar

    [6]

    房建成, 宁晓琳, 刘劲 2017 航天器自主天文导航原理与技术 (第二版) (北京: 国防工业出版社) 第8页

    Fang J C, Ning X L, Liu J 2017 Principles and Methods of Spacecraft Celestial Navigation (2nd Ed.) (Beijing: National Defense Industry Press) p8 (in Chinese)

    [7]

    Hewish A, Bell S J, Pilkington J D H, Scott P F, Collins R A 1968 Nature 217 709Google Scholar

    [8]

    Thornton D 2013 Ph. D. Dissertation (Manchester: University of Manchester)

    [9]

    Stovall K, Lynch R S, Ransom S M, et al. 2014 Astrophys. J. 791 67Google Scholar

    [10]

    Manchester R N, Lyne A G, Camilo F, Bell J F, Kaspi V M, D'Amico N, McKay N P F, Crawford F, Stairs I H, Possenti A, Kramer M, Sheppard D C 2001 Mon. Not. R. Astron. Soc. 328 17Google Scholar

    [11]

    Keith M, Jameson A, Van Straten W, Bailes M, Johnston S, Kramer M, Possenti A, Bates S, Bhat N, Burgay M 2010 Mon. Not. R. Astron. Soc. 409 619Google Scholar

    [12]

    van Leeuwen J, Stappers B W 2010 Astron. Astrophys. 509 A7Google Scholar

    [13]

    许余云, 李菂, 刘志杰, 王晨, 王培, 张蕾, 潘之辰 2017 天文学进展 35 304Google Scholar

    Xu Y Y, Li D, Liu Z J, Wang C, Wang P, Zhang L, Pan Z C 2017 Prog. Astron. 35 304Google Scholar

    [14]

    王元超, 郑建华, 潘之辰, 李明涛 2018 深空探测学报 5 203

    Wang Y C, Zheng J H, Pan Z C, Li M T 2018 J. Deep Space Explor. 5 203

    [15]

    Lee K J, Stovall K, Jenet F A, Martinez J, Dartez L P, Mata A, Lunsford G, Cohen S, Biwer C M, Rohr M D 2013 Mon. Not. R. Astron. Soc. 433 688Google Scholar

    [16]

    Mohamed T M 2018 Futur. Comput. Inf. J. 3 1

    [17]

    Eatough R P, Molkenthin N, Kramer M, Noutsos A, Keith M J, Stappers B W, Lyne A G 2010 Mon. Not. R. Astron. Soc. 407 2443Google Scholar

    [18]

    Bates S D, Bailes M, Barsdell B R, Bhat N D R, Burgay M, Burke-Spolaor S, Champion D J, Coster P, D'Amico N, Jameson A, Johnston S, Keith M J, Kramer M, Levin L, Lyne A, Milia S, Ng C, Nietner C, Possenti A, Stappers B, Thornton D, van Straten W 2012 Mon. Not. R. Astron. Soc. 427 1052Google Scholar

    [19]

    Zhu W W, Berndsen A, Madsen E C, et al. 2014 Astrophys. J. 781 117Google Scholar

    [20]

    Lyon R J, Stappers B W, Cooper S, Brooke J M, Knowles J D 2016 Mon. Not. R. Astron. Soc. 459 1104Google Scholar

    [21]

    Wang H F, Zhu W W, Guo P, Li D, Feng S B, Yin Q, Miao C C, Tao Z Z, Pan Z C, Wang P, Zheng X, Deng X D, Liu Z J, Xie X Y, Yu X H, You S P, Zhang H 2019 Sci. China, Phys. Mech. Astron. 62 959507Google Scholar

    [22]

    Klambauer G, Unterthiner T, Mayr A, Hochreiter S 2017 Advances in Neural Information Processing Systems, Long Beach, USA, December 4–9, 2017 p971

    [23]

    Oh I S, Lee J S, Moon B R 2004 IEEE Trans. Pattern Anal. Mach. Intell. 26 1424Google Scholar

    [24]

    Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W P 2002 J. Artif. Intell. Res. 16 321Google Scholar

    [25]

    Morello V, Barr E D, Bailes M, Flynn C M, Keane E F, van Straten W 2014 Mon. Not. R. Astron. Soc. 443 1651Google Scholar

    [26]

    Yao Y, Xin X, Guo P 2016 12th International Conference on Computational Intelligence and Security, Wuxi, China, December 16–19, 2016 p120

    [27]

    Nan R D, Li D, Jin C J, Wang Q M, Zhu L C, Zhu W B, Zhang H Y, Yue Y L, Qian L 2011 Int. J. Mod. Phys. D. 20 989Google Scholar

  • [1] Wu Chang-Chun, Zhou Pu-Jun, Wang Jun-Jie, Li Guo, Hu Shao-Gang, Yu Qi, Liu Yang. Memristor based spiking neural network accelerator architecture. Acta Physica Sinica, 2022, 71(14): 148401. doi: 10.7498/aps.71.20220098
    [2] Wang Chao-Hui, Li Yong-Xiang, Zhu Shuai. Absorbers with spin-selection based on metasurface. Acta Physica Sinica, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [3] Fang Hai-Yan, Liu Bing, Li Xiao-Ping, Sun Hai-Feng, Xue Meng-Fan, Shen Li-Rong, Zhu Jin-Peng. Time delay estimation method of X-ray pulsar observed profile based on the optimal frequency band. Acta Physica Sinica, 2016, 65(11): 119701. doi: 10.7498/aps.65.119701
    [4] Guo Ye-Cai, Zhou Lin-Feng. Study of anisotropic diffusion model based on pulse coupled neural network and image entropy. Acta Physica Sinica, 2015, 64(19): 194204. doi: 10.7498/aps.64.194204
    [5] Xue Meng-Fan, Li Xiao-Ping, Sun Hai-Feng, Liu Bing, Fang Hai-Yan, Shen Li-Rong. A new simulation method of X-ray pulsar signals. Acta Physica Sinica, 2015, 64(21): 219701. doi: 10.7498/aps.64.219701
    [6] Bei Xiao-Min, Shuai Ping, Huang Liang-Wei, Sun Hai-Feng, Wu Yao-Jun, Zhang Qian. A new method for the pulsar signals simulation. Acta Physica Sinica, 2014, 63(21): 219701. doi: 10.7498/aps.63.219701
    [7] Li Huan, Wang You-Guo. Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system. Acta Physica Sinica, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [8] Meng Guang-Hui, Lin Xin. Characteristic scale selection of lamellar spacings in binary eutectic solidification. Acta Physica Sinica, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [9] Li Yong-Jun, Liu Zun, Yu Hui. Advisor-advisee relationship identification based on maximum entropy model. Acta Physica Sinica, 2013, 62(16): 168902. doi: 10.7498/aps.62.168902
    [10] Li Jian-Xun, Ke Xi-Zheng, Zhao Bao-Sheng. A new time-domain estimation method for period of pulsars. Acta Physica Sinica, 2012, 61(6): 069701. doi: 10.7498/aps.61.069701
    [11] Guo Yong-Feng, Tan Jian-Guo. Suprathreshold stochastic resonance of a non-linear multilevel threshold neuronal networks system. Acta Physica Sinica, 2012, 61(17): 170502. doi: 10.7498/aps.61.170502
    [12] Yue Hao, Zhang Xu, Chen Gang, Shao Chun-Fu. Simulation of pedestrian evacuation with asymmetrical pedestrian layout. Acta Physica Sinica, 2012, 61(13): 130509. doi: 10.7498/aps.61.130509
    [13] Xu Nian-Xi, Feng Xiao-Guo, Wang Yan-Song, Chen Xin, Gao Jin-Song. Design and study of miniaturized-element frequency selective surfaces. Acta Physica Sinica, 2011, 60(11): 114102. doi: 10.7498/aps.60.114102
    [14] Li Xiao-Hua, Liu Zhao-Hua, Zhang Ying-Jie, Zhang Jing, Wu Jian-Hui. ADRC and CMAC combined optimization and control for a class of discrete-time uncertain chaotic systems. Acta Physica Sinica, 2011, 60(3): 030701. doi: 10.7498/aps.60.030701
    [15] Zhao Hong-Yong, Chen Ling, Yu Xiao-Hong. Bifurcation and control of a class of inertial neuron networks. Acta Physica Sinica, 2011, 60(7): 070202. doi: 10.7498/aps.60.070202
    [16] Wang Xing-Yuan, Zhao Qun. Adaptive projective synchronization and parameter identification of a class of delayed chaotic neural networks. Acta Physica Sinica, 2008, 57(5): 2812-2818. doi: 10.7498/aps.57.2812
    [17] Zhang Jun-Feng, Hu Shou-Song. Chaotic time series prediction based on RBF neural networks with a new clustering algorithm. Acta Physica Sinica, 2007, 56(2): 713-719. doi: 10.7498/aps.56.713
    [18] Wang Zhan-Shan, Zhang Hua-Guang, Wang Zhi-Liang. Global synchronization of a class of chaotic neural networks. Acta Physica Sinica, 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [19] Guo Qi, Tian Ye, Liu Cheng-Yi. . Acta Physica Sinica, 2002, 51(5): 1057-1062. doi: 10.7498/aps.51.1057
    [20] WANG HONG-XIA, YU JUE-BANG. ANALYSIS OF STABILITY FOR EQUILIBRIUM OFCELLULAR NEURAL NETWORKS. Acta Physica Sinica, 2001, 50(12): 2303-2306. doi: 10.7498/aps.50.2303
Metrics
  • Abstract views:  7880
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2019
  • Accepted Date:  19 December 2019
  • Published Online:  20 March 2020

/

返回文章
返回