Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of interaction between α-Fe metal and H atom by ab-initio method

Cheng Ying-Jin Yang Chao-Fei Xue Gang Wang Tao Zhang Lei Li Mei-E

Citation:

Investigation of interaction between α-Fe metal and H atom by ab-initio method

Cheng Ying-Jin, Yang Chao-Fei, Xue Gang, Wang Tao, Zhang Lei, Li Mei-E
PDF
HTML
Get Citation
  • Hydrogen-induced cracking (HIC) is a key problem restricting the application of ultra-high strength steel. It is necessary to analyze the distribution of diffusible hydrogen to reveal the mechanism of HIC. The site occupation tendency of H in interstitial and vacancy positions are investigated by the ab-initio method, and the stable configuration and steady state energy are obtained. The solution tendency of H atom in interstitial and vacancy positions is analyzed based on the aforementioned results. Specifically, the Mulliken population, density of states, charge density difference are calculated and used to analyze the interaction between α-Fe metal and H atom. The results show that the dissolved H tends to occupy the interstitial sites of the body-centered cubic, the weak hybridization interaction between the interstitial hydrogen and its nearest neighbour Fe atom is contributed by the H 1s orbital and Fe 4s orbital. Vacancies can capture H atoms easily and H atoms tend to occupy the isoelectric surface near the inwall of the vacancies. A vacancy defect can hold up to three H atoms which are difficult to combine with each other to form H2 molecule by covalent bond. H atoms in vacancies and at interstitial positions change the charge distribution of the Fe lattice, which weakens the binding force of the atoms and forms anti-bonding orbital in local area. The proposed thermodynamical model allows the determining of the equilibrium vacancy and the dissolved H concentration for a given temperature and H chemical potential in the reservoir, and the calculated results are in good agreement with the actual results.
      Corresponding author: Cheng Ying-Jin, 492602560@qq.com
    [1]

    张文钺 1999 焊接冶金学(基本原理)(北京: 机械工业出版社) 第241—244页

    Zhang W Y 2012 Welding Metallurgy (Fundamental Principle) (Beijing: China Machine Press) pp241–244 (in Chinese)

    [2]

    张敬强 2015 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhang J Q 2015 Ph.D Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [3]

    Tateyama Y, Ohno T 2003 ISIJ Internation 43 573Google Scholar

    [4]

    Geng W T, Wan L, Du J P, Ogata S 2017 Scripta Materialia 134 105Google Scholar

    [5]

    MonasterioP R, Lau T T, Yip S, van Vliet K J 2009 Phys. Rev. Lett. 103 085501Google Scholar

    [6]

    Nagumo M, Nakamura M, Taika K 2001 Metall. Mater. Trans. A 32 339Google Scholar

    [7]

    Först C J, Slycke J, van Vliet K J, Yip S 2006 Phys. Rev. Lett. 96 175501Google Scholar

    [8]

    Fukai Y 1983 Jpn. J. Appl. Phys. 22 207Google Scholar

    [9]

    张凤春, 李春福, 文平, 罗强, 冉曾令 2014 物理学报 63 227101Google Scholar

    ZhangF C, Li C F, Wen P, Luo Q, Ran Z L 2014 Acta Phys. Sin. 63 227101Google Scholar

    [10]

    Du Y A, Ismer L, Rogal J, Hickel T, Neugebauer J, Drautz R 2011 Phys. Rev. B 84 144121Google Scholar

    [11]

    Nazarov R, Hickel T, Neugebauer J 2014 Phys. Rev. B 89 144108Google Scholar

    [12]

    Nazarov R, Hickel T, Neugebauer J 2012 Phys. Rev. B 85 144118Google Scholar

    [13]

    Hickel T, Grabowski B, Körmann F, Neugebauer J 2011 J. Phys. Condens. Mater. 24 053202Google Scholar

    [14]

    Ramasubramaniam A, Itakura M, Carter EA 2009 Phys. Rev. B 79 174101Google Scholar

    [15]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [16]

    Milman V, Winkler B, White JA, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895Google Scholar

    [17]

    Perdew JP, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [18]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616Google Scholar

    [19]

    Acet M, Zähres H, Wassermann E F, Pepperhoff W 1994 Phys. Rev. B 49 6012Google Scholar

    [20]

    Hayward E, Fu C C 2013 Phys. Rev. B 87 174103Google Scholar

    [21]

    Baroni S, de Gironcoli S, Dal Corso A C, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [22]

    Bozzolo G, Ferrante J 1992 Phys. Rev. B 46 8600Google Scholar

    [23]

    Bhatia M A, Groh S, Solanki K N 2014 J. Appl. Phys. 116 064302Google Scholar

    [24]

    Tateyama Y, Ohno T 2003 Phys. Rev. B 67 174105Google Scholar

    [25]

    Mclellan R B, Harkins C G 1975 Mater. Sci. Eng. 18 5Google Scholar

    [26]

    Lynch SP 2013 Metall. Mater. Trans. A 44 1209Google Scholar

    [27]

    Lu G, Kaxiras E 2005 Phys. Rev. Lett. 94 155501Google Scholar

    [28]

    Ismer L, Hickel T, Neugebauer J 2010 Phys. Rev. B 81 094111Google Scholar

    [29]

    Korzhavyi P A, Abrikosov I A, Johansson B, Ruban A V, Skriver H L 1999 Phys. Rev. B 59 11693Google Scholar

    [30]

    Nazarov R, Hickel T, Neugebauer J 2010 Phys. Rev. B 82 224104Google Scholar

    [31]

    Speight J G 2005 Lange’s Handbook of Chemistry (16th Ed.) (New York: The McGraw-Hill Companies, Inc) pp1299−1309

  • 图 1  α-Fe+H的晶体结构 (a) T-site; (b) O-site

    Figure 1.  Crystalline structure of α-Fe+H: (a) T-site; (b) O-site.

    图 2  α-Fe+H (T-site)的分波电子态密度 (a) 固溶前后 H 原子; (b) 固溶前后最近邻Fe原子; (c) 四面体间隙H原子; (d) 间隙H原子最近邻Fe原子

    Figure 2.  Partial electronic density of state of α-Fe+H (T-site): (a) Free H atom and interstitial H atom; (b) Fe atom in perfect α-Fe crystal and the nearest neighbour of interstitial H atom; (c) H atom in tetrahedral interstice; (d) the nearest neighbour Fe atom of interstitial H atom.

    图 3  α-Fe+H(T-site)的差分电荷密度

    Figure 3.  Electron density difference of α-Fe+H(T-site).

    图 4  α-Fe+(nH-Vac)的晶体结构 (a) α-Fe+Vac; (b) α-Fe+(3H-Vac); (c) α-Fe+(4H-Vac); (d) α-Fe+(5H-Vac); (e) α-Fe+(1H-Vac); (f) α-Fe+(2H-Vac); (g) α-Fe+(6H-Vac)

    Figure 4.  Crystalline structure of α-Fe+(nH-Vac): (a) α-Fe+Vac; (b)α-Fe+(3H-Vac); (c) α-Fe+(4H-Vac); (d) α-Fe+(5H-Vac); (e) α-Fe+(1H-Vac); (f) α-Fe+(2H-Vac); (g) α-Fe+(6H-Vac).

    图 5  α-Fe+(nH-Vac)的等电荷面和差分电荷密度 (a) α-Fe+Vac ((100)面); (b) α-Fe+Vac ((110)面); (c) α-Fe+Vac等电荷面; (d) α-Fe+(2H-Vac) ((010)面); (e) α-Fe+(2H-Vac)等电荷面

    Figure 5.  Isoelectronic density surface and electron density difference of α-Fe+(nH-Vac): (a) Electron density difference of α-Fe+Vac in surface (100); (b) electron density difference of α-Fe+Vac in surface (110); (c) isoelectric density surface of α-Fe+Vac; (d) electron density difference of α-Fe+(2H-Vac) in surface (010); (e) isoelectric density surface of α-Fe+(2H-Vac).

    图 6  α-Fe+Vac+H(T-site)的晶体结构

    Figure 6.  Crystalline structure of α-Fe+Vac+H(T-site).

    图 7  0 K下缺陷形成能随μH变化情况

    Figure 7.  Formation energy of defects at 0 K for different H chemical potentials.

    图 8  缺陷随TμH变化情况 (a) 空位平衡浓度; (b) 空位内H平衡浓度; (c) 间隙H平衡浓度

    Figure 8.  Equilibrium concentration of defects for different temperature and H chemical potentials: (a) Equilibrium concentration of vacancies; (b) equilibrium concentration of H occupying in vacancies; (c) equilibrium concentration of H occupying in interstitial positions.

    图 9  含空位α-Fe晶体H总平衡浓度

    Figure 9.  Equilibrium total concentration of H of α-Fe containing vacancies.

    图 10  Devnathan-Stachurski双电解池示意图

    Figure 10.  Schematic diagram of Devnathan-Stachurski double electrolytic cell.

    表 1  α-Fe+H的晶格常数和晶体结构

    Table 1.  Lattice parameters and crystalline structure of α-Fe+H.

    晶体类型abcα/(°)β/(°)γ/(°)V空间群
    α-Fe+H(T-site)5.68435.66125.680489.99989.99990.0005.6843115(P-4m2)
    α-Fe+H(O-site)5.80195.61125.611290.00090.00090.0005.8019123(P4/mmm)
    DownLoad: CSV

    表 2  α-Fe和α-Fe+H结合能、形成能和溶解热

    Table 2.  Binding energy, formation energy, and heat of solution of α-Fe and α-Fe+H.

    晶体类型${E_{{\rm{crystal}}}}$/eV${E_{{\rm{ZP}}}}$/eV${E_{{\rm{bind}}}}$/eV$E_{{\rm{form}}}$/eV$\Delta H_{{ {\rm{sol} } } }^{\rm{H} }$/eV
    α-Fe+H(T-site)–13861.0500.2465.1820.3900.390
    α-Fe–13845.3445.530
    DownLoad: CSV

    表 3  α-Fe+H (T-site)晶体原子轨道布居

    Table 3.  Atomic orbital population of α-Fe+H (T-site).

    晶体类型原子轨道电荷占据数总布居净布居
    spd
    α-Fe-H(T-site)H1.34001.34–0.34
    Fe2, Fe40.620.666.657.930.07
    Fe3, Fe110.620.676.657.940.06
    Fe12, Fe100.650.726.627.990.01
    Fe1, Fe9, Fe13, Fe14, Fe160.650.726.627.990.01
    Fe8, Fe60.650.746.618.01–0.01
    α-FeFe0.680.706.628.000
    自由态H1.00001.000
    DownLoad: CSV

    表 4  α-Fe-H (T-site)晶体键布居

    Table 4.  Bond population of α-Fe+H (T-site).

    晶体类型原子对距离/Å键布居
    α-Fe-H (T-site)Fe2-H1.64940.16
    Fe3-H1.65070.16
    Fe2-Fe32.5558–0.09
    Fe2-Fe42.7286–0.14
    Fe8-Fe112.47830.17
    Fe3-Fe122.44710.18
    Fe8-Fe162.84010.05
    Fe7-Fe82.46010.15
    α-Fe-H (O-site) Fe2-Fe42.6287–0.28
    α-FeFe-Fe2.44000.14
    Fe-Fe2.81740.06
    DownLoad: CSV

    表 5  α-Fe+(nH-Vac)的晶格常数和晶体结构

    Table 5.  Lattice parameters and crystalline structure of α-Fe+(nH-Vac).

    晶体类型abcα/(°)β/(°)γ/(°)V空间群
    α-Fe+Vac5.60335.60335.603390.00090.00090.000175.923221${\rm{(}}Pm\overline {{\rm{3}}m} )$
    α-Fe+(Vac-1H)5.63215.61035.610390.00090.00189.999177.27099${\rm{(}}P{\rm{4}}MM)$
    α-Fe+(Vac-2H)5.62855.62855.648490.00090.00090.000178.940123(P4/MMM)
    α-Fe+(Vac-3H)5.62975.65985.685390.00490.01190.002181.15425(PMM2)
    α-Fe+(Vac-4H)5.67275.69435.672389.96690.54089.973183.22138(AMM2)
    α-Fe+(Vac-5H)5.69055.70865.709390.00090.00490.002185.46799${\rm{(}}P{\rm{4}}MM)$
    α-Fe+(Vac-6H)5.74075.72705.720889.43389.69189.692188.0645(C2)
    DownLoad: CSV

    表 6  α-Fe+(nH-Vac)的结合能、形成能和溶解热

    Table 6.  Binding energy, formation energy, and heat of solution of α-Fe+(nH-Vac).

    晶体类型${E_{{\rm{crystal}}}}$/eV${E_{{\rm{ZP}}}}$/eV${E_{{\rm{bind}}}}$/eV$E_{{\rm{form}}}$/eV$\Delta H_{_{ {\rm{sol} } } }^{\rm{H} }$/eV
    α–Fe+Vac–12977.5935.3692.416
    α–Fe+(Vac-1H)–12993.9330.1415.0551.928–0.347
    α–Fe+(Vac-2H)–13010.2620.2954.7771.450–0.324
    α–Fe+(Vac-3H)–13026.3300.4784.5131.234–0.034
    α–Fe+(Vac-4H)–13042.3590.6704.2751.0560.014
    α–Fe+(Vac-5H)–13058.2990.8894.0550.9680.131
    α–Fe+(Vac-6H)–13073.9951.1493.8421.1230.438
    DownLoad: CSV

    表 7  α-Fe+(nH-Vac)对H原子的陷阱能

    Table 7.  Hydrogen trapping energy of α-Fe+(nH-Vac)

    晶体类型$E_{{\rm{trap}}}^{\rm{H}}$/eV
    不考虑${E_{{\rm{ZP}}}}$考虑${E_{{\rm{ZP}}}}$
    α-Fe+(Vac-1H)0.6330.778
    α-Fe+(Vac-2H)0.6230.627
    α-Fe+(Vac-3H)0.3610.211
    α-Fe+(Vac-4H)0.322–0.011
    α-Fe+(Vac-5H)0.227–0.297
    α-Fe+(Vac-6H)–0.028–0.772
    DownLoad: CSV

    表 8  α-Fe+(nH-Vac)晶体原子轨道布居

    Table 8.  Atomic orbital population of α-Fe+(nH-Vac).

    晶体类型原子轨道电荷占据数总布居净布居
    spd
    α-Fe+VacFe7, Fe11, Fe130.740.726.688.13–0.13
    Fe3, Fe5, Fe90.680.736.638.04–0.04
    其余Fe原子0.660.676.607.930.07
    α-Fe+(Vac-2H)Fe130.710.716.738.15–0.15
    Fe90.660.706.627.980.02
    Fe110.710.716.658.07–0.07
    α-Fe+Vac—α-Fe+(Vac-6H)H11.20—1.22001.20—1.22–0.20— –0.22
    自由态H1.00001.000
    DownLoad: CSV

    表 9  α-Fe+Vac+H(T-site)的结合能、形成能和溶解热

    Table 9.  Binding energy, formation energy, and heat of solution of α-Fe+Vac+H(T-site).

    晶体类型${E_{{\rm{crystal}}}}$/eV${E_{{\rm{ZP}}}}$/eV${E_{{\rm{bind}}}}$/eV$E_{{\rm{form}}}$/eV$\Delta H_{{ {\rm{sol} } } }^{\rm{H} }$/eV
    α–Fe+Vac+H(T-site)–12993.354 — –12993.3530.248—0.2505.0122.755—2.7560.339—0.340
    DownLoad: CSV

    表 10  H平衡溶解度计算值和实验值

    Table 10.  Calculated and test value of equilibrium concentration of H atom.

    温度/KμH/eVcH/%
    计算值实验值
    298.15–0.2392.08 × 10–24.41 × 10–2
    2.88 × 10–2, 其中晶格溶H占总扩散H含量的43%[2]
    DownLoad: CSV
  • [1]

    张文钺 1999 焊接冶金学(基本原理)(北京: 机械工业出版社) 第241—244页

    Zhang W Y 2012 Welding Metallurgy (Fundamental Principle) (Beijing: China Machine Press) pp241–244 (in Chinese)

    [2]

    张敬强 2015 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhang J Q 2015 Ph.D Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [3]

    Tateyama Y, Ohno T 2003 ISIJ Internation 43 573Google Scholar

    [4]

    Geng W T, Wan L, Du J P, Ogata S 2017 Scripta Materialia 134 105Google Scholar

    [5]

    MonasterioP R, Lau T T, Yip S, van Vliet K J 2009 Phys. Rev. Lett. 103 085501Google Scholar

    [6]

    Nagumo M, Nakamura M, Taika K 2001 Metall. Mater. Trans. A 32 339Google Scholar

    [7]

    Först C J, Slycke J, van Vliet K J, Yip S 2006 Phys. Rev. Lett. 96 175501Google Scholar

    [8]

    Fukai Y 1983 Jpn. J. Appl. Phys. 22 207Google Scholar

    [9]

    张凤春, 李春福, 文平, 罗强, 冉曾令 2014 物理学报 63 227101Google Scholar

    ZhangF C, Li C F, Wen P, Luo Q, Ran Z L 2014 Acta Phys. Sin. 63 227101Google Scholar

    [10]

    Du Y A, Ismer L, Rogal J, Hickel T, Neugebauer J, Drautz R 2011 Phys. Rev. B 84 144121Google Scholar

    [11]

    Nazarov R, Hickel T, Neugebauer J 2014 Phys. Rev. B 89 144108Google Scholar

    [12]

    Nazarov R, Hickel T, Neugebauer J 2012 Phys. Rev. B 85 144118Google Scholar

    [13]

    Hickel T, Grabowski B, Körmann F, Neugebauer J 2011 J. Phys. Condens. Mater. 24 053202Google Scholar

    [14]

    Ramasubramaniam A, Itakura M, Carter EA 2009 Phys. Rev. B 79 174101Google Scholar

    [15]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [16]

    Milman V, Winkler B, White JA, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895Google Scholar

    [17]

    Perdew JP, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [18]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616Google Scholar

    [19]

    Acet M, Zähres H, Wassermann E F, Pepperhoff W 1994 Phys. Rev. B 49 6012Google Scholar

    [20]

    Hayward E, Fu C C 2013 Phys. Rev. B 87 174103Google Scholar

    [21]

    Baroni S, de Gironcoli S, Dal Corso A C, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [22]

    Bozzolo G, Ferrante J 1992 Phys. Rev. B 46 8600Google Scholar

    [23]

    Bhatia M A, Groh S, Solanki K N 2014 J. Appl. Phys. 116 064302Google Scholar

    [24]

    Tateyama Y, Ohno T 2003 Phys. Rev. B 67 174105Google Scholar

    [25]

    Mclellan R B, Harkins C G 1975 Mater. Sci. Eng. 18 5Google Scholar

    [26]

    Lynch SP 2013 Metall. Mater. Trans. A 44 1209Google Scholar

    [27]

    Lu G, Kaxiras E 2005 Phys. Rev. Lett. 94 155501Google Scholar

    [28]

    Ismer L, Hickel T, Neugebauer J 2010 Phys. Rev. B 81 094111Google Scholar

    [29]

    Korzhavyi P A, Abrikosov I A, Johansson B, Ruban A V, Skriver H L 1999 Phys. Rev. B 59 11693Google Scholar

    [30]

    Nazarov R, Hickel T, Neugebauer J 2010 Phys. Rev. B 82 224104Google Scholar

    [31]

    Speight J G 2005 Lange’s Handbook of Chemistry (16th Ed.) (New York: The McGraw-Hill Companies, Inc) pp1299−1309

  • [1] Zhang Ying, Wang Xing, Xu Zhong-Feng, Ren Jie-Ru, Zhang Yan-Ning, Zhou Xian-Ming, Liang Chang-Hui, Zhang Xiao-An. Ab initio molecular dynamics study on dissociation process of 2-thiouracil and its tautomers under low-energy electron interactions. Acta Physica Sinica, 2024, 73(2): 023101. doi: 10.7498/aps.73.20231304
    [2] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [3] Qi Hai-Dong, Wang Jing, Chen Zhong-Jun, Wu Zhong-Hua, Song Xi-Ping. Influence of temperature on lattice constants of martensite and ferrite. Acta Physica Sinica, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [4] Luo Ju, Feng Guo-Ying, Han Jing-Hua, Shen Xiong, Zhang Li-Jun, Ding Kun-Yan. Thermodynamics of laser plasma removal of micro and nano-particles. Acta Physica Sinica, 2020, 69(8): 084201. doi: 10.7498/aps.69.20191933
    [5] Zhang Heng, Huang Yan, Shi Wang-Zhou, Zhou Xiao-Hao, Chen Xiao-Shuang. First-principles study on the diffusion dynamics of Al atoms on Si surface. Acta Physica Sinica, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [6] Luo Zhong-Bing,  Dong Hui-Jun,  Ma Zhi-Yuan,  Zou Long-Jiang,  Zhu Xiao-Lei,  Lin Li. Orientation relationship between ferrite and austenite and its influence on ultrasonic attenuation in cast austenitic stainless steel. Acta Physica Sinica, 2018, 67(23): 238102. doi: 10.7498/aps.67.20181251
    [7] Sun Qi-Xiang, Yan Bing. Computational study of two-body and three-body dissociation of CH3I2+. Acta Physica Sinica, 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [8] Yan Wei, Ma Miao, Dai Ze-Lin, Gu Yu, Zhu Hong-Zhao, Liu Yu-Tong, Xu Xiang-Dong, Han Shou-Sheng, Peng Yong. Experimental and theoretical study on terahertz spectra of all-trans -carotene. Acta Physica Sinica, 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [9] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [10] Liu Xiu-Ying, Li Xiao-Feng, Yu Jing-Xin, Li Xiao-Dong. Density functional theory study of hydrogen spillover mechanism on Pd doped covalent organic frameworks COF-108. Acta Physica Sinica, 2016, 65(15): 157302. doi: 10.7498/aps.65.157302
    [11] Zhang Lai-Bin, Ren Ting-Qi. Theoretical study on the photophysical properties of the newly designed guanine analog y-guanine and its tautomers. Acta Physica Sinica, 2015, 64(7): 077101. doi: 10.7498/aps.64.077101
    [12] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [13] Li Xue-Mei, Zhang Jian-Ping. Theoretical study on the structure, spectra and thermodynamic property of 5-(2-aryloxy-methylbenzimidazole-1-carbadehyde)-1,3,4-oxadiazole-2-thione. Acta Physica Sinica, 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [14] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [15] Yang Zheng-Long, Liu Yong-Sheng, Gu Min-An, Yang Jing-Jing, Shi Qi-Guang, Gao Tian, Yang Jin-Huan. Design and thermodynamical analysis of a new refrigerator model driven by photovoltaic and thermoelectric power generation. Acta Physica Sinica, 2010, 59(10): 7368-7373. doi: 10.7498/aps.59.7368
    [16] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] Xu Bu-Yi, Chen Jun-Rong, Cai Jing, Li Quan, Zhao Ke-Qing. Theoretical study on the structure,spectra and thermodynamic property of 2-(toluene-4-sulfonylamino)-benzoic. Acta Physica Sinica, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [18] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] Wang Hong-Bo, Zhang Jing-Wen, Yang Xiao-Dong, Liu Zhen-Ling, Xu Qing-An, Hou Xun. Thermodynamical analysis of conductivity-type inversion in ZnO. Acta Physica Sinica, 2005, 54(6): 2893-2898. doi: 10.7498/aps.54.2893
Metrics
  • Abstract views:  9533
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  22 November 2019
  • Accepted Date:  16 January 2020
  • Published Online:  05 March 2020

/

返回文章
返回