Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ab initio molecular dynamics study on dissociation process of 2-thiouracil and its tautomers under low-energy electron interactions

Zhang Ying Wang Xing Xu Zhong-Feng Ren Jie-Ru Zhang Yan-Ning Zhou Xian-Ming Liang Chang-Hui Zhang Xiao-An

Citation:

Ab initio molecular dynamics study on dissociation process of 2-thiouracil and its tautomers under low-energy electron interactions

Zhang Ying, Wang Xing, Xu Zhong-Feng, Ren Jie-Ru, Zhang Yan-Ning, Zhou Xian-Ming, Liang Chang-Hui, Zhang Xiao-An
PDF
HTML
Get Citation
  • When biomolecules interact with high-energy particles and rays, they are directly ionized or dissociated, then a large number of low-energy electrons are formed as secondary particles. These low-energy electrons will attach to biomolecules, and trigger off the secondary dissociation, forming free radicals and ions with high reactivity, which can damage the structure and function of the biomolecule and cause irreversible radiation damage to the biomolecule. It is important to study the low-energy dissociative electron attachment (DEA) process of biomolecules for understanding radiation damage to biological organisms. Currently, the theoretical studies of DEA have mainly focused on the bound states of negative ions and the types of resonances in the dissociation process. The dissociation process is well described by quantum computational method, but the diversity and complexity of dissociation channels present in the dissociation process of 2-thiouracil molecule also pose a great computational challenge to these methods. In addition, the quantum computational methods are not ideal for dealing with the discrete states of chemical bonds and the problem of continuity coupling of electrons. The dissociation dynamics of biomolecules mainly results from ionization and electron attachment. Ab initio molecular dynamics simulation can reasonably describe these processes. In light of these considerations, ab initio molecular dynamics simulation is used in this work to study dynamic variation process in DEA. The low-energy electron dissociative attachment to 2-thiouracil in the gas phase is studied by using the Born-Oppenheimer molecular dynamics model combined with density functional theory. It is found that an important dehydrogenation phenomenon of 2-thiouracil and its tautomers occurs in the DEA process, and that the N—H and C—H bond are broken at specific locations. Due to the loss of hydrogen atoms at the N and C sites, the closed-shell dehydrogenated negative ion (TU-H) forms, which is the most important negative ion fragments in the dissociation process. The potential energy curves, the bond dissociation energy and the electron affinity energy of the broken bond show that the N—H bond is the most likely to break, indicating the formation of the negative ion (TU-H) mainly comes from the breaking of N—H bond. The theoretical calculations in this work are in good agreement with the available experimental results, indicating that the chosen calculation method is fully reliable. ​The BOMD simulations can not only dynamically recover the process of dissociative attachment of low-energy electrons to 2-thiouracil, but also more importantly provide an insight into the mechanisms of dehydrogenation and dissociation channels of 2-thiouracil molecules in DEA process.
      Corresponding author: Xu Zhong-Feng, zhfxu@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12205247, 12175174) and the Scientific Research Program of the Education Department of Shaanxi Province, China (Grant No. 22JK0604).
    [1]

    Gu B, Zhang F S, Wang Z P, Zhou H Y 2008 Phys. Rev. Lett. 100 088104Google Scholar

    [2]

    Zheng Y, Darel J. H, Ayotte P, Sanche L 2008 Phys. Rev. Lett. 100 168101Google Scholar

    [3]

    Zheng Y, Sanche L 2013 Rev. Nanosci. Nanotechnol. 2 1Google Scholar

    [4]

    Hou Q, Wang Y G 2001 Phys. Rev. Lett. 87 168101Google Scholar

    [5]

    Cimino R, Collins I R, Furman M A, Pivi M, Ruggiero F, Rumolo G, Zimmermann F 2004 Phys. Rev. Lett. 93 014801Google Scholar

    [6]

    Boudaı̈ffa B, Cloutier P, Hunting D, Huels M A, Sanche L 2000 Science 287 1658Google Scholar

    [7]

    Martin F, Burrow P D, Cai Z L, Cloutier P, Hunting D, Sanche L 2004 Phys. Rev. Lett. 93 068101Google Scholar

    [8]

    Christophorou L G 1978 Adv. Electron. Electron Phys. 46 55

    [9]

    Elion G B 1989 Science 244 41.Google Scholar

    [10]

    吕杰, 程静, 侯晓蓓 2016 生物医用材料导论 (上海: 同济大学出版社) 第86页

    Lyu J, Cheng J, Hou X L 2016 An Introduction to Biomedical Materials (Shanghai: Tongji University Press) p86

    [11]

    Kopyra J, Kopyra K K, Abdoul-Carime H, Branowska D 2018 J. Chem. Phys. 148 234301Google Scholar

    [12]

    Maio N, Lafont B A P, Sil D, Li Y, Martin Bollinger Jr J, Krebs C, Pierson C, Linehan W, Rouault T A 2021 Science 373 6651

    [13]

    Ruckenbauer M, Mai S, Marquetand P, Gonzálezb L 2016 J. Chem. Phys. 144 074303Google Scholar

    [14]

    Uleanya K O, Dessent C E H 2021 Phys. Chem. Chem. Phys. 23 1021Google Scholar

    [15]

    Fennimorea M A, Matsika S 2016 Phys. Chem. Chem. Phys. 44 30536

    [16]

    Puzzarini C, Biczysko M, Barone V, Peña I, Cabezas C, Alonso J L 2013 Phys. Chem. Chem. Phys. 39 16965

    [17]

    Plekan O, Feyer V, Cassidy A, Lyamayev V, Tsud N, Ptasińska S, Reiff S, Acres R G, Princeag K C 2015 Phys. Chem. Chem. Phys. 17 15181Google Scholar

    [18]

    Kopyra J, Abdoul-Carime H, Kossoskic F, Varella M T 2014 Phys. Chem. Chem. Phys. 14 25054

    [19]

    Kopyra J, Kopyra K K, Abdoul-Carime H, Branowska D 2016 J. Chem. Phys. 144 034306Google Scholar

    [20]

    Dolgounitcheva O, Zakrzewski V G, Ortiz J V 2011 J. Chem. Phys. 134 074305Google Scholar

    [21]

    Da Costa R F, Varella M T, Lima M A P, Bettega M H F 2013 J. Chem. Phys. 138 194306Google Scholar

    [22]

    Kossoski F, Bettega M H F, Varella M T 2014 J. Chem. Phys. 140 024317Google Scholar

    [23]

    Yang H J, Wang E L, Dong W X, Gong M M, Shen Z J, Tang Y G, Shan X, Chen X J 2018 Phys. Rev. A 97 052703Google Scholar

    [24]

    Feng W L, Tian S X 2015 J. Phys. Chem. A 119 1838Google Scholar

    [25]

    Wang Y F, Tian S X, Yang J 2011 Phys. Chem. Chem. Phys. 13 15597Google Scholar

    [26]

    冯文玲 2015 博士学位论文 (合肥: 中国科学技术大学)

    Feng W L 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [27]

    López-Tarifa P, Hervé du Penhoat M A, Vuilleumier R, Gaigeot M P, Tavernelli I, Padellec A L, Champeaux J P, Alcamí M, Moretto-Capelle P, Martín F, Politis M F 2011 Phys. Rev. Lett. 107 023202Google Scholar

    [28]

    Boys S F, Bernardi F 1970 Mol. Phys. 19 553Google Scholar

  • 图 1  采用B3LYP/6-311++G(2d, 2p)方法优化后基态硫脲嘧啶分子及其互变异构体的几何构型 (图中红色为氧原子, 白色为氢原子, 灰色为碳原子, 蓝色为氮原子, 黄色为硫原子)

    Figure 1.  Optimized geometries of the ground state 2-thiouracil and its tautomers. The geometries have been optimized using the B3LYP method and the 6-311++G(2d, 2p) basis set (Colors in graphical representations correspond to atom types as follows, red: oxygen; white: hydrogen; gray: carbon; blue: nitrogen; yellow: sulfur).

    图 2  硫脲嘧啶及其互变异构体1在解离过程中分子结构随时间演化图

    Figure 2.  The evolution of the geometrical structures of 2-thiouracil and tautomer 1 during dissociation.

    图 3  硫脲嘧啶互变异构体2和其互变异构体3在解离过程中分子结构随时间演化图

    Figure 3.  The evolution of the geometrical structures of tautomer 2 and tautomer 3 during dissociation.

    图 4  硫脲嘧啶解离过程势能剖面示意图

    Figure 4.  The potential energy profile of the 2-thiouracil dissociation.

    图 5  B3LYP/6-311++G(2d, 2p)方法计算获得硫脲嘧啶解离过程中化学键N—H键和C—H键的势能曲线

    Figure 5.  The potential energy curves for the N—H and the C—H bond in 2-thiouracil dissociation obtained from B3LYP/6-311++G(2d, 2p) calculations.

    图 6  硫脲嘧啶互变异构体2解离过程势能剖面示意图

    Figure 6.  The potential energy profile of the tautomer 2 dissociation.

    图 7  B3LYP/6-311++G(2d, 2p)方法计算获得硫脲嘧啶互变异构体2解离过程中化学键C—H键、O—H键和S—H键的势能曲线

    Figure 7.  The potential energy curves for the C—H , the O—H and the S—H bond in tautomer 2 dissociation obtained from B3LYP/6-311++G(2d, 2p) calculations.

    图 8  B3LYP/6-311++ G(2d, 2p)方法计算获得硫脲嘧啶互变异构体3解离过程化学键N1—H键的势能曲线

    Figure 8.  The potential energy curves for the N1—H bond in tautomer 3 dissociation obtained from B3LYP/6-311++G(2d, 2p) calculations.

    表 1  硫脲嘧啶分子及其互变异构体稳定构型的相对能量, 基组重叠误差BSSE, CP校正后的结合能$ \Delta {E}_{{\mathrm{C}}{\mathrm{P}}} $ 和偶极矩μ

    Table 1.  Relative energies, BSSE, CP-corrected binding energies $ \Delta {E}_{{\mathrm{C}}{\mathrm{P}}} $ and dipole moment of 2-thiouracil and its tautomers.

    Method 2-thiouracil Tautomer 1 Tautomer 2 Tautomer 3
    CCSD/6-311++G(2d, 2p) 0 46.31 93.59 70.43
    MP2/6-311++G(2d, 2p) 0 30.88 61.75 50.17
    B3LYP/6-31G(d) [18] 0 221.92 238.32 222.88
    CCSD(T)/Aug-cc-pVDZ[18] 0 48.24 94.56 76.22
    BSSE 0.54 0.43 0.61 0.49
    $ \Delta {E}_{{\mathrm{C}}{\mathrm{P}}} $/(kJ·mol–1) –18.37 –18.44 –22.33 –33.63
    μ/Debye 5.13 5.12 4.66 4.92
    DownLoad: CSV

    表 2  由CCSD计算方法获得硫脲嘧啶及其互变异构体分子不同位置脱氢所需的键解离能, 绝热电子亲和能和(TU-H)负离子出现势(能量单位为kJ/mol)

    Table 2.  The bond dissociation energy, the adiabatic electron affinity and the appearance potential of the (TU-H) obtained from CCSD calculation method of dehydrogenation of 2-thiouracil and its tautomer at different positions (all values in kJ/mol)

    Bond BE EA AE
    2-thiouracil N1—H 58.86 3630.73 2047.41
    N3—H 108.06 5957.95 46.31
    C—H 378.22 213.23 164.99
    Tautomer 1 N1—H 59.82 40.52 19.3
    N3—H 109.03 56.93 52.1
    C—H 382.08 218.05 164.02
    Tautomer 2 O—H 198.76 116.75 178.5
    S—H 418.74 187.18 231.56
    C—H 343.48 222.88 165.95
    Tautomer 3 N1—H 165.95 60.79 105.17
    C—H 384.98 224.81 160.17
    S—H 420.67 190.08 230.6
    DownLoad: CSV

    表 3  由CCSD计算方法获得硫脲嘧啶及其互变异构体解离通道(6)式和(7)式所需的最小解离能(能量单位为kJ/mol).

    Table 3.  The minimum dissociation energy required to obtain 2-thiouracil and its tautomer dissociation channels (6) and (7) by CCSD calculation method (all values in kJ/mol).

    Bond $ E_{({\rm TU}-2{\rm H})^- + {\rm H} + {\rm H}} $ $ E_{\rm(TU-H_2)^- + H_2}$
    2-thiouracil N1—HN3—H 591.45 88.77
    N1—HC—H 526.81 147.62
    N3—HC—H 584.7 156.3
    Tautomer 1 N1—HN3—H 597.24 91.66
    N1—HC—H 528.74 160.17
    N3—HC—H 591.45 162.09
    Tautomer 2 O—HS—H 551.89 237.35
    O—HC—H 446.73 189.11
    S—HC—H 630.05 344.45
    Tautomer 3 N1—HC—H 604.96 166.92
    N1—HS—H 640.66 329.01
    C—HS—H 651.27 362.78
    DownLoad: CSV
  • [1]

    Gu B, Zhang F S, Wang Z P, Zhou H Y 2008 Phys. Rev. Lett. 100 088104Google Scholar

    [2]

    Zheng Y, Darel J. H, Ayotte P, Sanche L 2008 Phys. Rev. Lett. 100 168101Google Scholar

    [3]

    Zheng Y, Sanche L 2013 Rev. Nanosci. Nanotechnol. 2 1Google Scholar

    [4]

    Hou Q, Wang Y G 2001 Phys. Rev. Lett. 87 168101Google Scholar

    [5]

    Cimino R, Collins I R, Furman M A, Pivi M, Ruggiero F, Rumolo G, Zimmermann F 2004 Phys. Rev. Lett. 93 014801Google Scholar

    [6]

    Boudaı̈ffa B, Cloutier P, Hunting D, Huels M A, Sanche L 2000 Science 287 1658Google Scholar

    [7]

    Martin F, Burrow P D, Cai Z L, Cloutier P, Hunting D, Sanche L 2004 Phys. Rev. Lett. 93 068101Google Scholar

    [8]

    Christophorou L G 1978 Adv. Electron. Electron Phys. 46 55

    [9]

    Elion G B 1989 Science 244 41.Google Scholar

    [10]

    吕杰, 程静, 侯晓蓓 2016 生物医用材料导论 (上海: 同济大学出版社) 第86页

    Lyu J, Cheng J, Hou X L 2016 An Introduction to Biomedical Materials (Shanghai: Tongji University Press) p86

    [11]

    Kopyra J, Kopyra K K, Abdoul-Carime H, Branowska D 2018 J. Chem. Phys. 148 234301Google Scholar

    [12]

    Maio N, Lafont B A P, Sil D, Li Y, Martin Bollinger Jr J, Krebs C, Pierson C, Linehan W, Rouault T A 2021 Science 373 6651

    [13]

    Ruckenbauer M, Mai S, Marquetand P, Gonzálezb L 2016 J. Chem. Phys. 144 074303Google Scholar

    [14]

    Uleanya K O, Dessent C E H 2021 Phys. Chem. Chem. Phys. 23 1021Google Scholar

    [15]

    Fennimorea M A, Matsika S 2016 Phys. Chem. Chem. Phys. 44 30536

    [16]

    Puzzarini C, Biczysko M, Barone V, Peña I, Cabezas C, Alonso J L 2013 Phys. Chem. Chem. Phys. 39 16965

    [17]

    Plekan O, Feyer V, Cassidy A, Lyamayev V, Tsud N, Ptasińska S, Reiff S, Acres R G, Princeag K C 2015 Phys. Chem. Chem. Phys. 17 15181Google Scholar

    [18]

    Kopyra J, Abdoul-Carime H, Kossoskic F, Varella M T 2014 Phys. Chem. Chem. Phys. 14 25054

    [19]

    Kopyra J, Kopyra K K, Abdoul-Carime H, Branowska D 2016 J. Chem. Phys. 144 034306Google Scholar

    [20]

    Dolgounitcheva O, Zakrzewski V G, Ortiz J V 2011 J. Chem. Phys. 134 074305Google Scholar

    [21]

    Da Costa R F, Varella M T, Lima M A P, Bettega M H F 2013 J. Chem. Phys. 138 194306Google Scholar

    [22]

    Kossoski F, Bettega M H F, Varella M T 2014 J. Chem. Phys. 140 024317Google Scholar

    [23]

    Yang H J, Wang E L, Dong W X, Gong M M, Shen Z J, Tang Y G, Shan X, Chen X J 2018 Phys. Rev. A 97 052703Google Scholar

    [24]

    Feng W L, Tian S X 2015 J. Phys. Chem. A 119 1838Google Scholar

    [25]

    Wang Y F, Tian S X, Yang J 2011 Phys. Chem. Chem. Phys. 13 15597Google Scholar

    [26]

    冯文玲 2015 博士学位论文 (合肥: 中国科学技术大学)

    Feng W L 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [27]

    López-Tarifa P, Hervé du Penhoat M A, Vuilleumier R, Gaigeot M P, Tavernelli I, Padellec A L, Champeaux J P, Alcamí M, Moretto-Capelle P, Martín F, Politis M F 2011 Phys. Rev. Lett. 107 023202Google Scholar

    [28]

    Boys S F, Bernardi F 1970 Mol. Phys. 19 553Google Scholar

  • [1] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [2] Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan. Density functional study of metal lithium atom adsorption on antimonene. Acta Physica Sinica, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [3] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] Du Jian-Bin, Zhang Qian, Li Qi-Feng, Tang Yan-Lin. Investigation of external electric field effect on C24H38O4 molecule by density functional theory. Acta Physica Sinica, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [5] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [6] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [7] Zhang Feng-Chun, Li Chun-Fu, Zhang Cong-Lei, Ran Zeng-Ling. Surface absorptions of H2S, HS and S on Fe(111) investigated by density functional theory. Acta Physica Sinica, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [8] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [9] Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min. Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues. Acta Physica Sinica, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [10] Yuan Jian-Mei, Hao Wen-Ping, Li Shun-Hui, Mao Yu-Liang. Density functional study on the adsorption of C atoms on Ni (111) surface. Acta Physica Sinica, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [11] Huang Ping, Yang Chun. Theoretical research of TiO2 adsorption on GaN(0001) surface. Acta Physica Sinica, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [12] Fan Bing-Bing, Wang Li-Na, Wen He-Jing, Guan Li, Wang Hai-Long, Zhang Rui. Study on the structure of water chain encapsulated in carbon nanotube by density functional theory. Acta Physica Sinica, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [13] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [14] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [15] Meng Da-Qiao, Luo Wen-Hua, Li Gan, Chen Hu-Chi. Density functional study of CO2 adsorption on Pu(100) surface. Acta Physica Sinica, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [16] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [17] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [18] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [19] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [20] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
Metrics
  • Abstract views:  2422
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  11 August 2023
  • Accepted Date:  17 September 2023
  • Available Online:  20 October 2023
  • Published Online:  20 January 2024

/

返回文章
返回