Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of swift heavy ions irradiation on the microstructure and current-carrying capability in YBa2Cu3O7-δ high temperature superconductor films

Liu Li Liu Jie Zeng Jian Zhai Peng-Fei Zhang Sheng-Xia Xu Li-Jun Hu Pei-Pei Li Zong-Zhen Ai Wen-Si

Citation:

Effect of swift heavy ions irradiation on the microstructure and current-carrying capability in YBa2Cu3O7-δ high temperature superconductor films

Liu Li, Liu Jie, Zeng Jian, Zhai Peng-Fei, Zhang Sheng-Xia, Xu Li-Jun, Hu Pei-Pei, Li Zong-Zhen, Ai Wen-Si
PDF
HTML
Get Citation
  • YBa2Cu3O7−δ (YBCO) high temperature superconductor materials have many promising applications in energy, transportation and so on. Nonetheless, the application of YBCO in high magnetic field was limited because of low critical current. One-dimensional latent tracks produced by swift heavy ions irradiation can be effective pinning centers, thus enhancing superconductivity in external field. YBCO high temperature superconducting films were irradiated with 1.9 GeV Ta ions at room temperature and vacuum condition. Structure damages in irradiated samples were characterized by transmission electron microscopy (TEM). Continuous amorphous latent tracks, with diameter from 5 nm to 15 nm, throughout the whole superconducting layer can be observed from TEM images. Physical property measurement system (PPMS) was used to measure superconducting properties of samples before and after irradiation. When irradiated at optimal fluence of 8 × 1010 ions/cm2, critical current reaches its maximum value and pinning force was twice of unirradiated sample, while critical temperature almost unchanged. The analysis of experimental results shows that latent tracks produced by swift heavy ions irradiation can enhance in-field current-carrying capability, without decreasing critical temperature. In the power-law regime ${J_c} \propto {B^{ - \alpha }}$ values of ɑ decreased with the increasing of fluence, indicating a weaker magnetic field dependence of critical current. ɑ reaches its lowest value 0.375 when irradiated at a fluence of 5.0 × 1011 ions/cm2, corresponding to a lowest in-field Jc. This result may be a combination of increasing pinning centers and decreasing superconductor volumes that work together. Normalized pinning force fp = Fp/Fp,max of sample irradiated with different fluence as a function of magnetic field h = H/Hmax was analyzed using Higuchi model. Fitting results show that planar defects are main source of pinning when h > 1, independent of irradiation. Whereas, dominate pinning centers shifting from surface pinning to isotropic normal point pinning with increasing fluence when h < 1. Given that latent tracks produced by Ta ions irradiation act as strong anisotropic pinning centers, the reason of the dominate pinning centers change with increasing fluence remains to be further studied.
      Corresponding author: Liu Jie, j.liu@impcas.ac.cn
    [1]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [2]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [3]

    Zangenberg N 2012 High Temperature Superconductors(HTS) in Accelerator Systems[M]//High Temperature Superconductors (HTS) for Energy Applications (Cambridge: Woodhead Publishing) pp369-392

    [4]

    Wang J, Wei B, Cao B, Guo X, Zhang X, Song X 2013 Phys. C Supercond. its Appl. 495 79Google Scholar

    [5]

    Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W, LeRoux M 2016 Phys. Rev. Appl. 5 014011Google Scholar

    [6]

    Crisan A, Dang V S, Mikheenko P 2017 Phys. C Supercond. its Appl. 533 118Google Scholar

    [7]

    Sato S, Honma T, Takahashi S, Sato K, Watanabe M, Ichikawa K, Takeda K, Nakagawa K, Saito A, Ohshima S 2013 IEEE Trans. Appl. Supercond. 23 7200404Google Scholar

    [8]

    Macmanus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439Google Scholar

    [9]

    Zhou Y X, Ghalsasi S, Rusakova I, Salama K 2007 Supercond. Sci. Technol. 20 S147

    [10]

    Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Reports Prog. Phys. 79 116501Google Scholar

    [11]

    LeRoux M, Kihlstrom K J, Holleis S, Rupich M W, Sathyamurthy S, Fleshler S, Sheng H P, Miller D J, Eley S, Civale L, Kayani A, Niraula P M, Welp U, Kwok W K 2015 Appl. Phys. Lett. 107 192601

    [12]

    Fischer D X, Prokopec R, Emhofer J, Eisterer M 2018 Supercond. Sci. Technol. 31 044006Google Scholar

    [13]

    Khadzhai G Y, Litvinov Y V., Vovk R V., Zdorovko S F, Goulatis I L, Chroneos A 2018 J. Mater. Sci. Mater. Electron. 29 7725Google Scholar

    [14]

    Biswal R, John J, Behera D, Mallick P, Kumar S, Kanjilal D, Mohanty T, Raychaudhuri P, Mishra N C 2008 Supercond. Sci. Technol. 21 085016Google Scholar

    [15]

    Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Sun Y 1991 Phys. Rev. Lett. 67 648Google Scholar

    [16]

    Bourgault D, Hervieu M, Bouffard S, Groult D, Raveau B 1989 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 42 61Google Scholar

    [17]

    Nakashima K, Chikumoto N, Ibi A, Miyata S, Yamada Y, Kubo T, Suzuki A, Terai T 2007 Phys. C Supercond. its Appl. 463 665

    [18]

    Sueyoshi T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Ishikawa N 2016 Supercond. Sci. Technol. 29 105006Google Scholar

    [19]

    Sueyoshi T, Sogo T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Awaji S, Watanabe K, Ichinose A, Ishikawa N 2016 Supercond. Sci. Technol. 29 065023Google Scholar

    [20]

    Hardy V, Hervieu M, Provost J, Simon Ch 2000 Phys. Rev. B 62 691Google Scholar

    [21]

    Sueyoshi T, Kotaki T, Uraguchi Y, Suenaga M, Makihara T, Fujiyoshi T, Ishikawa N 2016 Phys. C Supercond. its Appl. 530 72Google Scholar

    [22]

    Sadovskyy I A, Jia Y, Leroux M, Kwon J, Hu H, Fang L, Chaparro C, Zhu S, Welp U, Zuo J M, Zhang Y, Nakasaki R, Selvamanickam V, Crabtree G W, Koshelev A E, Glatz A, Kwok W K 2016 Adv. Mater 28 4593

    [23]

    Strickl, N M, Talantsev E F, Long N J, Xia J A, Searle S D, Kennedy J, Markwitz A, Rupich M W, Li X, Sathyamurthy S 2009 Phys. C Supercond. its Appl. 469 2060Google Scholar

    [24]

    Fuchs G, Nenkov K, Krabbes G, Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2007 Supercond. Sci. Technol. 20 S197Google Scholar

    [25]

    Biswal R, John J, Avasthi D K, Kanjilal D, Raychaudhuri P, Mishra N C 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 3325Google Scholar

    [26]

    Gupta R P, Gupta M 1992 Phys. Rev. B 45 9958Google Scholar

    [27]

    Behera D, Mohanty T, Dash S K, Banerjee T, Kanjilal D, Mishra N C 2003 Radiat. Meas. 36 125Google Scholar

    [28]

    Weinstein R, Gandini A, Sawh R P, Parks D, Mayes B 2003 Phys. C Supercond. its Appl. 387 391Google Scholar

    [29]

    Murakami Y, Goto H, Taguchi Y, Nagasaka Y 2017 Int. J. Thermophys. 38 160Google Scholar

    [30]

    Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Phys. C Supercond. its Appl. 466 1Google Scholar

    [31]

    Higuchi T, Yoo S I, Murakami M 1999 Phys. Rev. B 59 1514

    [32]

    Cai Q, Liu Y C, Ma Z Q, Li H J, Yu L M 2013 Appl. Phys. Lett. 103 132601

    [33]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 1818Google Scholar

    [34]

    Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2006 Supercond. Sci. Technol. 19 S575Google Scholar

    [35]

    Kwon J H, Meng Y, Wu L, Zhu Y, Zhang Y, Selvamanickam V, Welp U, Kwok W K, Zuo J M 2018 Supercond. Sci. Technol. 31 105006Google Scholar

    [36]

    Zhu Y, Cai Z X, Budhani R C, Suenaga M, Welch D O 1993 Phys. Rev. B 48 6436Google Scholar

    [37]

    Biswal R, John J, Mallick P, Dash B N, Kulriya P K, Avasthi D K, Kanjilal D, Behera D, Mohanty T, Raychaudhuri P, Mishra N C 2009 J. Appl. Phys. 106 053912Google Scholar

    [38]

    Zeng L, Lu Y M, Liu Z Y, Chen C Z, Gao B, Cai C B 2012 J. Appl. Phys. 112 053903

    [39]

    Chang H, Ren Y T, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W 1995 Phys. C Supercond. its Appl. 252 333Google Scholar

    [40]

    Kujur A, Asokan K, Behera D 2013 Thin Solid Films 536 256Google Scholar

    [41]

    Vlastou R, Gazis E N, Papadopoulos C T, Liaropapis E, Palles D, Kossionides S, Kokkoris M, Pilakouta M, Assmann W, Huber H 1996 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 113 253Google Scholar

    [42]

    Wang S S, Li F, Wu H, Zhang Y, Muhammad S, Zhao P, Le X Y, Xiao Z S, Jiang L X, Ou X D, Ouyang X P 2019 Chinese Phys. B 28 027401Google Scholar

    [43]

    Hensel B, Roas B, Henke S, Hopfengärtner R, Lippert M, Ströbel J P, Vildić M, Saemann-Ischenko G, Klaumünzer S 1990 Phys. Rev. B 42 4135Google Scholar

    [44]

    Rullier-Albenque F, Legris A, Bouffard S, Paumier E, Lejay P 1991 Phys. C Supercond. its Appl. 175 111Google Scholar

    [45]

    Yan Y, Kirk M A 1998 Phys. Rev. B 57 6152

    [46]

    Yan Y, Kirk M A 1999 Philos. Mag. Lett. 79 841Google Scholar

    [47]

    Kirk M A, Yan Y 1999 Micron 30 507Google Scholar

  • 图 1  不同注量下YBCO高温超导薄膜的交流磁化率随温度的变化

    Figure 1.  AC susceptibility versus temperature of YBCO high temperature superconductor films irradiated with different fluences.

    图 2  (a) 77 K下经Ta离子辐照后临界电流密度随磁场的变化情况; (b) 77 K下钉扎力随注量的变化情况

    Figure 2.  (a) Field dependence of critical current density at 77 K after Ta ions irradiation; (b) The variance of pinning force at 77 K with increasing fluence.

    图 3  辐照前后YBCO薄膜的约化钉扎力曲线及拟合结果

    Figure 3.  Scaling behavior of normalized pinning force curves for YBCO films before and after irradiation and fit curves.

    图 4  Ta离子在YBCO超导材料中的电子能损与核能损值

    Figure 4.  The nuclear and electronic energy loss in YBCO superconductor under Ta ions irradiation.

    图 5  注量为1.0 × 1011 ions/cm2、能量为1.9 GeV的Ta离子辐照YBCO超导薄膜TEM图 (a) 低倍TEM图像; (b) 潜径迹的高分辨率TEM图像

    Figure 5.  TEM images of 1.9 GeV Ta ions-irradiated YBCO high temperature superconductor film with the fluence of 1.0 × 1011 ions/cm2: (a) Low-resolution TEM image; (b) high-resolution TEM image of latent track.

    图 6  (a) 能量为1.9 GeV的Ta离子辐照前后YBCO高温超导薄膜的显微拉曼光谱; (b) O(2, 3)-B1g和O(4)-Ag峰的峰位随着注量的变化情况

    Figure 6.  (a) Micro-Raman spectra of YBCO high temperature superconductor films between pristine sample and samples irradiated with 1.9 GeV Ta ions; (b) variations in the position of O(2, 3)-B1g and O(4)-Ag peaks with different fluences.

    表 1  钉扎力密度标度函数

    Table 1.  Fitting functions of scaling behavior of normalized pinning force.

    钉扎函数钉扎中心类型
    ${{\rm{f}}_{\rm{p}}}(h) = \dfrac{9}{4}h{\left(1 - \dfrac{h}{3}\right)^2}$Normal point pinning
    ${{\rm{f}}_{\rm{p}}}(h) = \dfrac{{25}}{{16}}\sqrt h {\left(1 - \dfrac{h}{5}\right)^2}$Surface pinning
    DownLoad: CSV
  • [1]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [2]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [3]

    Zangenberg N 2012 High Temperature Superconductors(HTS) in Accelerator Systems[M]//High Temperature Superconductors (HTS) for Energy Applications (Cambridge: Woodhead Publishing) pp369-392

    [4]

    Wang J, Wei B, Cao B, Guo X, Zhang X, Song X 2013 Phys. C Supercond. its Appl. 495 79Google Scholar

    [5]

    Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W, LeRoux M 2016 Phys. Rev. Appl. 5 014011Google Scholar

    [6]

    Crisan A, Dang V S, Mikheenko P 2017 Phys. C Supercond. its Appl. 533 118Google Scholar

    [7]

    Sato S, Honma T, Takahashi S, Sato K, Watanabe M, Ichikawa K, Takeda K, Nakagawa K, Saito A, Ohshima S 2013 IEEE Trans. Appl. Supercond. 23 7200404Google Scholar

    [8]

    Macmanus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439Google Scholar

    [9]

    Zhou Y X, Ghalsasi S, Rusakova I, Salama K 2007 Supercond. Sci. Technol. 20 S147

    [10]

    Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Reports Prog. Phys. 79 116501Google Scholar

    [11]

    LeRoux M, Kihlstrom K J, Holleis S, Rupich M W, Sathyamurthy S, Fleshler S, Sheng H P, Miller D J, Eley S, Civale L, Kayani A, Niraula P M, Welp U, Kwok W K 2015 Appl. Phys. Lett. 107 192601

    [12]

    Fischer D X, Prokopec R, Emhofer J, Eisterer M 2018 Supercond. Sci. Technol. 31 044006Google Scholar

    [13]

    Khadzhai G Y, Litvinov Y V., Vovk R V., Zdorovko S F, Goulatis I L, Chroneos A 2018 J. Mater. Sci. Mater. Electron. 29 7725Google Scholar

    [14]

    Biswal R, John J, Behera D, Mallick P, Kumar S, Kanjilal D, Mohanty T, Raychaudhuri P, Mishra N C 2008 Supercond. Sci. Technol. 21 085016Google Scholar

    [15]

    Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Sun Y 1991 Phys. Rev. Lett. 67 648Google Scholar

    [16]

    Bourgault D, Hervieu M, Bouffard S, Groult D, Raveau B 1989 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 42 61Google Scholar

    [17]

    Nakashima K, Chikumoto N, Ibi A, Miyata S, Yamada Y, Kubo T, Suzuki A, Terai T 2007 Phys. C Supercond. its Appl. 463 665

    [18]

    Sueyoshi T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Ishikawa N 2016 Supercond. Sci. Technol. 29 105006Google Scholar

    [19]

    Sueyoshi T, Sogo T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Awaji S, Watanabe K, Ichinose A, Ishikawa N 2016 Supercond. Sci. Technol. 29 065023Google Scholar

    [20]

    Hardy V, Hervieu M, Provost J, Simon Ch 2000 Phys. Rev. B 62 691Google Scholar

    [21]

    Sueyoshi T, Kotaki T, Uraguchi Y, Suenaga M, Makihara T, Fujiyoshi T, Ishikawa N 2016 Phys. C Supercond. its Appl. 530 72Google Scholar

    [22]

    Sadovskyy I A, Jia Y, Leroux M, Kwon J, Hu H, Fang L, Chaparro C, Zhu S, Welp U, Zuo J M, Zhang Y, Nakasaki R, Selvamanickam V, Crabtree G W, Koshelev A E, Glatz A, Kwok W K 2016 Adv. Mater 28 4593

    [23]

    Strickl, N M, Talantsev E F, Long N J, Xia J A, Searle S D, Kennedy J, Markwitz A, Rupich M W, Li X, Sathyamurthy S 2009 Phys. C Supercond. its Appl. 469 2060Google Scholar

    [24]

    Fuchs G, Nenkov K, Krabbes G, Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2007 Supercond. Sci. Technol. 20 S197Google Scholar

    [25]

    Biswal R, John J, Avasthi D K, Kanjilal D, Raychaudhuri P, Mishra N C 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 3325Google Scholar

    [26]

    Gupta R P, Gupta M 1992 Phys. Rev. B 45 9958Google Scholar

    [27]

    Behera D, Mohanty T, Dash S K, Banerjee T, Kanjilal D, Mishra N C 2003 Radiat. Meas. 36 125Google Scholar

    [28]

    Weinstein R, Gandini A, Sawh R P, Parks D, Mayes B 2003 Phys. C Supercond. its Appl. 387 391Google Scholar

    [29]

    Murakami Y, Goto H, Taguchi Y, Nagasaka Y 2017 Int. J. Thermophys. 38 160Google Scholar

    [30]

    Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Phys. C Supercond. its Appl. 466 1Google Scholar

    [31]

    Higuchi T, Yoo S I, Murakami M 1999 Phys. Rev. B 59 1514

    [32]

    Cai Q, Liu Y C, Ma Z Q, Li H J, Yu L M 2013 Appl. Phys. Lett. 103 132601

    [33]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 1818Google Scholar

    [34]

    Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2006 Supercond. Sci. Technol. 19 S575Google Scholar

    [35]

    Kwon J H, Meng Y, Wu L, Zhu Y, Zhang Y, Selvamanickam V, Welp U, Kwok W K, Zuo J M 2018 Supercond. Sci. Technol. 31 105006Google Scholar

    [36]

    Zhu Y, Cai Z X, Budhani R C, Suenaga M, Welch D O 1993 Phys. Rev. B 48 6436Google Scholar

    [37]

    Biswal R, John J, Mallick P, Dash B N, Kulriya P K, Avasthi D K, Kanjilal D, Behera D, Mohanty T, Raychaudhuri P, Mishra N C 2009 J. Appl. Phys. 106 053912Google Scholar

    [38]

    Zeng L, Lu Y M, Liu Z Y, Chen C Z, Gao B, Cai C B 2012 J. Appl. Phys. 112 053903

    [39]

    Chang H, Ren Y T, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W 1995 Phys. C Supercond. its Appl. 252 333Google Scholar

    [40]

    Kujur A, Asokan K, Behera D 2013 Thin Solid Films 536 256Google Scholar

    [41]

    Vlastou R, Gazis E N, Papadopoulos C T, Liaropapis E, Palles D, Kossionides S, Kokkoris M, Pilakouta M, Assmann W, Huber H 1996 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 113 253Google Scholar

    [42]

    Wang S S, Li F, Wu H, Zhang Y, Muhammad S, Zhao P, Le X Y, Xiao Z S, Jiang L X, Ou X D, Ouyang X P 2019 Chinese Phys. B 28 027401Google Scholar

    [43]

    Hensel B, Roas B, Henke S, Hopfengärtner R, Lippert M, Ströbel J P, Vildić M, Saemann-Ischenko G, Klaumünzer S 1990 Phys. Rev. B 42 4135Google Scholar

    [44]

    Rullier-Albenque F, Legris A, Bouffard S, Paumier E, Lejay P 1991 Phys. C Supercond. its Appl. 175 111Google Scholar

    [45]

    Yan Y, Kirk M A 1998 Phys. Rev. B 57 6152

    [46]

    Yan Y, Kirk M A 1999 Philos. Mag. Lett. 79 841Google Scholar

    [47]

    Kirk M A, Yan Y 1999 Micron 30 507Google Scholar

  • [1] Lai Yao-Yao, Chen Xin-Meng, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann method based feedback control approach for pinned spiral waves. Acta Physica Sinica, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] Wen Hai-Hu. Brief introduction to flux pinning and vortex dynamics in high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [3] Liang Chao, Zhang Jie, Zhao Ke, Yang Xin-Sheng, Zhao Yong. Superconducting and flux pinning properties of FeSexTe1–x topological superconductors. Acta Physica Sinica, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [4] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [5] Wang Yin-Bo, Xue Chi, Feng Qing-Rong. The effects of Ti ion-irradiation on critical current and flux pinning in MgB2 thin film. Acta Physica Sinica, 2012, 61(19): 197401. doi: 10.7498/aps.61.197401
    [6] Sun Hui-Hui, Yang Ye, Wang Lei, Cheng C. H., Feng Yong, Zhao Yong. Evidence of δl pinning induced by citric acid doping in MgB2 superconductor. Acta Physica Sinica, 2010, 59(5): 3488-3493. doi: 10.7498/aps.59.3488
    [7] Wu Xiu-Sheng, Yang Chun-Li, Chen Zhi-Jun, Chen Chu-Sheng, Liu Wei. Low-frequency internal friction study of La1-xSrxFeO3-δ(0≤x≤2/3)system. Acta Physica Sinica, 2009, 58(9): 6419-6424. doi: 10.7498/aps.58.6419
    [8] He Guo-Liang, He Yan-Wen, Zhao Zhi-Gang, Liu Mei. Two-step depinning and reentrant superconducting phase of moving vortex lattice in disordered superconductors. Acta Physica Sinica, 2006, 55(2): 839-843. doi: 10.7498/aps.55.839
    [9] Cai Chun-Lin, Teng Jiao, Yu Guang-Hua, Zhu Feng-Wu, Lai Wu-Yan, Xian Ji-Mei. . Acta Physica Sinica, 2002, 51(8): 1846-1850. doi: 10.7498/aps.51.1846
    [10] Jiang Hong-Wei, Li Ming-Hua, Yu Guang-Hua, Zhu Feng-Wu, Zheng Wu. . Acta Physica Sinica, 2002, 51(6): 1366-1370. doi: 10.7498/aps.51.1366
    [11] LIU FENG, YAN SHOU-SHENG. SIMULATION ON LOCAL FLUX CREEP IN NON-IDEAL TYPE-Ⅱ SUPERCONDUCTORS:THE EFFECT O F NON-UNIFORM PINNING POTENTIAL AND SURFACE POTENTIAL. Acta Physica Sinica, 2000, 49(9): 1829-1837. doi: 10.7498/aps.49.1829
    [12] Feng Yong, Zhou Lian, Yang Wan-min, Zhang Cui-ping, Wang Jing-rong, Yu Ze-ming, Wu Xiao-zu. Flux Pinning in PMP Y-Gd-Ba-Cu-O Superconductors. Acta Physica Sinica, 2000, 49(1): 146-152. doi: 10.7498/aps.49.146
    [13] WANG ZHI-HE, CAO XIAO-WEN, CHEN JING-LIN, LI KE-BIN. EFFECTIVE PINNING POTENTIAL IN EPITAXIAL YBa2Cu3O7-δ THIN FILM. Acta Physica Sinica, 1998, 47(10): 1720-1726. doi: 10.7498/aps.47.1720
    [14] DING SHI-YING, SHI KE-XIN, ZENG CHAO-YANG, YU ZHENG, SHI ZHI-XIANG, QIU LI. TIME DEPENDENT CRITICAL CURRENT AT ZERO FIELD FOR SINTERED Tl2Ba2Ca2Cu3Oy SUPERCONDUCTOR. Acta Physica Sinica, 1991, 40(6): 985-989. doi: 10.7498/aps.40.985
    [15] JIN XIN, ZHANG YI-TONG, LU MU, ZHANG CHANG-GUI, YAN YONG, YU YANG, SHEN JIAN-CANG, YAO XI-XIAN. MAGNETIC FLUX PINNING AND CREEP IN (BiPb)-Sr-Ca-Cu-O 2223 PHASE HIGH-Tc SUPERCONDUCTOR. Acta Physica Sinica, 1991, 40(4): 630-633. doi: 10.7498/aps.40.630
    [16] DING SHI-YING, SHI ZHI-XIANG, TAN JIA-LIE, YU ZHENG, SHI KE-XIN, TONG HONG-WU, QIU LI. CHARACTERISTICS OF PINNING FORCE IN LOW FIELD FOR Tl2Ba2Ca2Cu3Oy SUPERCONDUCTOR. Acta Physica Sinica, 1990, 39(12): 1999-2004. doi: 10.7498/aps.39.1999
    [17] DING SHI-YING, YAN JIA-LIE, YU ZHENG, TONG HONG-WU, SHI KE-XING, QIU LI. THE EFFECTIVE FLUX PINNING FORCE OF SUPERCONDUCTING CERAMIC YBaCuO. Acta Physica Sinica, 1990, 39(6): 157-162. doi: 10.7498/aps.39.157
    [18] DING SHI-YING, YU ZHENG, SHI KE-XIN. THE FLUX PINNING EFFECTS OF NON-IDEAL PLANE ELECTRON SCATTER CENTRE. Acta Physica Sinica, 1987, 36(12): 1635-1639. doi: 10.7498/aps.36.1635
    [19] CAO ZHONG-SHENG, CUI CHANG-GENG, ZHOU LIAN. THE CHARACTERIZATION OF FLUX PINNING FORCE FOR Nb3Sn SUPERCONDUCTING MATERIALS IN HIGH MAGNETIC FIELDS. Acta Physica Sinica, 1987, 36(7): 940-944. doi: 10.7498/aps.36.940
    [20] CAI XUE-YU, YIN DAO-LE, LI CHUAN-YI. THE FLUX PINNING MECHANISM OF A-15 SC MATERIALS AT HIGH FIELD. Acta Physica Sinica, 1983, 32(9): 1183-1186. doi: 10.7498/aps.32.1183
Metrics
  • Abstract views:  7799
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2019
  • Accepted Date:  17 January 2020
  • Published Online:  05 April 2020

/

返回文章
返回