搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛离子辐照对MgB2超导薄膜的载流能力和磁通钉扎能力的影响

王银博 薛驰 冯庆荣

引用本文:
Citation:

钛离子辐照对MgB2超导薄膜的载流能力和磁通钉扎能力的影响

王银博, 薛驰, 冯庆荣

The effects of Ti ion-irradiation on critical current and flux pinning in MgB2 thin film

Wang Yin-Bo, Xue Chi, Feng Qing-Rong
PDF
导出引用
  • 利用混合物理化学气相沉积法(hybrid physical-chemical vapor deposition, HPCVD)可以制备出高性能的MgB2超导薄膜, 再对薄膜进行钛(Ti)离子辐照处理.经过辐照处理后的样品被掺入了Ti元素, 与未处理的干净MgB2样品相比,其超导转变温度没有出现大幅度的下降, 而在外加磁场下的临界电流密度得到了明显的提高,同时样品的上临界磁场也得到了提高. 在温度5 K, 外加垂直磁场为4 T的情况下, Ti离子辐照剂量为1 1013/cm2的样品的临界电流密度达到了1.72 105 A/cm2, 比干净的MgB2要高出许多,而其超导转变温度仍能维持在39.9 K的较高水平.
    High-quality MgB2 films are fabricated via hybrid physical-chemical vapor deposition (HPCVD) and irradiated by Ti ions. Compared with the unirradiated film, the Ti-irradiated MgB2 film shows a high critical current density (Jc) in magnetic field and also a high upper critical field (Hc2), while the superconducting transition temperature (Tc) does not decrease significantly. The Ti-irradiated film with a best fluence at 1 1013/cm2 shows a high Jc of 1.72 105 A/cm2 in 4 T perpendicular field at a temperature of 5 K and a moderately decreased Tc at 39.9 K.
    • 基金项目: 国家重点基础研究发展计划(批准号:2006CD601004, 2011CB605904, 2011CBA00104)和国家基础科学人才培养基金(批准号: J0630311)资助的课题.
    • Funds: Project supported by the Key Development Program for Basic Research of China (Grant Nos. 2006CD601004, 2011CB605904, 2011CBA00104), and the National Foundation Talent in Basic Science Research of China (Grant No. J0630311).
    [1]

    Nagamatsu J, Nakagawa N, Muranaka T, Zentani Y, Akimitsu J 2001 Nature 410 63

    [2]

    Iwasa Y, Larbalestier D C, Okada M, Penco R, Sumption M D, Xi X X 2006 IEEE Trans. Appl. Supercond. 16 1457

    [3]

    Larbalestier D C, Cooley L D, Rikel M O, Polyanskii A A, Jiang J, Patnaik S, Cai X Y, Feldmann D M, Gurevich A, Squitieri A A, Naus M T, Eom C B, Hellstrom E E, Cava R J, Regan K A, Rogado N, Hayward M A, He T, Slusky J S, Khalifah P, Inumaru K,Haas M K 2001 Nature 410 186

    [4]

    Eom C B, Lee M K, Chol J H, Belenky L J, Song X, Cooley L D, Naus M T, Patnaik S, Jiang J, Rikel M, Polyanskii A, A Gurevich, Cai X Y, Bu S D, Babcock S E, Hellstrom E E, Larbalestier D C, Rogado N, Regan K A, Hayward M A, He T, Slusky J S, Inumaru K, Haas M K, Cava R J 2002 Nature 411 558

    [5]

    Bhatia M, Sumption M D, Coolings E W 2005 IEEE Transactions on Applied Superconductivity 15 3204

    [6]

    Kim J H, Dou S X, Hossain M S A, Xu X, Wang J L, Shi D Q, Nakane T, Kumakura H 2007 Supercond. Sci. Technol. 20 715

    [7]

    Krutzler C, Zchetmayer M, Eisterer M, Weber H W, Zhigadlo N D, Karpinski J 2007 Physical Review B 75 224510

    [8]

    Kumar R, Agrawal H, Kushwaha R, Kanjilal D 2007 Nucl. Instr. and Meth. in Phys. Res. B 263 414

    [9]

    Soltanian S, Horvat J,Wang X L, Munroe P, Dou S X 2003 Physica C 390 185

    [10]

    Zhuang C G, Meng S, Yang H, Jia Y, Wen H H, Xi X X, Feng Q R, Gan Z Z 2008 Supercond. Sci. Technol. 21 082002

    [11]

    Kazakov S M, Puzniak R, Rogacki K, Mironov A V, Zhigadlo N D, Jun J, Soltmann C, Batlogg B, Karpinski J 2005 Physical Review B 71 024533

    [12]

    Zhao Y, Ionescu M, Horvat J, Li A H, Dou S X 2004 Supercond. Sci. Technol. 17 1247

    [13]

    Kusevic I, Babic E, Husnjak E, Saltanian S, Wang X L, Dou S X 2004 Solid State Communications 132 761

    [14]

    Zhang C Y, Wang Y B, Hu W W, Feng Q R 2010 Supercond. Sci. Technol. 23 065017

    [15]

    Haigh S, Kovac P, Prikhna T A, Savchuk Y M, Kilburn M R, Salter C, Hutchison J, Grovenor C 2005 Supercond. Sci. Technol. 18 1190

    [16]

    Zhao Y, Feng Y, Shen T M, Li G, Yang Y, Cheng C H 2006 Journal of Applied Physics 100 123902

    [17]

    Fu B Q, Feng Y, Yan G, Zhao Y, Pradhan A K, Cheng C H, Ji P, Liu X H,. Liu C F, Zhou L, Yau K F 2002 Journal of Applied Physics 92 7341

    [18]

    Yang Y, Zhao D, Shen T M, Li G, Zhang Y, Feng Y, Chen C H, Zhang Y P, Zhao Y 2008 Physica C 468 1202

    [19]

    Anderson Jr. N E, Straszheim W E, Budko S L, Canfield P C, Finnemore D K, Suplinskas R J 2003 Physica C 390 11

    [20]

    Zeng X H. Pogrebnyakov A J, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettieri J, Schlom D G, Tia W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 1

    [21]

    Xi X X, Pogrebnyakov A V, Xu S Y, Chen K, Cui Y, Maertz E C, Zhuang C G, Li Q, Lamborn D R, Redwing J M, Liu Z K, Soukiassian A, Schlom D G, Weng X J, Dickey E C, Chen Y B, Tian W, Pan X Q, Cybart S A, Dynes R C 2007 Physica C 456 22

    [22]

    Ribeiro R A, Bud S L,Petrovic C, Canfield P C 2003 Physica C 384 227

    [23]

    Zao Y, Feng Y, Huang D X, Machi T, Cheng C H, Nakao K, Chikumoto N, Fudamoto Y, Koshozuka N, Murakami M 2002 Physica C 378-381 122

    [24]

    Fu B Q, Feng Y, Yan G, Zhao Y, Pradhan A K, Cheng C H, Ji P, Liu X H, Liu C F, Zhou L, Yau K F 2002 Journal of Applied Physics 93 7341

    [25]

    Cheng C H, Zao Y, Feng Y, Zhu X T, Koshozuka N, Murakami M 2003 Supercond. Sci. Technol. 16 125

    [26]

    Zao Y, Cheng C H, Machi T, Koshozuka N, Murakami M 2002 Appl. Phys. Lett. 80 2311

    [27]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw- Hill) p123

    [28]

    Bean C P 1962Phys. Rev. Lett.8 250

    [29]

    Dew-Hughes D 1974 Phil. Mag. 30 293

    [30]

    Dew-Hughes D 1987 Phil. Mag. 55 459

    [31]

    Kramer E J 1973 J. Appl. Phys. 44 1360

    [32]

    Chen J, Ferrando V, Orgiani P, Pogrebnyakov A V, Wilke R, Betts J, Mielke C, Redwing J, Xi X X, Li Q 2006 Phys. Rev. B 74 174511

  • [1]

    Nagamatsu J, Nakagawa N, Muranaka T, Zentani Y, Akimitsu J 2001 Nature 410 63

    [2]

    Iwasa Y, Larbalestier D C, Okada M, Penco R, Sumption M D, Xi X X 2006 IEEE Trans. Appl. Supercond. 16 1457

    [3]

    Larbalestier D C, Cooley L D, Rikel M O, Polyanskii A A, Jiang J, Patnaik S, Cai X Y, Feldmann D M, Gurevich A, Squitieri A A, Naus M T, Eom C B, Hellstrom E E, Cava R J, Regan K A, Rogado N, Hayward M A, He T, Slusky J S, Khalifah P, Inumaru K,Haas M K 2001 Nature 410 186

    [4]

    Eom C B, Lee M K, Chol J H, Belenky L J, Song X, Cooley L D, Naus M T, Patnaik S, Jiang J, Rikel M, Polyanskii A, A Gurevich, Cai X Y, Bu S D, Babcock S E, Hellstrom E E, Larbalestier D C, Rogado N, Regan K A, Hayward M A, He T, Slusky J S, Inumaru K, Haas M K, Cava R J 2002 Nature 411 558

    [5]

    Bhatia M, Sumption M D, Coolings E W 2005 IEEE Transactions on Applied Superconductivity 15 3204

    [6]

    Kim J H, Dou S X, Hossain M S A, Xu X, Wang J L, Shi D Q, Nakane T, Kumakura H 2007 Supercond. Sci. Technol. 20 715

    [7]

    Krutzler C, Zchetmayer M, Eisterer M, Weber H W, Zhigadlo N D, Karpinski J 2007 Physical Review B 75 224510

    [8]

    Kumar R, Agrawal H, Kushwaha R, Kanjilal D 2007 Nucl. Instr. and Meth. in Phys. Res. B 263 414

    [9]

    Soltanian S, Horvat J,Wang X L, Munroe P, Dou S X 2003 Physica C 390 185

    [10]

    Zhuang C G, Meng S, Yang H, Jia Y, Wen H H, Xi X X, Feng Q R, Gan Z Z 2008 Supercond. Sci. Technol. 21 082002

    [11]

    Kazakov S M, Puzniak R, Rogacki K, Mironov A V, Zhigadlo N D, Jun J, Soltmann C, Batlogg B, Karpinski J 2005 Physical Review B 71 024533

    [12]

    Zhao Y, Ionescu M, Horvat J, Li A H, Dou S X 2004 Supercond. Sci. Technol. 17 1247

    [13]

    Kusevic I, Babic E, Husnjak E, Saltanian S, Wang X L, Dou S X 2004 Solid State Communications 132 761

    [14]

    Zhang C Y, Wang Y B, Hu W W, Feng Q R 2010 Supercond. Sci. Technol. 23 065017

    [15]

    Haigh S, Kovac P, Prikhna T A, Savchuk Y M, Kilburn M R, Salter C, Hutchison J, Grovenor C 2005 Supercond. Sci. Technol. 18 1190

    [16]

    Zhao Y, Feng Y, Shen T M, Li G, Yang Y, Cheng C H 2006 Journal of Applied Physics 100 123902

    [17]

    Fu B Q, Feng Y, Yan G, Zhao Y, Pradhan A K, Cheng C H, Ji P, Liu X H,. Liu C F, Zhou L, Yau K F 2002 Journal of Applied Physics 92 7341

    [18]

    Yang Y, Zhao D, Shen T M, Li G, Zhang Y, Feng Y, Chen C H, Zhang Y P, Zhao Y 2008 Physica C 468 1202

    [19]

    Anderson Jr. N E, Straszheim W E, Budko S L, Canfield P C, Finnemore D K, Suplinskas R J 2003 Physica C 390 11

    [20]

    Zeng X H. Pogrebnyakov A J, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettieri J, Schlom D G, Tia W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 1

    [21]

    Xi X X, Pogrebnyakov A V, Xu S Y, Chen K, Cui Y, Maertz E C, Zhuang C G, Li Q, Lamborn D R, Redwing J M, Liu Z K, Soukiassian A, Schlom D G, Weng X J, Dickey E C, Chen Y B, Tian W, Pan X Q, Cybart S A, Dynes R C 2007 Physica C 456 22

    [22]

    Ribeiro R A, Bud S L,Petrovic C, Canfield P C 2003 Physica C 384 227

    [23]

    Zao Y, Feng Y, Huang D X, Machi T, Cheng C H, Nakao K, Chikumoto N, Fudamoto Y, Koshozuka N, Murakami M 2002 Physica C 378-381 122

    [24]

    Fu B Q, Feng Y, Yan G, Zhao Y, Pradhan A K, Cheng C H, Ji P, Liu X H, Liu C F, Zhou L, Yau K F 2002 Journal of Applied Physics 93 7341

    [25]

    Cheng C H, Zao Y, Feng Y, Zhu X T, Koshozuka N, Murakami M 2003 Supercond. Sci. Technol. 16 125

    [26]

    Zao Y, Cheng C H, Machi T, Koshozuka N, Murakami M 2002 Appl. Phys. Lett. 80 2311

    [27]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw- Hill) p123

    [28]

    Bean C P 1962Phys. Rev. Lett.8 250

    [29]

    Dew-Hughes D 1974 Phil. Mag. 30 293

    [30]

    Dew-Hughes D 1987 Phil. Mag. 55 459

    [31]

    Kramer E J 1973 J. Appl. Phys. 44 1360

    [32]

    Chen J, Ferrando V, Orgiani P, Pogrebnyakov A V, Wilke R, Betts J, Mielke C, Redwing J, Xi X X, Li Q 2006 Phys. Rev. B 74 174511

  • [1] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [2] 姜金龙, 黄浩, 王琼, 王善民, 魏智强, 杨华, 郝俊英. 沉积温度对钛硅共掺杂类金刚石薄膜生长、结构和力学性能的影响. 物理学报, 2014, 63(2): 028104. doi: 10.7498/aps.63.028104
    [3] 张焱, 王越, 马平, 冯庆荣. 混合物理化学气相沉积法制备MgB2单晶纳米晶片的研究. 物理学报, 2014, 63(23): 237401. doi: 10.7498/aps.63.237401
    [4] 郑树凯, 吴国浩, 刘磊. P掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2013, 62(4): 043102. doi: 10.7498/aps.62.043102
    [5] 陈艺灵, 张辰, 何法, 王达, 王越, 冯庆荣. MgB2超导膜的厚度与其Jc(5K,0T)的关系. 物理学报, 2013, 62(19): 197401. doi: 10.7498/aps.62.197401
    [6] 徐金荣, 王影, 朱兴凤, 李平, 张莉. N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [7] 彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [8] 张振铎, 侯清玉, 李聪, 赵春旺. Nd高掺杂锐钛矿相TiO2电子结构和吸收光谱的第一原理研究. 物理学报, 2012, 61(11): 117102. doi: 10.7498/aps.61.117102
    [9] 张学军, 柳清菊, 邓曙光, 陈娟, 高攀. Mn,N共掺杂对锐钛矿相TiO2微观结构和性能的影响. 物理学报, 2011, 60(8): 087103. doi: 10.7498/aps.60.087103
    [10] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究. 物理学报, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
    [11] 孙辉辉, 杨烨, 王磊, Cheng C. H., 冯勇, 赵勇. 柠檬酸掺杂的MgB2超导体钉扎机理的研究. 物理学报, 2010, 59(5): 3488-3493. doi: 10.7498/aps.59.3488
    [12] 刘亮, 马小柏, 聂瑞娟, 姚丹, 王福仁. Mg/B多层膜退火法中不同制备条件对MgB2超导薄膜性质的影响. 物理学报, 2009, 58(11): 7966-7971. doi: 10.7498/aps.58.7966
    [13] 赵宗彦, 柳清菊, 朱忠其, 张 瑾. S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响. 物理学报, 2008, 57(6): 3760-3768. doi: 10.7498/aps.57.3760
    [14] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [15] 张现平, 马衍伟, 高召顺, 禹争光, K. Watanabe, 闻海虎. 纳米C和SiC掺杂对MgB2带材超导性能的影响. 物理学报, 2006, 55(9): 4873-4877. doi: 10.7498/aps.55.4873
    [16] 王淑芳, B. B. Jin, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 程波林, 杨国桢. MgB2超导薄膜的微波测量. 物理学报, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [17] 王淑芳, 朱亚斌, 张 芹, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 杨国桢. 利用电泳法在金属基底上制备MgB2超导厚膜. 物理学报, 2003, 52(6): 1505-1508. doi: 10.7498/aps.52.1505
    [18] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [19] 王淑芳, 朱亚彬, 张芹, 周岳亮, 陈正豪, 吕惠宾, 杨国桢. 制备温度对MgB-2薄膜超导电性的影响. 物理学报, 2002, 51(12): 2842-2845. doi: 10.7498/aps.51.2842
    [20] 孙力, 陈延峰, 于涛, 闵乃本, 姜晓明, 修立松. 金属有机化学气相沉积法制备钛酸铅铁电薄膜. 物理学报, 1996, 45(10): 1729-1736. doi: 10.7498/aps.45.1729
计量
  • 文章访问数:  5621
  • PDF下载量:  332
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-03
  • 修回日期:  2012-04-01

/

返回文章
返回