搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MgB2超导膜的厚度与其Jc(5K,0T)的关系

陈艺灵 张辰 何法 王达 王越 冯庆荣

引用本文:
Citation:

MgB2超导膜的厚度与其Jc(5K,0T)的关系

陈艺灵, 张辰, 何法, 王达, 王越, 冯庆荣

Thickness dependence of critical current density in MgB2 films fabricated by hybrid physical-chemical vapor deposition

Chen Yi-Ling, Zhang Chen, He Fa, Wang Da, Wang Yue, Feng Qing-Rong
PDF
导出引用
  • 通过混合物理化学气相沉积法 (hybrid physical-chemical vapor deposition, HPCVD), 在(000l) SiC 衬底上制得一系列从10 nm到8 μm的MgB2超导膜样品, 并对它们的形貌、超导转变温度Tc 和临界电流密度Jc与膜厚度的关系进行了研究. 观察到Tc随膜厚度增加上升到最大值后, 尽管膜继续增厚, 但Tc值保持近乎平稳, 而Jc则先随膜厚度增加上升到最高值后, 继而则随膜的厚度的增加而下降. MgB2膜的Tc(0)和Tc(onset)值与膜厚的关系基本一致, Tc(0)在膜厚为230 nm处达到最大值Tc(0)=41.4 K, 而Jc(5K,0T)在膜厚为100 nm时达到最大值, Jc (5 K, 0 T)=2.3×108A·cm-2, 这也说明了我们能用HPCVD方法制备出高质量干净MgB2超导膜. 本文研究的超导膜厚度变化跨度非常大, 从10 nm级的超薄膜到100 nm级的薄膜, 再到几微米的厚膜, 如此Tc和Jc对膜厚度变化的依赖就有了较完整、成体系的研究. 并且本文的工作对MgB2超导薄膜制备的厚度选取具有实际应用意义.
    MgB2 superconducting films with a thickness of 10 nm to 8 μ have been prepared on SiC substrates by hybrid physical-chemical vapor deposition (HPCVD). The study on Tc and Jc shows that as the film grows thicker, Tc increases and then keeps stable, which Jc increases at first, and then drops dramatically. We get the maximum Tc at 41.4 K and Jc at 2.3× 108 A·cm-2. This also shows that we can use the method of HPCVD to prepare high-quality of clean MgB2 film. And its thickness can be from 10nm ultrathin films and 100 nm thin films up to 8 μm thick film. It is the first time so far as we know that Tc and Jc are studied in this range of thickness. This will lead to a complete and systematical understanding of the superconducting MgB2 films. And it is also important and practical to choose the thickness when preparing MgB2 films.
    • 基金项目: 国家重点基础研究发展计划973(批准号:2006CD601004,2011CB605904,2011CBA00104);国家自然科学基金(批准号51177160,11074008)和国家基础科学人才培养基金(批准号:J0630311)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2006CD601004, 2011CB605904, 2011CBA00104), the National Natural Science Foundation of China (Grant Nos. 51177160, 11074008), and the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J0630311).
    [1]

    Zeng X H, Pogrebnyakov A J, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettieri J, Schlom D G, Tian W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 1

    [2]

    Zhuang C G, Meng S, Zhang C Y, Feng Q R, Gan Z Z, Yang H, Jing Y, Wen H H, Xi X X 2009 Journal of Applied Physics 104 013924

    [3]

    Li F, Guo T, Zhang K C, Chen C P, Feng Q R 2007 Physica C 452 6

    [4]

    Li F, Guo T, Zhang K C, Chen L P, Chen C P, Feng R 2006 Supercond. Sci. Technol.19 1196

    [5]

    Zhuang C G, Yao D, Li F, Zhang K C, Feng Q R, Gan Z Z 2007 Supercond. Sci. Technol. 20 287

    [6]

    He F, Xie D T, Feng Q R, Liu K X 2012 Supercond. Sci. Technol. 25 065003

    [7]

    Li F, Guo T, Zhang K C, Chen C P, Feng Q R 2006 Front.Phys.China. 4 446

    [8]

    Zhang K C, Ding L L, Zhuang C G, Chen L P, Chen C P, Feng Q R 2006 Phys. Stat Sol. A 203 2463

    [9]

    Zhang C, Wang D, Zhang Y, Wang Y, Feng Q R, Gan Z Z 2013 IEEE Transactions on Applied Superconductivity 237500204

    [10]

    Mina Hanna, Shufang Wang, Joan M Redwing, Xi X X, Kamel Salama 2009 Supercond. Sci. Technol. 22 015024

    [11]

    Wang S F, Liu Z, Zhou Y L, Zhu Y B, Chen Z H, Lu H B,Cheng B L, Yang G Z 2004 Supercond. Sci. Technol. 17 1126

    [12]

    Yakinci Z D, Aydogdu Y 2011 J. Supercond. Nov Magn. 24 523

    [13]

    Chandra Shekhar, Srivastava O N 2011 Physica C 471 104

    [14]

    Wang Y Z, Zhuang C G, Sun X A, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015

    [15]

    Zeng X H, Pogrebnyakov A V, Zhu M H, Jones J E, Xi X X, Xu S Y, Wertz E, Li Q 2003 Appl. Phys. Lett 82 2097

    [16]

    Jung S G, Seong W K, Kang W N 2012 Journal of Applied Physics 111 053906

    [17]

    Wang Y B, Meng S, Dai Q, Yan Zhang, Feng O R 2012 Advanced Materials Research 567 153

    [18]

    Xi X X, Pogrebnyakov A V, Zeng X H, Redwing J M, Xu S Y, Li Q, Liu Z K, Lettieri J, Vaithyanathan V, Schlom D G, Christen H M,Y Zhai H, Goyal A 2004 Supercond. Sci. Technol. 17 S196

    [19]

    Bean C P 1962 Phys Rev. 8 250

    [20]

    Wang Y B, Xue C, Feng Q R 2012 Acta. Phys. Sin. 61 197401 (in Chinese) [王银博, 薛驰, 冯庆荣 2012 物理学报 61 197401]

    [21]

    Feng Q R, Chen C P, Xu J, Kong L W, Chen X, Wang Y Z, Zhang Y, Gao Z X 2004 Physica C-superconductivity and its applications 411 41

    [22]

    Yan S C, Yan G, Liu C F, Lu Y F, Zhou L J 2007 Alloys Comp. 437 298

    [23]

    Zhuang C G, Tan T, Wang Y, Bai S S, Ma X B, Yang H, Zhang G H, He Y S, Wen H H, Xi X X, Feng Q R, Gan Z Z 2008 Supercond. Sci. Technol. 22 025002

    [24]

    Pan J Y, Zhang C, HeE F, Feng Q R 2013 Acta Phys. Sin. 62 127401 (in Chinese) [潘杰云, 张辰, 何法, 冯庆荣 2013 物理学报 62 127401]

    [25]

    Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta. Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 物理学报 60 087401]

    [26]

    Wang Z D, Chen Z J, Duan Z Z, Wang W Q 2011 Chinese Phys. Lett. 18 677

    [27]

    Cao G Z, Wang Y 2012 Nanostructures and Nanomaterials-Synthesis Properties, and Applications 2nd Edition (Higher Education Press) p318 (in Chinese) [曹国忠, 王颖著, 董星龙译 2012 纳米结构和纳米材料合成、性质及应用 (北京: 高等教育出版社) 第318页]

    [28]

    Blatter G, Feigel’man M V, Geshkenbein V B, Larkin A I, Vinokur V M 1994 Rev. Mod. Phys. 66 1125

  • [1]

    Zeng X H, Pogrebnyakov A J, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettieri J, Schlom D G, Tian W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 1

    [2]

    Zhuang C G, Meng S, Zhang C Y, Feng Q R, Gan Z Z, Yang H, Jing Y, Wen H H, Xi X X 2009 Journal of Applied Physics 104 013924

    [3]

    Li F, Guo T, Zhang K C, Chen C P, Feng Q R 2007 Physica C 452 6

    [4]

    Li F, Guo T, Zhang K C, Chen L P, Chen C P, Feng R 2006 Supercond. Sci. Technol.19 1196

    [5]

    Zhuang C G, Yao D, Li F, Zhang K C, Feng Q R, Gan Z Z 2007 Supercond. Sci. Technol. 20 287

    [6]

    He F, Xie D T, Feng Q R, Liu K X 2012 Supercond. Sci. Technol. 25 065003

    [7]

    Li F, Guo T, Zhang K C, Chen C P, Feng Q R 2006 Front.Phys.China. 4 446

    [8]

    Zhang K C, Ding L L, Zhuang C G, Chen L P, Chen C P, Feng Q R 2006 Phys. Stat Sol. A 203 2463

    [9]

    Zhang C, Wang D, Zhang Y, Wang Y, Feng Q R, Gan Z Z 2013 IEEE Transactions on Applied Superconductivity 237500204

    [10]

    Mina Hanna, Shufang Wang, Joan M Redwing, Xi X X, Kamel Salama 2009 Supercond. Sci. Technol. 22 015024

    [11]

    Wang S F, Liu Z, Zhou Y L, Zhu Y B, Chen Z H, Lu H B,Cheng B L, Yang G Z 2004 Supercond. Sci. Technol. 17 1126

    [12]

    Yakinci Z D, Aydogdu Y 2011 J. Supercond. Nov Magn. 24 523

    [13]

    Chandra Shekhar, Srivastava O N 2011 Physica C 471 104

    [14]

    Wang Y Z, Zhuang C G, Sun X A, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015

    [15]

    Zeng X H, Pogrebnyakov A V, Zhu M H, Jones J E, Xi X X, Xu S Y, Wertz E, Li Q 2003 Appl. Phys. Lett 82 2097

    [16]

    Jung S G, Seong W K, Kang W N 2012 Journal of Applied Physics 111 053906

    [17]

    Wang Y B, Meng S, Dai Q, Yan Zhang, Feng O R 2012 Advanced Materials Research 567 153

    [18]

    Xi X X, Pogrebnyakov A V, Zeng X H, Redwing J M, Xu S Y, Li Q, Liu Z K, Lettieri J, Vaithyanathan V, Schlom D G, Christen H M,Y Zhai H, Goyal A 2004 Supercond. Sci. Technol. 17 S196

    [19]

    Bean C P 1962 Phys Rev. 8 250

    [20]

    Wang Y B, Xue C, Feng Q R 2012 Acta. Phys. Sin. 61 197401 (in Chinese) [王银博, 薛驰, 冯庆荣 2012 物理学报 61 197401]

    [21]

    Feng Q R, Chen C P, Xu J, Kong L W, Chen X, Wang Y Z, Zhang Y, Gao Z X 2004 Physica C-superconductivity and its applications 411 41

    [22]

    Yan S C, Yan G, Liu C F, Lu Y F, Zhou L J 2007 Alloys Comp. 437 298

    [23]

    Zhuang C G, Tan T, Wang Y, Bai S S, Ma X B, Yang H, Zhang G H, He Y S, Wen H H, Xi X X, Feng Q R, Gan Z Z 2008 Supercond. Sci. Technol. 22 025002

    [24]

    Pan J Y, Zhang C, HeE F, Feng Q R 2013 Acta Phys. Sin. 62 127401 (in Chinese) [潘杰云, 张辰, 何法, 冯庆荣 2013 物理学报 62 127401]

    [25]

    Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta. Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 物理学报 60 087401]

    [26]

    Wang Z D, Chen Z J, Duan Z Z, Wang W Q 2011 Chinese Phys. Lett. 18 677

    [27]

    Cao G Z, Wang Y 2012 Nanostructures and Nanomaterials-Synthesis Properties, and Applications 2nd Edition (Higher Education Press) p318 (in Chinese) [曹国忠, 王颖著, 董星龙译 2012 纳米结构和纳米材料合成、性质及应用 (北京: 高等教育出版社) 第318页]

    [28]

    Blatter G, Feigel’man M V, Geshkenbein V B, Larkin A I, Vinokur V M 1994 Rev. Mod. Phys. 66 1125

  • [1] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [2] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎. 物理学报, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [3] 董晓莉, 袁洁, 黄裕龙, 冯中沛, 倪顺利, 田金朋, 周放, 金魁, 赵忠贤. 铁硒基超导研究新进展:高质量(Li,Fe)OHFeSe单晶薄膜. 物理学报, 2018, 67(12): 127403. doi: 10.7498/aps.67.20180770
    [4] 王三胜, 李方, 吴晗, 张竺立, 蒋雯, 赵鹏. 低能离子对高温超导YBa2Cu3O7-薄膜的表面改性和机理. 物理学报, 2018, 67(3): 036103. doi: 10.7498/aps.67.20170822
    [5] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [6] 张晓娟, 张玉凤, 彭里其, 周文礼, 徐燕, 周迪帆, 和泉充. 纳米微粒BaFe12O19掺杂对单畴超导块材GdBa2Cu3O7-δ性能的影响. 物理学报, 2015, 64(24): 247401. doi: 10.7498/aps.64.247401
    [7] 阳喜元, 张晋平, 吴玉蓉, 刘福生. B2-NiAl纳米薄膜厚度对其弹性性能影响的模拟研究. 物理学报, 2015, 64(1): 016803. doi: 10.7498/aps.64.016803
    [8] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用. 物理学报, 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [9] 张焱, 王越, 马平, 冯庆荣. 混合物理化学气相沉积法制备MgB2单晶纳米晶片的研究. 物理学报, 2014, 63(23): 237401. doi: 10.7498/aps.63.237401
    [10] 张韵, 谢自力, 王健, 陶涛, 张荣, 刘斌, 陈鹏, 韩平, 施毅, 郑有炓. GaN薄膜中的马赛克结构随厚度发生的变化. 物理学报, 2013, 62(5): 056101. doi: 10.7498/aps.62.056101
    [11] 路飞平, 李建丰, 孙硕. 功能层厚度对叠层有机电致发光器件出光性能影响的数值研究. 物理学报, 2013, 62(24): 247201. doi: 10.7498/aps.62.247201
    [12] 田晶, 杨鑫, 刘尚军, 练晓娟, 陈金伟, 王瑞林. 直流磁控溅射厚度对Cu(Inx,Ga1-x)Se2背接触Mo薄膜性能的影响. 物理学报, 2013, 62(11): 116801. doi: 10.7498/aps.62.116801
    [13] 王银博, 薛驰, 冯庆荣. 钛离子辐照对MgB2超导薄膜的载流能力和磁通钉扎能力的影响. 物理学报, 2012, 61(19): 197401. doi: 10.7498/aps.61.197401
    [14] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [15] 杨智, 邹继军, 常本康. 透射式指数掺杂GaAs光电阴极最佳厚度研究. 物理学报, 2010, 59(6): 4290-4295. doi: 10.7498/aps.59.4290
    [16] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [17] 王 宇, 华玉林, 吴晓明, 张国辉, 惠娟利, 张丽娟, 刘 倩, 印寿根. 发光层和空穴传输层对白色电致发光器件性能的影响. 物理学报, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [18] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [19] 吴贤勇, 夏钟福, 安振连, 张鹏锋. 厚度对非极性聚合物薄膜驻极体电荷储存及电荷动态特性的影响. 物理学报, 2004, 53(12): 4325-4329. doi: 10.7498/aps.53.4325
    [20] 王峰, 孙国庆, 孔祥木, 单磊, 金新, 张宏. YBa2Cu3O7-δ熔融织构样品的磁响应研究. 物理学报, 2001, 50(8): 1590-1595. doi: 10.7498/aps.50.1590
计量
  • 文章访问数:  3646
  • PDF下载量:  534
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-08
  • 修回日期:  2013-06-21
  • 刊出日期:  2013-10-05

MgB2超导膜的厚度与其Jc(5K,0T)的关系

  • 1. 北京大学物理学院, 北京大学人工微结构与介观国家重点实验室, 北京大学应用超导研究中心, 北京 100871;
  • 2. 北京大学重离子物理研究所, 北京 100871
    基金项目: 国家重点基础研究发展计划973(批准号:2006CD601004,2011CB605904,2011CBA00104);国家自然科学基金(批准号51177160,11074008)和国家基础科学人才培养基金(批准号:J0630311)资助的课题.

摘要: 通过混合物理化学气相沉积法 (hybrid physical-chemical vapor deposition, HPCVD), 在(000l) SiC 衬底上制得一系列从10 nm到8 μm的MgB2超导膜样品, 并对它们的形貌、超导转变温度Tc 和临界电流密度Jc与膜厚度的关系进行了研究. 观察到Tc随膜厚度增加上升到最大值后, 尽管膜继续增厚, 但Tc值保持近乎平稳, 而Jc则先随膜厚度增加上升到最高值后, 继而则随膜的厚度的增加而下降. MgB2膜的Tc(0)和Tc(onset)值与膜厚的关系基本一致, Tc(0)在膜厚为230 nm处达到最大值Tc(0)=41.4 K, 而Jc(5K,0T)在膜厚为100 nm时达到最大值, Jc (5 K, 0 T)=2.3×108A·cm-2, 这也说明了我们能用HPCVD方法制备出高质量干净MgB2超导膜. 本文研究的超导膜厚度变化跨度非常大, 从10 nm级的超薄膜到100 nm级的薄膜, 再到几微米的厚膜, 如此Tc和Jc对膜厚度变化的依赖就有了较完整、成体系的研究. 并且本文的工作对MgB2超导薄膜制备的厚度选取具有实际应用意义.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回