Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D-brane interaction, the open string pair production and its enhancement plus its possible detection

Lu Jian-Xin Zhang Nan

Citation:

D-brane interaction, the open string pair production and its enhancement plus its possible detection

Lu Jian-Xin, Zhang Nan
PDF
HTML
Get Citation
  • This review article reports the recent studies, based on a series of publications by one of the present authors along with his collaborators, regarding the interaction between two D-branes, the open string pair production and its possible enhancement in Type II superstring theories. Specifically, computed is the interaction amplitude between two D-branes, placed parallel at a separation, with each carrying a general worldvolume constant flux, and discussed are the amplitude properties, say, the repulsive or attractive nature of the interaction. When at least one of the D-branes carries an electric flux, the interaction amplitude can have an imaginary part, reflecting the instability of the underlying system via the open string pair production. The decay rate and the pair production rate are both computed. In addition, the enhancement of the latter is found when the added electric and magnetic fluxes are correlated in both magnitude and direction in a certain manner. In particular, when one of the branes is D3 and the other is D1, the corresponding pair production rate becomes large enough to be tested in an earthbound laboratory. Note that the pair production rate is related to the brane separation along the direction transverse to both branes, therefore, to the extra-dimensions with respect to the brane observer. So if the underlying string theory is relevant and the D3 can be taken as our own 4-dimensional world, measuring, say, the electric current due to the pair production and comparing it against the added electric and magnetic fields to see if the measurements agree with the prediction of the computations. This can be used to verify the existence of extra-dimensions. Further, this provides also a potential new means to test the underlying string theory without the need of compactifying it to four dimensions.
      Corresponding author: Lu Jian-Xin, jxlu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775212, 11947301)
    [1]

    Dai J, Leigh R G, Polchinski J 1989 Mod. Phys. Lett. A 4 2073Google Scholar

    [2]

    Duff M J, Lu J X 1991 Phys. Lett. B 273 409Google Scholar

    [3]

    Duff M J, Lu J X 1994 Nucl. Phys. B 416 301Google Scholar

    [4]

    Duff M J, Khuri R R, Lu J X 1995 Phys. Rep. 259 213Google Scholar

    [5]

    Polchinski J 1995 Phys. Rev. Lett. 75 4724Google Scholar

    [6]

    Lu J X, Ning B, Roy S, Xu S S 2007 JHEP 0708 042

    [7]

    Lu J X, Ning B, Wei R, Xu S S 2009 Phys. Rev. D 79 126002Google Scholar

    [8]

    Lu J X, Xu S S 2009 JHEP 0909 093

    [9]

    Lu J X, Xu S S 2009 Phys. Lett. B 680 387Google Scholar

    [10]

    Lu J X 2017 JHEP 1712 076

    [11]

    Lu J X 2018 Nucl. Phys. B 934 39Google Scholar

    [12]

    Jia Q, Lu J X 2019 Phys. Lett. B 789 568Google Scholar

    [13]

    Lu J X 2019 Phys. Lett. B 788 480Google Scholar

    [14]

    Jia Q, Lu J X, Wu Z, Zhu X 2020 Nucl.Phys. B 953 114947Google Scholar

    [15]

    Lu J X 2019 JHEP 1910 238

    [16]

    Vecchia P Di, Liccardo A 2000 NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 556 1

    [17]

    Vecchia P Di, Liccardo A 1999 arXiv: hep-th/9912275 [hep-th]

    [18]

    Schwinger J S 1951 Phys. Rev. 82 664Google Scholar

    [19]

    Bachas C, Porrati M 1992 Phys. Lett. B 296 77Google Scholar

    [20]

    Porrati M 1993 arXiv: hep-th/9309114 [hep-th]

    [21]

    Billo M, Vecchia P Di, Frau M, Lerda A, Pesando I, Russo R, Sciuto S 1998 Nucl. Phys. B 526 199Google Scholar

    [22]

    Vecchia P Di, Frau M, Lerda A, Liccardo A 2000 Nucl. Phys. B 565 397Google Scholar

    [23]

    Callan C G, Lovelace C, Nappi C R, Yost S A 1987 Nucl. Phys. B 288 525Google Scholar

    [24]

    Callan C G, Lovelace C, Nappi C R, Yost S A 1987 Nucl. Phys. B 293 83Google Scholar

    [25]

    Callan C G, Lovelace C, Nappi C R, Yost S A 1988 Nucl. Phys. B 308 221Google Scholar

    [26]

    Yost S A 1989 Nucl. Phys. B 321 629Google Scholar

    [27]

    Polchinski J 1998 String Theory (Vol. 1) (Cambridge: Cambridge University Press) pp214–216

    [28]

    Whittaker E T, Watson G N 1963 A Course of Modern Analysis (4th Ed. reprinted) (Cambridge: Cambridge University Press) pp467–468

    [29]

    Hahn S, Kim Kwanglok, Kim Kwangmin, et al. 2019 Nature 570 496Google Scholar

    [30]

    Berenstein D 2014 Ann. Rev. Nucl. Part. Sci. 64 197Google Scholar

    [31]

    Nikishov A I 1970 Sov. Phys. JETP 30 660

    [32]

    Nikishov A I 1970 Nucl. Phys. B 21 346Google Scholar

    [33]

    Kruglov S I 2001 Eur. Phys. J. C 22 89

    [34]

    Ferrara S, Porrati M 1993 Mod. Phys. Lett. A 8 2497Google Scholar

    [35]

    Bolognesi S, Kiefer F, Rabinovici E 2013 JHEP 1301 174

  • 图 1  D膜

    Figure 1.  D-brane

    图 2  虚开弦对

    Figure 2.  Virtual open string pair

    图 3  闭弦树图相互作用与开弦单圈相互作用的等价性

    Figure 3.  The equivalence of a closed string tree-level cylinder amplitude and an open string one-loop annulus amplitude

    图 4  一根虚开弦转一个闭合时间圈等价于虚正反开弦对的产生和湮灭

    Figure 4.  A virtual open string circulating a closed time loop can be viewed as a pair of virtual open stringand virtual anti open string creating and annihilating.

    表 1  对于$p \leqslant 6$, 决定相应本征值所需要的方程

    Table 1.  The equations needed to determine the corresponding eigenvalues for $ p \leqslant 6$.

    p本征值满足的关系
    0$\lambda = 1$
    1$\lambda_{0} + \lambda^{-1}_{0} = {\rm{tr} } { {w}}$
    2$\lambda_{0} + \lambda^{-1}_{0} = {\rm{tr} } { {w}} - 1$, $\lambda = 1$
    3$\displaystyle\sum_{\alpha =0}^{1} (\lambda_{\alpha} + \lambda^{-1}_{\alpha}) = {\rm{tr} } { {w}}, \;\;\displaystyle\sum_{\alpha =0}^{1} (\lambda^{2}_{\alpha} + \lambda^{-2}_{\alpha}) = {\rm{tr} } { {w}}^{2}$
    4$\displaystyle\sum_{\alpha =0}^{1} (\lambda_{\alpha} + \lambda^{-1}_{\alpha}) = {\rm{tr} } { {w}} - 1, \;\;\displaystyle\sum_{\alpha =0}^{1} (\lambda^{2}_{\alpha} + \lambda^{-2}_{\alpha}) = {\rm{tr} } { {w}}^{2} - 1, \, \lambda = 1$
    5$\displaystyle\sum_{\alpha =0}^{2} (\lambda_{\alpha} + \lambda^{-1}_{\alpha}) = {\rm{tr} } { {w}}, \;\;\displaystyle\sum_{\alpha =0}^{2} (\lambda^{2}_{\alpha} + \lambda^{-2}_{\alpha}) = {\rm{tr} } { {w}}^{2}, \;\;\displaystyle\sum_{\alpha =0}^{2} (\lambda^{3}_{\alpha} + \lambda^{-3}_{\alpha}) = {\rm{tr} } { {w}}^{3}$
    6$\displaystyle\sum_{\alpha =0}^{2} (\lambda_{\alpha} + \lambda^{-1}_{\alpha}) = {\rm{tr} } { {w}} - 1, \;\;\displaystyle\sum_{\alpha =0}^{2} (\lambda^{2}_{\alpha} + \lambda^{-2}_{\alpha}) = {\rm{tr} } { {w}}^{2} - 1, $ $\displaystyle\sum_{\alpha =0}^{2} (\lambda^{3}_{\alpha} + \lambda^{-3}_{\alpha}) = {\rm{tr} } { {w}}^{3} - 1,$ $ \lambda = 1$
    DownLoad: CSV

    表 2  振幅表达式((44)式)方括号中$\theta$项及其简化

    Table 2.  The $\theta$-terms in the square bracket in Eq. (44) and their simplification.

    p振幅表达式((44)式)方括号中$\theta$项及其简化
    0$\theta^{4}_{3} (0 |it) - \theta^{4}_{4} (0 |it) - \theta^{4}_{2} (0 | it) = 2\, \theta^{4}_{1} (0 | it) = 0$
    1 或 2$\theta^{3}_{3} (0 |it) \theta_{3} (\nu_{0} |it) - \theta^{3}_{4} (0 |it) \theta_{4} (\nu_{0} |it) - \theta^{3}_{2} (0 |it) \theta_{2} (\nu_{0} | it) = 2\, \theta^{4}_{1} \left(\left.\dfrac{\nu_{0}}{2}\right| it \right)$
    3 或 4$\theta^{2}_{3} (0 |it) \theta_{3} (\nu_{0} |it) \theta_{3} (\nu_{1} |it)- \theta^{2}_{4} (0 |it) \theta_{4} (\nu_{0} |it) \theta_{4} (\nu_{1} |it)- \theta^{2}_{2} (0 |it) \theta_{2} (\nu_{0} | it)\theta_{2} (\nu_{1} | it)$$= 2\, \theta^{2}_{1} \left(\left.\dfrac{\nu_{0} + \nu_{1} }{2}\right|it \right) \theta^{2}_{1} \left(\left.\dfrac{\nu_{0} - \nu_{1} }{2}\right|it \right)$
    5 或 6$\theta_{3} (0 |it) \theta_{3} (\nu_{0} |it) \theta_{3} (\nu_{1} |it) \theta_{3} (\nu_{2} |it) - \theta_{4} (0 |it) \theta_{4} (\nu_{0} |it) \theta_{4} (\nu_{1} |it) \theta_{4} (\nu_{2} |it)$$ - \theta_{2} (0 |it) \theta_{2} (\nu_{0} | it)\theta_{2} (\nu_{1} | it) \theta_{2} (\nu_{2} | it) $ $= 2\, \theta_{1} \left(\left.\dfrac{\nu_{0} + \nu_{1} + \nu_{2} }{2}\right| it \right) \theta_{1} \left(\left.\dfrac{\nu_{0} - \nu_{1} + \nu_{2} }{2}\right| it \right) \theta_{1} \left(\left.\dfrac{\nu_{0} + \nu_{1} - \nu_{2} }{2}\right| it \right)\theta_{1} \left(\left.\dfrac{\nu_{0} - \nu_{1} - \nu_{2} }{2}\right| it \right) $
    DownLoad: CSV
  • [1]

    Dai J, Leigh R G, Polchinski J 1989 Mod. Phys. Lett. A 4 2073Google Scholar

    [2]

    Duff M J, Lu J X 1991 Phys. Lett. B 273 409Google Scholar

    [3]

    Duff M J, Lu J X 1994 Nucl. Phys. B 416 301Google Scholar

    [4]

    Duff M J, Khuri R R, Lu J X 1995 Phys. Rep. 259 213Google Scholar

    [5]

    Polchinski J 1995 Phys. Rev. Lett. 75 4724Google Scholar

    [6]

    Lu J X, Ning B, Roy S, Xu S S 2007 JHEP 0708 042

    [7]

    Lu J X, Ning B, Wei R, Xu S S 2009 Phys. Rev. D 79 126002Google Scholar

    [8]

    Lu J X, Xu S S 2009 JHEP 0909 093

    [9]

    Lu J X, Xu S S 2009 Phys. Lett. B 680 387Google Scholar

    [10]

    Lu J X 2017 JHEP 1712 076

    [11]

    Lu J X 2018 Nucl. Phys. B 934 39Google Scholar

    [12]

    Jia Q, Lu J X 2019 Phys. Lett. B 789 568Google Scholar

    [13]

    Lu J X 2019 Phys. Lett. B 788 480Google Scholar

    [14]

    Jia Q, Lu J X, Wu Z, Zhu X 2020 Nucl.Phys. B 953 114947Google Scholar

    [15]

    Lu J X 2019 JHEP 1910 238

    [16]

    Vecchia P Di, Liccardo A 2000 NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 556 1

    [17]

    Vecchia P Di, Liccardo A 1999 arXiv: hep-th/9912275 [hep-th]

    [18]

    Schwinger J S 1951 Phys. Rev. 82 664Google Scholar

    [19]

    Bachas C, Porrati M 1992 Phys. Lett. B 296 77Google Scholar

    [20]

    Porrati M 1993 arXiv: hep-th/9309114 [hep-th]

    [21]

    Billo M, Vecchia P Di, Frau M, Lerda A, Pesando I, Russo R, Sciuto S 1998 Nucl. Phys. B 526 199Google Scholar

    [22]

    Vecchia P Di, Frau M, Lerda A, Liccardo A 2000 Nucl. Phys. B 565 397Google Scholar

    [23]

    Callan C G, Lovelace C, Nappi C R, Yost S A 1987 Nucl. Phys. B 288 525Google Scholar

    [24]

    Callan C G, Lovelace C, Nappi C R, Yost S A 1987 Nucl. Phys. B 293 83Google Scholar

    [25]

    Callan C G, Lovelace C, Nappi C R, Yost S A 1988 Nucl. Phys. B 308 221Google Scholar

    [26]

    Yost S A 1989 Nucl. Phys. B 321 629Google Scholar

    [27]

    Polchinski J 1998 String Theory (Vol. 1) (Cambridge: Cambridge University Press) pp214–216

    [28]

    Whittaker E T, Watson G N 1963 A Course of Modern Analysis (4th Ed. reprinted) (Cambridge: Cambridge University Press) pp467–468

    [29]

    Hahn S, Kim Kwanglok, Kim Kwangmin, et al. 2019 Nature 570 496Google Scholar

    [30]

    Berenstein D 2014 Ann. Rev. Nucl. Part. Sci. 64 197Google Scholar

    [31]

    Nikishov A I 1970 Sov. Phys. JETP 30 660

    [32]

    Nikishov A I 1970 Nucl. Phys. B 21 346Google Scholar

    [33]

    Kruglov S I 2001 Eur. Phys. J. C 22 89

    [34]

    Ferrara S, Porrati M 1993 Mod. Phys. Lett. A 8 2497Google Scholar

    [35]

    Bolognesi S, Kiefer F, Rabinovici E 2013 JHEP 1301 174

  • [1] Wang Yu-Xiao, Cheng Ze-Shuai, Jiang Ke-Yang, Wei Lin-Yang, Li Xiu-Ming. Performance of adjustable multilayer film based on radiation cooling and electrochromism. Acta Physica Sinica, 2024, 73(21): 214401. doi: 10.7498/aps.73.20240863
    [2] Wang Kang, Xu Cheng, Wu Jin-Feng, Yang Kai, Yuan Bing. Single-molecule study of interaction between melittin and one-component lipid membrane. Acta Physica Sinica, 2021, 70(17): 178701. doi: 10.7498/aps.70.20210477
    [3] Lu Jiang-Tao, Cheng Xin-Bin, Shen Zheng-Xiang, Jiao Hong-Fei, Zhang Jin-Long, Ma Bin, Ding Tao, Liu Yong-Li, Bao Gang-Hua, Wang Xiao-Dong, Ye Xiao-Wen, Wang Zhan-Shan. Volume and interface absorptions of single layer. Acta Physica Sinica, 2011, 60(4): 047802. doi: 10.7498/aps.60.047802
    [4] Wang Shi-Ping, Zhang A-Man, Liu Yun-Long, Yao Xiong-Liang. Numerical simulation of bubbles coupled with an elastic membrane. Acta Physica Sinica, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [5] Yu Li-Hua, Dong Song-Tao, Dong Shi-Run, Xu Jun-Hua. Epitaxial growth and mechanical properties of AlN/Si3N4 nanostructured multilayers. Acta Physica Sinica, 2008, 57(8): 5151-5158. doi: 10.7498/aps.57.5151
    [6] Zhao Dong-Cai, Ren Ni, Ma Zhan-Ji, Qiu Jia-Wen, Xiao Geng-Jie, Wu Sheng-Hu. Study on the mechanical properties of diamond like carbon films with Si doping. Acta Physica Sinica, 2008, 57(3): 1935-1940. doi: 10.7498/aps.57.1935
    [7] Huang Chao-Qiang, Chen Bo, Li Xin-Xi, V. G. Syromyatnikov, N. K. Pleshanov. Investigation of interfacial structure and property of CoFe/TiZr multilayers by polarized neutron reflectometry. Acta Physica Sinica, 2008, 57(1): 364-370. doi: 10.7498/aps.57.364
    [8] Jin Hui-Ming, Felix Adriana, Aroyave Majorri. Growth kinetics and microstructure characterization of oxide film formed on La-implanted Co-Cr alloy. Acta Physica Sinica, 2008, 57(1): 561-565. doi: 10.7498/aps.57.561
    [9] Yue Jian-Ling, Kong Ming, Zhao Wen-Ji, Li Ge-Yang. Microstructure and mechanical properties of VN/SiO2 nanomultilayers synthesized by reactive sputtering. Acta Physica Sinica, 2007, 56(3): 1568-1573. doi: 10.7498/aps.56.1568
    [10] Bao Bing-Hao, Song Xue-Feng, Ren Nai-Fei, Li Chang-Sheng. Theory and calculation of giant magneto-impedance effect in amorphous alloy ribbons and films. Acta Physica Sinica, 2006, 55(7): 3698-3704. doi: 10.7498/aps.55.3698
    [11] Chen Xi-Quan, Zu Xiao-Tao, Zheng Wan-Guo, Jiang Xiao-Dong, Lü Hai-Bing, Ren Huan, Zhang Yan-Zhen, Liu Chun-Ming. Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and IBSD SiO2 thin films. Acta Physica Sinica, 2006, 55(3): 1201-1206. doi: 10.7498/aps.55.1201
    [12] Wei Lun, Mei Fang-Hua, Shao Nan, Li Ge-Yang, Li Jian-Guo. Study on the growth and superhardness of TiN/SiO22 nanomultilayers. Acta Physica Sinica, 2005, 54(4): 1742-1748. doi: 10.7498/aps.54.1742
    [13] Xue Shuang-Xi, Wang Hao, Yang Fu-Jun, Wang Jun-An, Cao Xin, Wang Han-Bin, Gao Yun, Huang Zhong-Bing, Feng Jie, Cheung W. Y., Wong S. P., Zhao Zi-Qiang. Effect of Ag on the structure and magnetic properties of CoPt/Ag nanocomposite films. Acta Physica Sinica, 2005, 54(11): 5395-5399. doi: 10.7498/aps.54.5395
    [14] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [15] Wang Hao, Yang Fu-Jun, Xue Shuang-Xi, Cao Xin, Wang Jun-An, Gu Hao-Shuang, Zhao Zi-Qiang. Structure and magnetic properties of CoPt(FePt)-C nanocomposite films. Acta Physica Sinica, 2005, 54(3): 1415-1419. doi: 10.7498/aps.54.1415
    [16] Ni Jing, Cai Jian-Wang, Zhao Jian-Gao, Yan Shi- Shen, Mei Liang-Mo, Zhu Shi-Fu. The antiferromagnetic coupling and interface diffusion in Fe/Si multilayers. Acta Physica Sinica, 2004, 53(11): 3920-3923. doi: 10.7498/aps.53.3920
    [17] Xiao Shu-Qin, Liu Yi-Hua, Yan Shi-Shen, Dai You-Yong, Zhang Lin, Mei Liang-Mo. Magnetic Properties and Giant Magnetoimpednce Effects of FeCuNdSiB Single Layered and Sandwiched Films. Acta Physica Sinica, 1999, 48(13): 187-192. doi: 10.7498/aps.48.187
    [18] XU MING-CHUN, YAN SHI-SHEN, LIU YI-HUA, HUANG JI. MAGNETIC AND STRUCTURAL PROPERTIES OF Co-Zr/Pd MULTILAYERS. Acta Physica Sinica, 1997, 46(7): 1420-1426. doi: 10.7498/aps.46.1420
    [19] WAN MEI-XIANG, ZHOU WEI-XIA. STUDIES ON MAGNETIC PROPERTIES OF FILM OF POLYANILINE. Acta Physica Sinica, 1992, 41(2): 347-352. doi: 10.7498/aps.41.347
    [20] LEI HSIAO-LIN. SUPERCONDUCTING FILMS IN A MAGNETIC FIELD. Acta Physica Sinica, 1965, 21(9): 1619-1637. doi: 10.7498/aps.21.1619
Metrics
  • Abstract views:  9861
  • PDF Downloads:  287
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2020
  • Accepted Date:  01 March 2020
  • Published Online:  20 May 2020

/

返回文章
返回