-
Medium entropy alloys have attracted much attention because of their excellent physical and chemical properties. Nano-scaled L12 structure ordered phase plays an important role in strengthening the mechanical properties of medium entropy alloys, and its local atomic arrangement plays a decisive role in yield strength of medium entropy alloys. In this paper, the microscopic mechanism of the precipitation process of Ni60Al20V20 medium entropy alloy is studied by using the micro diffusion phase field dynamics model, in which the probability of atoms to occupy the lattice position is taken as a field variable to describe the configuration of atoms and the morphology of precipitates. In this model, the shape and concentration of precipitate phase, the position and appearance of new phase cannot be set in advance. Combined with the inversion algorithm, the precipitation mechanism of ordered phases of γ' (L12-Ni3Al) and θ (DO22-Ni3V) is discussed by analyzing the evolution of atomic images, the change of order parameters and volume fraction. The result shows that two kinds of ordered phases are precipitated in the kinetical process of disordered phase ordering into Ni60Al20V20 medium entropy alloys, which are of
$ {\gamma }' $ phase with L12 structure and of$ \theta $ phase with DO22 structure.The two ordered phases constitute a pseudo binary system. The L10 phase precipitates at the same time as DO22, and the L10 phase gradually transforms into the L12-γ′ phase, while the traditional Ni75Al7.5V17.5 alloy first precipitates L10 phase, and then the DO22 phase precipitates at the boundary of anti-phase domain of L12 phase. In the transition from L10 to L12, α position of fcc lattice is occupied by Ni atom, and the β position is occupied by Al atom and V atom. The congruent ordering of atoms results in the formation of θ single-phase ordered domain of DO22 structure, followed by spinodal decomposition; the non-classical nucleation of L10 structure gradually transforms into L12-γ′ phase and spinodal decomposition. The interaction potential between the first-nearest-neighbor atoms of Ni-Al increases linearly with temperature, and increases gradually with the increase of long range order parameters. The incubation period of Ni60Al20V20 medium entropy alloy lengthens with temperature increasing. This study can be applied to the design of Ni-Al-V medium entropy alloy.-
Keywords:
- microscopic phase-field model /
- Ni60Al20V20 medium entropy alloy /
- ordered phase precipitation mechanism /
- first neighbor interatomic potential
[1] Pickering E J, Jones N G 2016 Int. Mater. Rev. 61 183Google Scholar
[2] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar
[3] Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41Google Scholar
[4] Gludovatz B, Hohenwarter A, Thurston K V, Bei H B, Wu Z G, George E P, Ritchie R O 2016 Nat. Commun. 7 10602Google Scholar
[5] Zhao Y H, Wang S, Zhang B, Yuan Y, Guo Q W, Hou H 2019 J. Solid State Chem. 276 232Google Scholar
[6] Chen J, Zhou X Y, Wang W L, Liu B, Lv Y K, Yang W, Xu D P, Liu Y 2018 J. Alloys Compd. 760 15Google Scholar
[7] Agustuaningum M P, Ondicho I, Jodi D E, Park N, Lee U 2019 Mater. Sci. Eng., A 759 633Google Scholar
[8] Jodi D E, Park J, Park N 2019 Mater. Charact. 157 109888Google Scholar
[9] Agustuaningum M P, Yoshid S, Tsuji N, Park N 2019 J. Alloys Compd. 781 866Google Scholar
[10] Zhao Y L, Yang T, Tong Y, Wang J, Luan J H, Jiao Z B, Chen D, Yang Y, Hu A, Liu C T, Kai J J 2017 Acta. Mater. 138 72Google Scholar
[11] Yang K, Wang Y X, Dong W Q, Chen Z, Zhang M Y 2011 Rare Met. Mater. Eng. 40 1605
[12] 吴静, 刘永长, 李冲, 伍宇婷, 夏兴川, 李会军 2020 金属学报 56 21Google Scholar
Wu J, Liu Y C, Li C, Wu Y T, Xia X C, Li H J 2020 Acta Metall. Sin. 56 21Google Scholar
[13] Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L, Hou H 2019 J. Mater. Sci. 54 11263Google Scholar
[14] Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta. Mater. 159 16Google Scholar
[15] Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta. Mater. 148 86Google Scholar
[16] Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. mater. Sci. Technol. 35 1044Google Scholar
[17] Mushongera L T, Amos P G K, School E, Kumar P 2020 J. Mater. Sci. 55 5280Google Scholar
[18] Xia B H, Mei C L, Yu Q, Li Y B 2020 Comput. Method. Appl. Mech. Eng. 363 112795Google Scholar
[19] Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Superlattices Microstruct. 129 163Google Scholar
[20] Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar
[21] Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M, Liu H, Wang X, Guo Z, Umar A, Hou H 2018 Sci. Adv. Mater. 1012 1793Google Scholar
[22] Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2015 Ultramicroscopy 159 278Google Scholar
[23] Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2013 Nat. Commun. 4 2955Google Scholar
[24] Hou H, Zhao Y H, Zhao Y H 2009 Mat. Sci. Eng. A. 499 204Google Scholar
[25] Wang K, Wang Y X 2020 J. Alloys Compd 824 153923Google Scholar
[26] 赵宇宏, 侯华, 任娟娜 2012 中南大学学报 8 81
Zhao Y H, Hou H, Ren J N 2012 J. Cent. South Univ. 8 81
[27] 田晓林, 赵宇宏, 田晋忠, 侯华 2018 物理学报 67 230201Google Scholar
Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar
[28] 马庆爽, 靳玉春, 赵宇宏, 侯华, 王欣然, 王锟 2015 中国有色金属学报 25 1450Google Scholar
Ma Q S, Jin Y C, Zhao Y H, Hou H, Wang X R, Wang K 2015 Chin. J. Nonferrous Met. 25 1450Google Scholar
[29] Zhang M Y, Liu F, Chen Z, Guo H J, Yue G Q, Yang K 2012 T. Nonferr. Metal. Soc. 22 2439Google Scholar
[30] 张静, 陈铮, 王永欣, 童立甲 2015 中国科技论文 10 189
Zhang J, Chen Z, Wang Y X, Tong L J 2015 China Sciencepaper 10 189
[31] 杨坤, 吉楠, 沙婷, 杨放, 王海涛, 陈铮 2017 稀有金属材料与工程 07 125
Yang K, Ji N, Sha T, Yang F, Wang H T, Chen Z 2017 Rare Metal Mat. Eng. 07 125
[32] Cahn J W, Hilliard J E 1958 Acta Mater. 6 772Google Scholar
[33] Cahn J W, Hilliard J E 1959 Acta Mater. 7 219Google Scholar
[34] Khachaturyan A G 1983 Theory of Structural Trans-formations in Solids (New York: Wiley) pp131–156
[35] Chen L Q, Khachaturyan A G 1991 Scr. Metall. Mater. 25 67Google Scholar
[36] Poduri R, Chen L Q 1998 Acta Mater. 44 4253Google Scholar
[37] Zhao Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar
[38] Wendt H, Haasen P 1983 Acta Metall. 31 1649Google Scholar
[39] Jackson M P, Starink M J, Reed R C 1999 Mater. Sci. Eng., A 264 26Google Scholar
[40] Onaka S, Kobayashi N, Fujii T, Kato M 2002 Int. J. Plast. 10 343Google Scholar
[41] Zhang Y, Chen Z, Cao D D, Zhang J Y, Zhang P, Tao Q, Yang X Q 2019 J. Mater. Res. Technol. 8 726Google Scholar
[42] Wang Y W, Shang S L, Wang Y, Han F B, Darling K A, Wu Y D, Xie X, Senkov O N, Li J S, Hui X D, Dahmen K A, Liaw P K, Kecskes L J, Liu Z K 2017 Npj. Comput. Mater. 3 23Google Scholar
[43] Jodi A E, Park N 2019 Mater. Lett. 255 126528Google Scholar
-
图 1 1050 K时Ni60Al20V20中熵合金沉淀过程中的原子演化形貌 (a) t = 1000; (b) t = 3000; (c) t = 9000; (d) t = 40000; (e) t = 80000; (f) t = 500000
Figure 1. Atomic evolution morphology of Ni60Al20V20 middle entropy alloy during precipitation at 1050 K: (a) t = 1000; (b) t = 3000; (c) t = 9000; (d) t = 40000; (e) t = 80000; (f) t = 500000
-
[1] Pickering E J, Jones N G 2016 Int. Mater. Rev. 61 183Google Scholar
[2] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar
[3] Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41Google Scholar
[4] Gludovatz B, Hohenwarter A, Thurston K V, Bei H B, Wu Z G, George E P, Ritchie R O 2016 Nat. Commun. 7 10602Google Scholar
[5] Zhao Y H, Wang S, Zhang B, Yuan Y, Guo Q W, Hou H 2019 J. Solid State Chem. 276 232Google Scholar
[6] Chen J, Zhou X Y, Wang W L, Liu B, Lv Y K, Yang W, Xu D P, Liu Y 2018 J. Alloys Compd. 760 15Google Scholar
[7] Agustuaningum M P, Ondicho I, Jodi D E, Park N, Lee U 2019 Mater. Sci. Eng., A 759 633Google Scholar
[8] Jodi D E, Park J, Park N 2019 Mater. Charact. 157 109888Google Scholar
[9] Agustuaningum M P, Yoshid S, Tsuji N, Park N 2019 J. Alloys Compd. 781 866Google Scholar
[10] Zhao Y L, Yang T, Tong Y, Wang J, Luan J H, Jiao Z B, Chen D, Yang Y, Hu A, Liu C T, Kai J J 2017 Acta. Mater. 138 72Google Scholar
[11] Yang K, Wang Y X, Dong W Q, Chen Z, Zhang M Y 2011 Rare Met. Mater. Eng. 40 1605
[12] 吴静, 刘永长, 李冲, 伍宇婷, 夏兴川, 李会军 2020 金属学报 56 21Google Scholar
Wu J, Liu Y C, Li C, Wu Y T, Xia X C, Li H J 2020 Acta Metall. Sin. 56 21Google Scholar
[13] Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L, Hou H 2019 J. Mater. Sci. 54 11263Google Scholar
[14] Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta. Mater. 159 16Google Scholar
[15] Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta. Mater. 148 86Google Scholar
[16] Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. mater. Sci. Technol. 35 1044Google Scholar
[17] Mushongera L T, Amos P G K, School E, Kumar P 2020 J. Mater. Sci. 55 5280Google Scholar
[18] Xia B H, Mei C L, Yu Q, Li Y B 2020 Comput. Method. Appl. Mech. Eng. 363 112795Google Scholar
[19] Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Superlattices Microstruct. 129 163Google Scholar
[20] Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar
[21] Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M, Liu H, Wang X, Guo Z, Umar A, Hou H 2018 Sci. Adv. Mater. 1012 1793Google Scholar
[22] Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2015 Ultramicroscopy 159 278Google Scholar
[23] Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2013 Nat. Commun. 4 2955Google Scholar
[24] Hou H, Zhao Y H, Zhao Y H 2009 Mat. Sci. Eng. A. 499 204Google Scholar
[25] Wang K, Wang Y X 2020 J. Alloys Compd 824 153923Google Scholar
[26] 赵宇宏, 侯华, 任娟娜 2012 中南大学学报 8 81
Zhao Y H, Hou H, Ren J N 2012 J. Cent. South Univ. 8 81
[27] 田晓林, 赵宇宏, 田晋忠, 侯华 2018 物理学报 67 230201Google Scholar
Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar
[28] 马庆爽, 靳玉春, 赵宇宏, 侯华, 王欣然, 王锟 2015 中国有色金属学报 25 1450Google Scholar
Ma Q S, Jin Y C, Zhao Y H, Hou H, Wang X R, Wang K 2015 Chin. J. Nonferrous Met. 25 1450Google Scholar
[29] Zhang M Y, Liu F, Chen Z, Guo H J, Yue G Q, Yang K 2012 T. Nonferr. Metal. Soc. 22 2439Google Scholar
[30] 张静, 陈铮, 王永欣, 童立甲 2015 中国科技论文 10 189
Zhang J, Chen Z, Wang Y X, Tong L J 2015 China Sciencepaper 10 189
[31] 杨坤, 吉楠, 沙婷, 杨放, 王海涛, 陈铮 2017 稀有金属材料与工程 07 125
Yang K, Ji N, Sha T, Yang F, Wang H T, Chen Z 2017 Rare Metal Mat. Eng. 07 125
[32] Cahn J W, Hilliard J E 1958 Acta Mater. 6 772Google Scholar
[33] Cahn J W, Hilliard J E 1959 Acta Mater. 7 219Google Scholar
[34] Khachaturyan A G 1983 Theory of Structural Trans-formations in Solids (New York: Wiley) pp131–156
[35] Chen L Q, Khachaturyan A G 1991 Scr. Metall. Mater. 25 67Google Scholar
[36] Poduri R, Chen L Q 1998 Acta Mater. 44 4253Google Scholar
[37] Zhao Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar
[38] Wendt H, Haasen P 1983 Acta Metall. 31 1649Google Scholar
[39] Jackson M P, Starink M J, Reed R C 1999 Mater. Sci. Eng., A 264 26Google Scholar
[40] Onaka S, Kobayashi N, Fujii T, Kato M 2002 Int. J. Plast. 10 343Google Scholar
[41] Zhang Y, Chen Z, Cao D D, Zhang J Y, Zhang P, Tao Q, Yang X Q 2019 J. Mater. Res. Technol. 8 726Google Scholar
[42] Wang Y W, Shang S L, Wang Y, Han F B, Darling K A, Wu Y D, Xie X, Senkov O N, Li J S, Hui X D, Dahmen K A, Liaw P K, Kecskes L J, Liu Z K 2017 Npj. Comput. Mater. 3 23Google Scholar
[43] Jodi A E, Park N 2019 Mater. Lett. 255 126528Google Scholar
Catalog
Metrics
- Abstract views: 6769
- PDF Downloads: 97
- Cited By: 0