Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microscopic phase-field simulation for precipitation process of Ni60Al20V20 medium entropy alloy

Yang Yi-Bo Zhao Yu-Hong Tian Xiao-Lin Hou Hua

Citation:

Microscopic phase-field simulation for precipitation process of Ni60Al20V20 medium entropy alloy

Yang Yi-Bo, Zhao Yu-Hong, Tian Xiao-Lin, Hou Hua
PDF
HTML
Get Citation
  • Medium entropy alloys have attracted much attention because of their excellent physical and chemical properties. Nano-scaled L12 structure ordered phase plays an important role in strengthening the mechanical properties of medium entropy alloys, and its local atomic arrangement plays a decisive role in yield strength of medium entropy alloys. In this paper, the microscopic mechanism of the precipitation process of Ni60Al20V20 medium entropy alloy is studied by using the micro diffusion phase field dynamics model, in which the probability of atoms to occupy the lattice position is taken as a field variable to describe the configuration of atoms and the morphology of precipitates. In this model, the shape and concentration of precipitate phase, the position and appearance of new phase cannot be set in advance. Combined with the inversion algorithm, the precipitation mechanism of ordered phases of γ' (L12-Ni3Al) and θ (DO22-Ni3V) is discussed by analyzing the evolution of atomic images, the change of order parameters and volume fraction. The result shows that two kinds of ordered phases are precipitated in the kinetical process of disordered phase ordering into Ni60Al20V20 medium entropy alloys, which are of $ {\gamma }' $ phase with L12 structure and of $ \theta $ phase with DO22 structure.The two ordered phases constitute a pseudo binary system. The L10 phase precipitates at the same time as DO22, and the L10 phase gradually transforms into the L12-γ′ phase, while the traditional Ni75Al7.5V17.5 alloy first precipitates L10 phase, and then the DO22 phase precipitates at the boundary of anti-phase domain of L12 phase. In the transition from L10 to L12, α position of fcc lattice is occupied by Ni atom, and the β position is occupied by Al atom and V atom. The congruent ordering of atoms results in the formation of θ single-phase ordered domain of DO22 structure, followed by spinodal decomposition; the non-classical nucleation of L10 structure gradually transforms into L12-γ′ phase and spinodal decomposition. The interaction potential between the first-nearest-neighbor atoms of Ni-Al increases linearly with temperature, and increases gradually with the increase of long range order parameters. The incubation period of Ni60Al20V20 medium entropy alloy lengthens with temperature increasing. This study can be applied to the design of Ni-Al-V medium entropy alloy.
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    [1]

    Pickering E J, Jones N G 2016 Int. Mater. Rev. 61 183Google Scholar

    [2]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [3]

    Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41Google Scholar

    [4]

    Gludovatz B, Hohenwarter A, Thurston K V, Bei H B, Wu Z G, George E P, Ritchie R O 2016 Nat. Commun. 7 10602Google Scholar

    [5]

    Zhao Y H, Wang S, Zhang B, Yuan Y, Guo Q W, Hou H 2019 J. Solid State Chem. 276 232Google Scholar

    [6]

    Chen J, Zhou X Y, Wang W L, Liu B, Lv Y K, Yang W, Xu D P, Liu Y 2018 J. Alloys Compd. 760 15Google Scholar

    [7]

    Agustuaningum M P, Ondicho I, Jodi D E, Park N, Lee U 2019 Mater. Sci. Eng., A 759 633Google Scholar

    [8]

    Jodi D E, Park J, Park N 2019 Mater. Charact. 157 109888Google Scholar

    [9]

    Agustuaningum M P, Yoshid S, Tsuji N, Park N 2019 J. Alloys Compd. 781 866Google Scholar

    [10]

    Zhao Y L, Yang T, Tong Y, Wang J, Luan J H, Jiao Z B, Chen D, Yang Y, Hu A, Liu C T, Kai J J 2017 Acta. Mater. 138 72Google Scholar

    [11]

    Yang K, Wang Y X, Dong W Q, Chen Z, Zhang M Y 2011 Rare Met. Mater. Eng. 40 1605

    [12]

    吴静, 刘永长, 李冲, 伍宇婷, 夏兴川, 李会军 2020 金属学报 56 21Google Scholar

    Wu J, Liu Y C, Li C, Wu Y T, Xia X C, Li H J 2020 Acta Metall. Sin. 56 21Google Scholar

    [13]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L, Hou H 2019 J. Mater. Sci. 54 11263Google Scholar

    [14]

    Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta. Mater. 159 16Google Scholar

    [15]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta. Mater. 148 86Google Scholar

    [16]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. mater. Sci. Technol. 35 1044Google Scholar

    [17]

    Mushongera L T, Amos P G K, School E, Kumar P 2020 J. Mater. Sci. 55 5280Google Scholar

    [18]

    Xia B H, Mei C L, Yu Q, Li Y B 2020 Comput. Method. Appl. Mech. Eng. 363 112795Google Scholar

    [19]

    Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Superlattices Microstruct. 129 163Google Scholar

    [20]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [21]

    Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M, Liu H, Wang X, Guo Z, Umar A, Hou H 2018 Sci. Adv. Mater. 1012 1793Google Scholar

    [22]

    Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2015 Ultramicroscopy 159 278Google Scholar

    [23]

    Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2013 Nat. Commun. 4 2955Google Scholar

    [24]

    Hou H, Zhao Y H, Zhao Y H 2009 Mat. Sci. Eng. A. 499 204Google Scholar

    [25]

    Wang K, Wang Y X 2020 J. Alloys Compd 824 153923Google Scholar

    [26]

    赵宇宏, 侯华, 任娟娜 2012 中南大学学报 8 81

    Zhao Y H, Hou H, Ren J N 2012 J. Cent. South Univ. 8 81

    [27]

    田晓林, 赵宇宏, 田晋忠, 侯华 2018 物理学报 67 230201Google Scholar

    Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar

    [28]

    马庆爽, 靳玉春, 赵宇宏, 侯华, 王欣然, 王锟 2015 中国有色金属学报 25 1450Google Scholar

    Ma Q S, Jin Y C, Zhao Y H, Hou H, Wang X R, Wang K 2015 Chin. J. Nonferrous Met. 25 1450Google Scholar

    [29]

    Zhang M Y, Liu F, Chen Z, Guo H J, Yue G Q, Yang K 2012 T. Nonferr. Metal. Soc. 22 2439Google Scholar

    [30]

    张静, 陈铮, 王永欣, 童立甲 2015 中国科技论文 10 189

    Zhang J, Chen Z, Wang Y X, Tong L J 2015 China Sciencepaper 10 189

    [31]

    杨坤, 吉楠, 沙婷, 杨放, 王海涛, 陈铮 2017 稀有金属材料与工程 07 125

    Yang K, Ji N, Sha T, Yang F, Wang H T, Chen Z 2017 Rare Metal Mat. Eng. 07 125

    [32]

    Cahn J W, Hilliard J E 1958 Acta Mater. 6 772Google Scholar

    [33]

    Cahn J W, Hilliard J E 1959 Acta Mater. 7 219Google Scholar

    [34]

    Khachaturyan A G 1983 Theory of Structural Trans-formations in Solids (New York: Wiley) pp131–156

    [35]

    Chen L Q, Khachaturyan A G 1991 Scr. Metall. Mater. 25 67Google Scholar

    [36]

    Poduri R, Chen L Q 1998 Acta Mater. 44 4253Google Scholar

    [37]

    Zhao Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [38]

    Wendt H, Haasen P 1983 Acta Metall. 31 1649Google Scholar

    [39]

    Jackson M P, Starink M J, Reed R C 1999 Mater. Sci. Eng., A 264 26Google Scholar

    [40]

    Onaka S, Kobayashi N, Fujii T, Kato M 2002 Int. J. Plast. 10 343Google Scholar

    [41]

    Zhang Y, Chen Z, Cao D D, Zhang J Y, Zhang P, Tao Q, Yang X Q 2019 J. Mater. Res. Technol. 8 726Google Scholar

    [42]

    Wang Y W, Shang S L, Wang Y, Han F B, Darling K A, Wu Y D, Xie X, Senkov O N, Li J S, Hui X D, Dahmen K A, Liaw P K, Kecskes L J, Liu Z K 2017 Npj. Comput. Mater. 3 23Google Scholar

    [43]

    Jodi A E, Park N 2019 Mater. Lett. 255 126528Google Scholar

  • 图 1  1050 K时Ni60Al20V20中熵合金沉淀过程中的原子演化形貌 (a) t = 1000; (b) t = 3000; (c) t = 9000; (d) t = 40000; (e) t = 80000; (f) t = 500000

    Figure 1.  Atomic evolution morphology of Ni60Al20V20 middle entropy alloy during precipitation at 1050 K: (a) t = 1000; (b) t = 3000; (c) t = 9000; (d) t = 40000; (e) t = 80000; (f) t = 500000

    图 2  L10L12DO22的三维和二维投影结构示意图 (a) L10; (b) L12; (c) DO22

    Figure 2.  Structural sketches of L10, L12 and DO22: (a) L10; (b) L12; (c) DO22

    图 3  1050 K下Ni75Al7.5V17.5合金沉淀中原子演化形貌 (a) t = 6000; (b) t = 8000; (c) t = 16000

    Figure 3.  Atom evolution morphology in Ni75Al7.5V17.5 alloy precipitated at 1050 K: (a) t = 6000; (b) t = 8000; (c) t = 16000

    图 4  Ni60Al20V20 中熵合金$ \gamma ' $有序相序参数在不同时刻分布 (a)成分序参数; (b)长程序参数

    Figure 4.  Order parameter distribution of $ \gamma ' $ ordered phase in Ni60Al20V20 middle entropy alloy at different time: (a) Composition order parameter; (b) long-range order parameter.

    图 6  Ni60Al20V20中熵合金有序相体积分数随时间的变化 (a) L12相体积分数; (b) DO22相体积分数

    Figure 6.  Variation of volume fraction of ordered phases in Ni60Al20V20 alloy with time: (a) L12 phase; (b) DO22 phase.

    图 7  有序结构中平均序参数随时间的变化 (a)整体变化; (b)局部变化

    Figure 7.  Average order parameter profiles in the ordered phase: (a) Overall change; (b) local change.

    图 5  Ni60Al20V20中熵合金中θ相内部成分序参数和长程序参数在不同时刻分布 (a)成分序参数; (b)长程序参数

    Figure 5.  Order parameter distribution in a $ \theta $ particle of Ni60Al20V20 medium entropy alloy at different time: (a) Composition order parameter; (b) long range-order parameter.

    图 8  Ni60Al20V20中熵合金中不同原子位点占据演变 (a) α位; (b)β

    Figure 8.  Evolutions of different atomic site occupation in Ni60Al20V20 MEA: (a) α site; (b) β site.

    图 9  Ni60Al20V20中熵合金沉淀有序相平均长程序参数随时间变化 (a) $ \gamma ' $相; (b)$ \theta $

    Figure 9.  Average long-range order parameter curves of $ \gamma ' $ and $ \theta $ phases in Ni60Al20V20 medium entropy alloy: (a) $ {\gamma }' $ phase; (b) $ \theta $ phase.

    图 10  Ni60Al20V20中熵合金原子间相互作用势随长程序参数变化

    Figure 10.  Variation of interatomic interaction potential in Ni60Al20V20 medium entropy alloy with long-range ordered parameters.

    图 11  Ni60Al20V20中熵合金原子间相互作用势随温度的变化

    Figure 11.  Temperature dependence of the interatomic interaction potential in Ni60Al20V20 medium entropy alloy.

  • [1]

    Pickering E J, Jones N G 2016 Int. Mater. Rev. 61 183Google Scholar

    [2]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [3]

    Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41Google Scholar

    [4]

    Gludovatz B, Hohenwarter A, Thurston K V, Bei H B, Wu Z G, George E P, Ritchie R O 2016 Nat. Commun. 7 10602Google Scholar

    [5]

    Zhao Y H, Wang S, Zhang B, Yuan Y, Guo Q W, Hou H 2019 J. Solid State Chem. 276 232Google Scholar

    [6]

    Chen J, Zhou X Y, Wang W L, Liu B, Lv Y K, Yang W, Xu D P, Liu Y 2018 J. Alloys Compd. 760 15Google Scholar

    [7]

    Agustuaningum M P, Ondicho I, Jodi D E, Park N, Lee U 2019 Mater. Sci. Eng., A 759 633Google Scholar

    [8]

    Jodi D E, Park J, Park N 2019 Mater. Charact. 157 109888Google Scholar

    [9]

    Agustuaningum M P, Yoshid S, Tsuji N, Park N 2019 J. Alloys Compd. 781 866Google Scholar

    [10]

    Zhao Y L, Yang T, Tong Y, Wang J, Luan J H, Jiao Z B, Chen D, Yang Y, Hu A, Liu C T, Kai J J 2017 Acta. Mater. 138 72Google Scholar

    [11]

    Yang K, Wang Y X, Dong W Q, Chen Z, Zhang M Y 2011 Rare Met. Mater. Eng. 40 1605

    [12]

    吴静, 刘永长, 李冲, 伍宇婷, 夏兴川, 李会军 2020 金属学报 56 21Google Scholar

    Wu J, Liu Y C, Li C, Wu Y T, Xia X C, Li H J 2020 Acta Metall. Sin. 56 21Google Scholar

    [13]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L, Hou H 2019 J. Mater. Sci. 54 11263Google Scholar

    [14]

    Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta. Mater. 159 16Google Scholar

    [15]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta. Mater. 148 86Google Scholar

    [16]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. mater. Sci. Technol. 35 1044Google Scholar

    [17]

    Mushongera L T, Amos P G K, School E, Kumar P 2020 J. Mater. Sci. 55 5280Google Scholar

    [18]

    Xia B H, Mei C L, Yu Q, Li Y B 2020 Comput. Method. Appl. Mech. Eng. 363 112795Google Scholar

    [19]

    Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Superlattices Microstruct. 129 163Google Scholar

    [20]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [21]

    Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M, Liu H, Wang X, Guo Z, Umar A, Hou H 2018 Sci. Adv. Mater. 1012 1793Google Scholar

    [22]

    Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2015 Ultramicroscopy 159 278Google Scholar

    [23]

    Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2013 Nat. Commun. 4 2955Google Scholar

    [24]

    Hou H, Zhao Y H, Zhao Y H 2009 Mat. Sci. Eng. A. 499 204Google Scholar

    [25]

    Wang K, Wang Y X 2020 J. Alloys Compd 824 153923Google Scholar

    [26]

    赵宇宏, 侯华, 任娟娜 2012 中南大学学报 8 81

    Zhao Y H, Hou H, Ren J N 2012 J. Cent. South Univ. 8 81

    [27]

    田晓林, 赵宇宏, 田晋忠, 侯华 2018 物理学报 67 230201Google Scholar

    Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar

    [28]

    马庆爽, 靳玉春, 赵宇宏, 侯华, 王欣然, 王锟 2015 中国有色金属学报 25 1450Google Scholar

    Ma Q S, Jin Y C, Zhao Y H, Hou H, Wang X R, Wang K 2015 Chin. J. Nonferrous Met. 25 1450Google Scholar

    [29]

    Zhang M Y, Liu F, Chen Z, Guo H J, Yue G Q, Yang K 2012 T. Nonferr. Metal. Soc. 22 2439Google Scholar

    [30]

    张静, 陈铮, 王永欣, 童立甲 2015 中国科技论文 10 189

    Zhang J, Chen Z, Wang Y X, Tong L J 2015 China Sciencepaper 10 189

    [31]

    杨坤, 吉楠, 沙婷, 杨放, 王海涛, 陈铮 2017 稀有金属材料与工程 07 125

    Yang K, Ji N, Sha T, Yang F, Wang H T, Chen Z 2017 Rare Metal Mat. Eng. 07 125

    [32]

    Cahn J W, Hilliard J E 1958 Acta Mater. 6 772Google Scholar

    [33]

    Cahn J W, Hilliard J E 1959 Acta Mater. 7 219Google Scholar

    [34]

    Khachaturyan A G 1983 Theory of Structural Trans-formations in Solids (New York: Wiley) pp131–156

    [35]

    Chen L Q, Khachaturyan A G 1991 Scr. Metall. Mater. 25 67Google Scholar

    [36]

    Poduri R, Chen L Q 1998 Acta Mater. 44 4253Google Scholar

    [37]

    Zhao Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [38]

    Wendt H, Haasen P 1983 Acta Metall. 31 1649Google Scholar

    [39]

    Jackson M P, Starink M J, Reed R C 1999 Mater. Sci. Eng., A 264 26Google Scholar

    [40]

    Onaka S, Kobayashi N, Fujii T, Kato M 2002 Int. J. Plast. 10 343Google Scholar

    [41]

    Zhang Y, Chen Z, Cao D D, Zhang J Y, Zhang P, Tao Q, Yang X Q 2019 J. Mater. Res. Technol. 8 726Google Scholar

    [42]

    Wang Y W, Shang S L, Wang Y, Han F B, Darling K A, Wu Y D, Xie X, Senkov O N, Li J S, Hui X D, Dahmen K A, Liaw P K, Kecskes L J, Liu Z K 2017 Npj. Comput. Mater. 3 23Google Scholar

    [43]

    Jodi A E, Park N 2019 Mater. Lett. 255 126528Google Scholar

  • [1] Wang Kai-Le, Yang Wen-Kui, Shi Xin-Cheng, Hou Hua, Zhao Yu-Hong. Phase-field-method-studied mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy. Acta Physica Sinica, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [2] Jiang Xin-An, Zhao Yu-Hong, Yang Wen-Kui, Tian Xiao-Lin, Hou Hua. Mechanism of internal magnetic energy of Cu-rich phase precipitation in Fe84Cu15Mn1 alloy by phase field method. Acta Physica Sinica, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [3] Guo Zhen, Zhao Yu-Hong, Sun Yuan-Yang, Zhao Bao-Jun, Tian Xiao-Lin, Hou Hua. Phase field study of effect of Al on Cu-rich precipitates in Fe-Cu-Mn-Al alloys. Acta Physica Sinica, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [4] Zhou Kang, Yuan Cong-Long, Li Xiao, Wang Xiao-Qian, Shen Dong, Zheng Zhi-Gang. Localization of blue phase liquid crystal with ordered crystallographic direction and well-defined micro-patterning. Acta Physica Sinica, 2018, 67(6): 066101. doi: 10.7498/aps.67.20172517
    [5] Tian Xiao-Lin,  Zhao Yu-Hong,  Tian Jin-Zhong,  Hou Hua. Effects of interatomic potential on precipitation sequences of medium Al concentration in Ni75AlxV25-x alloys. Acta Physica Sinica, 2018, 67(23): 230201. doi: 10.7498/aps.67.20181366
    [6] Ma Zhen-Ning, Zhou Quan, Wang Qing-Jie, Wang Xun, Wang Lei. First-principles study of the thermodynamic stabilities and electronic structures of long-period stacking ordered phases in Mg-Y-Cu alloys. Acta Physica Sinica, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [7] Lu Li-Xia, Zhang Zhi-Dong, Zhou Xuan. Diffusion of order reconstruction induced by 1/2 wedge disclination in a thin hybrid nematic liquid-crystal cell. Acta Physica Sinica, 2013, 62(22): 226101. doi: 10.7498/aps.62.226101
    [8] Chen Ji-Xiang, Qiang Jian-Bing, Wang Qing, Dong Chuang. Defining nearest neighbor clusters in alloy phases using radial distribution of atomic density. Acta Physica Sinica, 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [9] Yan Min-Yi, Wang Dan-Qing, Ma Zhong-Yuan, Yao Yao, Liu Guang-Yuan, Li Wei, Huang Xin-Fan, Chen Kun-Ji, Xu Jun, Xu Ling. Light intensity distribution in laser interference crystallization and the fabrication of two-dimensional periodic nanocrystalline silicon array. Acta Physica Sinica, 2010, 59(5): 3205-3209. doi: 10.7498/aps.59.3205
    [10] Wang Gui-Ying, Guo Huan-Yin, Mao Qiang, Yang Gang, Peng Zhen-Sheng. Effects of V substitution for Mn on charge ordering and spin-glass state in La0.45Ca0.55MnO3 sample. Acta Physica Sinica, 2010, 59(12): 8883-8889. doi: 10.7498/aps.59.8883
    [11] Wang Gang, Xu Dong-Sheng, Yang Rui. Phase field simulation on sideplates formation in Ti-6Al-4V alloy. Acta Physica Sinica, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [12] Zhang Jing, Chen Zheng, Wang Yong-Xin, Lu Yan-Li, Huo Jin-Liang, Zhen Hui-Hui, Zhao Yan. Microscopic phase field simulation for the evolution of antisite defect of L12 structure and D022 structure in Ni75Al5.3V19.7 alloy. Acta Physica Sinica, 2009, 58(1): 631-637. doi: 10.7498/aps.58.631
    [13] Wang Cheng-Wei, Ma Bao-Hong, Li Yan, Chen Jian-Biao, Wang Jian, Liu Wei-Min. Investigation of the controllable growth of the TiO2 nanotube arrays fabricated by anodic oxidation method. Acta Physica Sinica, 2008, 57(9): 5800-5805. doi: 10.7498/aps.57.5800
    [14] Zhang Li-Jiao, Cai Jian-Wang, Meng Fan-Bin, Li Yang-Xian. Effects of Ta buffer layers on the ordering of equiatomic FePt thin films. Acta Physica Sinica, 2006, 55(1): 450-455. doi: 10.7498/aps.55.450
    [15] Jia Jin-Feng, Wu Kai, Wang De-Zheng, Lv Si-Ye, Zhao Nu-Guang, Wu Si-Cheng. . Acta Physica Sinica, 1995, 44(2): 251-258. doi: 10.7498/aps.44.251
    [16] XU YING-FAN, CHEN HONG, WANG WEN-KUI. UNDERCOOLING AND FORMATION OF SUPERSA-TURATED SOLID SOLUTION OF Pd-Ni-P IN A 20m DROP TUBE. Acta Physica Sinica, 1992, 41(7): 1111-1118. doi: 10.7498/aps.41.1111
    [17] MENG XIANG-MIN, HU KUI-YI, WU YU-KUN, HUANG JIN-XIU, CUI SHENG-LAN. NEW τ PHASES IN Al65Cu20Co15 ALLOY. Acta Physica Sinica, 1992, 41(12): 1968-1971. doi: 10.7498/aps.41.1968
    [18] WU QIN-CHONG, WANG YUAN-SHENG, WU ZI-QIN, HE YI-ZHEN. CRYSTALLIZATION KINETICS OF QUASICRYSTALLINE DECAGONAL PHASE IN RAPIDLY QUENCHED Al80Mn20 ALLOY. Acta Physica Sinica, 1988, 37(5): 796-803. doi: 10.7498/aps.37.796
    [19] SHI TIAN-SHENG. THE ROLE OF QUENCHED-IN VACANCIES IN THE ORDERING PROCESS OF AuCu ALLOY. Acta Physica Sinica, 1981, 30(3): 361-368. doi: 10.7498/aps.30.361
    [20] SZE SHIH-YUAN. ORDERING AND VACANCY DIFFUSION IN AuCu3. Acta Physica Sinica, 1957, 13(4): 245-251. doi: 10.7498/aps.13.245
Metrics
  • Abstract views:  6769
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2020
  • Accepted Date:  21 April 2020
  • Available Online:  09 May 2020
  • Published Online:  20 July 2020

/

返回文章
返回