Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Redox-enhanced solid-state supercapacitor based on hydroquinone-containing gel electrolyte/ carbon nanotube arrays

Ye An-Na Zhang Xiao-Hua Yang Zhao-Hui

Citation:

Redox-enhanced solid-state supercapacitor based on hydroquinone-containing gel electrolyte/ carbon nanotube arrays

Ye An-Na, Zhang Xiao-Hua, Yang Zhao-Hui
PDF
HTML
Get Citation
  • By introducing redox active substances into electrolyte, the energy density can be effectively increased without reducing the power density. Considering the influence of ionic conductivity and environmental safety, we introduce the redox small molecule hydroquinone (HQ) into the PVA/H3PO4 gel electrolyte, which then will recombine with the carbon nanotube arrays (ACNT) possessing high specific surface area and vertical orientation structure. The symmetrical “sandwich” type redox-enhanced solid-state super capacitor is then designed and prepared. We systematically study the effects of oriented structure and pore space on the electrochemical properties of the ACNT@PVA@HQ device and charge storage mechanism. With the addition of hydroquinone (0.1%, mol%), the specific capacitance of ACNT@PVA@HQ composite device increases 6.4 times compared with that of the ACNT@PVA, and maintains the extremely high rate performance and cyclic stability. When the current density increases 10 times, the specific capacitance of the device still possesses 85% of the original value. The energy storage mechanism is mainly ascribed to a diffusion-control behavior at a low scan rate while it will change into a capacitive behavior at a high scan speed. Furthermore, we prepare highly densified oriented carbon nanotube arrays (DACNT) by solvent evaporation, enhancing the mechanical stability of carbon nanotube arrays and improving the specific capacitance and energy density of the devices. Compared with the specific capacitance of ACNT and random carbon nanotube (CCNT), that of DACNT@PVA@HQ device under the current density of 11.1 mA·cm–2 increases up to 385 mF·cm–2 (1674 mF·cm–3), which is 6.6 times higher than that of the CCNT@PVA@HQ device and 18 times higher than that of the ACNT@PVA device. The maximum energy density can finally reach as high as 0.06 mW·h·cm–2 (0.26 mW·h·cm–3), which is much better than those of many other reported CNTs-based devices. The oriented structure of the arrays effectively shortens the ion migration path of the device, achieving a good rate performance and lower internal resistance. This new type of redox-enhanced solid-state supercapacitor not only has excellent electrochemical energy storage properties, but also meets the requirements for environmental protection and safety. This design provides a new idea for developing the new energy devices in the future, which has a good prospect in practical applications.
      Corresponding author: Zhang Xiao-Hua, zhangxiaohua@suda.edu.cn ; Yang Zhao-Hui, yangzhaohui@suda.edu.cn
    [1]

    Gong M, Wan P, Ma D, Zhong M, Liao M, Ye J, Shi R, Zhang L 2019 Adv. Funct. Mater. 29 1902127Google Scholar

    [2]

    Han T H, Kim H, Kwon S J, Lee T W 2017 Mater. Sci. Eng. R-Rep. 118 1Google Scholar

    [3]

    Liu W, Song M S, Kong B, Cui Y 2017 Adv. Mater. 29 1603436Google Scholar

    [4]

    Stoppa M, Chiolerio A 2014 Sensors (Basel) 14 11957Google Scholar

    [5]

    Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G 2014 Adv. Mater. 26 4763Google Scholar

    [6]

    Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F 2011 Nano Res. 4 870Google Scholar

    [7]

    Li P, Kong C, Shang Y, Shi E, Yu Y, Qian W, Wei F, Wei J, Wang K, Zhu H, Cao A, Wu D 2013 Nanoscale 5 8472Google Scholar

    [8]

    Hu S, Rajamani R, Yu X 2012 Appl. Phys. Lett. 100 104103Google Scholar

    [9]

    Shao Y, El-Kady M F, Wang L J, Zhang Q, Li Y, Wang H, Mousavi M F, Kaner R B 2015 Chem. Soc. Rev. 44 3639Google Scholar

    [10]

    Lin R, Taberna P L, Chmiola J, Guay D, Gogotsi Y, Simon P 2009 J. Electrochem.Soc. 156 A7Google Scholar

    [11]

    Guan C, Zhao W, Hu Y, Lai Z, Li X, Sun S, Zhang H, Cheetham A K, Wang J 2017 Nanoscale Horiz. 2 99Google Scholar

    [12]

    He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E 2012 ACS Nano 7 174Google Scholar

    [13]

    Li H, He J, Cao X, Kang L, He X, Xu H, Shi F, Jiang R, Lei Z, Liu Z H 2017 J. Power Sources 371 18Google Scholar

    [14]

    Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G 2014 J. Mater. Chem. A 2 6086Google Scholar

    [15]

    Li W, Gao F, Wang X, Zhang N, Ma M 2016 Angew Chem. Int. Ed. Engl. 55 9196Google Scholar

    [16]

    Evanko B, Boettcher S W, Yoo S J, Stucky G D 2017 ACS Energy Lett. 2 2581Google Scholar

    [17]

    Roldan S, Blanco C, Granda M, Menendez R, Santamaria R 2011 Angew. Chem. Int. Ed. Engl. 50 1699Google Scholar

    [18]

    Ma G, Dong M, Sun K, Feng E, Peng H, Lei Z 2015 J. Mater. Chem. A 3 4035Google Scholar

    [19]

    Pan S, Deng J, Guan G, Zhang Y, Chen P, Ren J, Peng H 2015 J. Mater. Chem. A 3 6286Google Scholar

    [20]

    Zhang H, Cao G, Yang Y 2009 Energy Environ. Sci. 2 932Google Scholar

    [21]

    巫梦丹, 叶安娜, 周胜林, 王敏, 张晓华, 杨朝晖 2019 物理学报 68 108201Google Scholar

    Wu M D, Ye A N, Zhou S L, Wang M, Zhang X H, Yang Z H 2019 Acta Phys. Sin. 68 108201Google Scholar

    [22]

    Zhu Q, Yuan X, Zhu Y, Ni J, Zhang X, Yang Z 2018 Nanotechnology 29 195405Google Scholar

    [23]

    Kim D, Lee G, Kim D, Yun J, Lee S S, Ha J S 2016 Nanoscale 8 15611Google Scholar

    [24]

    Balamurugan J, Li C, Thanh T D, Park O, Kim N H, Lee J H 2017 J. Mater. Chem. A 5 19760Google Scholar

    [25]

    Sathyamoorthi S, Suryanarayanan V, Velayutham D 2015 J. Power Sources 274 1135Google Scholar

    [26]

    Zhong J, Fan L Q, Wu X, Wu J H, Liu G J, Lin J M, Huang M L, Wei Y L 2015 Electrochimica Acta 166 150Google Scholar

    [27]

    Boota M, Hatzell K B, Kumbur E C, Gogotsi Y 2015 ChemSusChem 8 835Google Scholar

    [28]

    Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S E 1997 J. Phys. Chem. B 101 7717Google Scholar

    [29]

    Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Lan Z 2012 J. Power Sources 198 402Google Scholar

    [30]

    Hsia B, Marschewski J, Wang S, In J B, Carraro C, Poulikakos D, Grigoropoulos C P, Maboudian R 2014 Nanotechnology 25 055401Google Scholar

    [31]

    Rajendran V, Mohan A, Jayaraman M, Nakagawa T 2019 Nano Energy 65 104055Google Scholar

    [32]

    Li K, Liu X, Chen S, Pan W, Zhang J 2018 J. Energy Chem. 32 166Google Scholar

  • 图 1  HQ@PVA@ACNT氧化还原增强型固态超级电容器器件组装过程示意图

    Figure 1.  Assembly process diagram of HQ@PVA@ACNT composite redox-enhanced solid-state super capacitor device.

    图 2  (a) CCNT的SEM图; (b) ACNT的SEM图(内部插图为单根碳纳米管TEM图); (c) DACNT制备过程图; (d)收缩前后阵列尺寸对比图; (e) DACNT的SEM 图; (f)凝胶包埋后ACNT@PVA@HQ复合膜SEM图

    Figure 2.  (a) The SEM image of CCNT; (b) the SEM image of ACNT (insert: The TEM image of ACNT); (c) preparation process of the DACNT; (d) comparison of the arrays before and after shrinkage; (e) the SEM image of the DACNT; (f) the SEM image of the ACNT@PVA@HQ composite device.

    图 3  不同浓度下ACNT@PVA@HQ器件的电化学性能测试 (a)相同扫速(20 mV/s)下不同HQ添加量的器件CV对比图; (b)器件比容量随HQ浓度变化图; (c)相同电流密度(1.23 mA·cm–2)下的GCD曲线对比图; (d)交流阻抗谱对比图; (e)等效电路拟合模型图; (f) ACNT@PVA@HQ (0.1 mol/L)器件与ACNT@PVA器件Ragone对比图

    Figure 3.  Electrochemical performance test of ACNT@PVA@HQ composite devices at different concentrations: (a) Comparison of CVs with different amounts of HQ addition under the same scan rate (20 mV/s); (b) area specific capacitance at different HQ concentrations; (c) GCD curves comparison diagram under the same current density (1.23 mA·cm–2); (d) alternating current impedance spectrogram of the samples at different concentrations; (e) the diagram of equivalent circuit fitting model; (f) comparison of Ragone plots between the devices of ACNT@PVA@HQ (0.1 mol/L) and ACNT@PVA

    图 4  [HQ] = 0.1 mol/L浓度下ACNT@PVA@HQ器件的电化学性能测试 (a)循环伏安曲线图(5−50 mV/s); (b)不同电流密度(0.615−6.15 mA·cm–2)下的GCD曲线图; (c)峰电流与扫速的关系图; (d)容量贡献占比图; (e)交流阻抗谱图; (f) 5000次循环稳定性图

    Figure 4.  Electrochemical performance test of the ACNT@PVA@HQ composite device at [HQ] = 0.1 mol/L: (a) CV curves at scan rates from 5 mV/s to 50 mV/s; (b) GCD curves under different current densities (0.615−6.15 mA·cm–2); (c) relationship between peak current and scan rates; (d) the proportion of capacitance contribution in composite device; (e) Nyquist plot at 0.01 Hz−100 kHz; (f) cyclic performance (5000 cycles) during charging-discharging cycles

    图 5  CCNT@PVA@HQ, ACNT@PVA@HQ 和 DACNT@PVA@HQ器件的电化学测试 (a) 相同电流(1 mA)下的GCD对比图; (b) 20 mV/s下的CVs对比图; (c)面积比容量随电流密度变化图; (d) EIS对比图; (e)器件功率密度-能量密度对比图

    Figure 5.  Electrochemical test of CCNT@PVA@HQ, ACNT@PVA@HQ and DACNT@PVA@HQ composite devices: (a) Comparison of GCD curves with 1 mA; (b) CVs comparison diagram at 20 mV/s; (c) relationship between area specific capacitance and current densities; (d) comparison diagram of EIS; (e) Ragone plots of three kinds of composite device

    表 1  不同样品相关测试数据对比

    Table 1.  Comparison of relevant test data of different samples

    C/mF·cm–2
    (20 mV/s)
    PS/mW·cm–2ES/mW·h·cm–2
    PVA@ACNT210.090.00184
    HQ@PVA@CCNT720.120.00350
    HQ@PVA@ACNT1350.280.01800
    HQ@PVA@DACNT4250.960.06000
    DownLoad: CSV
  • [1]

    Gong M, Wan P, Ma D, Zhong M, Liao M, Ye J, Shi R, Zhang L 2019 Adv. Funct. Mater. 29 1902127Google Scholar

    [2]

    Han T H, Kim H, Kwon S J, Lee T W 2017 Mater. Sci. Eng. R-Rep. 118 1Google Scholar

    [3]

    Liu W, Song M S, Kong B, Cui Y 2017 Adv. Mater. 29 1603436Google Scholar

    [4]

    Stoppa M, Chiolerio A 2014 Sensors (Basel) 14 11957Google Scholar

    [5]

    Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G 2014 Adv. Mater. 26 4763Google Scholar

    [6]

    Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F 2011 Nano Res. 4 870Google Scholar

    [7]

    Li P, Kong C, Shang Y, Shi E, Yu Y, Qian W, Wei F, Wei J, Wang K, Zhu H, Cao A, Wu D 2013 Nanoscale 5 8472Google Scholar

    [8]

    Hu S, Rajamani R, Yu X 2012 Appl. Phys. Lett. 100 104103Google Scholar

    [9]

    Shao Y, El-Kady M F, Wang L J, Zhang Q, Li Y, Wang H, Mousavi M F, Kaner R B 2015 Chem. Soc. Rev. 44 3639Google Scholar

    [10]

    Lin R, Taberna P L, Chmiola J, Guay D, Gogotsi Y, Simon P 2009 J. Electrochem.Soc. 156 A7Google Scholar

    [11]

    Guan C, Zhao W, Hu Y, Lai Z, Li X, Sun S, Zhang H, Cheetham A K, Wang J 2017 Nanoscale Horiz. 2 99Google Scholar

    [12]

    He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E 2012 ACS Nano 7 174Google Scholar

    [13]

    Li H, He J, Cao X, Kang L, He X, Xu H, Shi F, Jiang R, Lei Z, Liu Z H 2017 J. Power Sources 371 18Google Scholar

    [14]

    Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G 2014 J. Mater. Chem. A 2 6086Google Scholar

    [15]

    Li W, Gao F, Wang X, Zhang N, Ma M 2016 Angew Chem. Int. Ed. Engl. 55 9196Google Scholar

    [16]

    Evanko B, Boettcher S W, Yoo S J, Stucky G D 2017 ACS Energy Lett. 2 2581Google Scholar

    [17]

    Roldan S, Blanco C, Granda M, Menendez R, Santamaria R 2011 Angew. Chem. Int. Ed. Engl. 50 1699Google Scholar

    [18]

    Ma G, Dong M, Sun K, Feng E, Peng H, Lei Z 2015 J. Mater. Chem. A 3 4035Google Scholar

    [19]

    Pan S, Deng J, Guan G, Zhang Y, Chen P, Ren J, Peng H 2015 J. Mater. Chem. A 3 6286Google Scholar

    [20]

    Zhang H, Cao G, Yang Y 2009 Energy Environ. Sci. 2 932Google Scholar

    [21]

    巫梦丹, 叶安娜, 周胜林, 王敏, 张晓华, 杨朝晖 2019 物理学报 68 108201Google Scholar

    Wu M D, Ye A N, Zhou S L, Wang M, Zhang X H, Yang Z H 2019 Acta Phys. Sin. 68 108201Google Scholar

    [22]

    Zhu Q, Yuan X, Zhu Y, Ni J, Zhang X, Yang Z 2018 Nanotechnology 29 195405Google Scholar

    [23]

    Kim D, Lee G, Kim D, Yun J, Lee S S, Ha J S 2016 Nanoscale 8 15611Google Scholar

    [24]

    Balamurugan J, Li C, Thanh T D, Park O, Kim N H, Lee J H 2017 J. Mater. Chem. A 5 19760Google Scholar

    [25]

    Sathyamoorthi S, Suryanarayanan V, Velayutham D 2015 J. Power Sources 274 1135Google Scholar

    [26]

    Zhong J, Fan L Q, Wu X, Wu J H, Liu G J, Lin J M, Huang M L, Wei Y L 2015 Electrochimica Acta 166 150Google Scholar

    [27]

    Boota M, Hatzell K B, Kumbur E C, Gogotsi Y 2015 ChemSusChem 8 835Google Scholar

    [28]

    Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S E 1997 J. Phys. Chem. B 101 7717Google Scholar

    [29]

    Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Lan Z 2012 J. Power Sources 198 402Google Scholar

    [30]

    Hsia B, Marschewski J, Wang S, In J B, Carraro C, Poulikakos D, Grigoropoulos C P, Maboudian R 2014 Nanotechnology 25 055401Google Scholar

    [31]

    Rajendran V, Mohan A, Jayaraman M, Nakagawa T 2019 Nano Energy 65 104055Google Scholar

    [32]

    Li K, Liu X, Chen S, Pan W, Zhang J 2018 J. Energy Chem. 32 166Google Scholar

  • [1] Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing. Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST. Acta Physica Sinica, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] Shi Bin, Yuan Li, Tang Tian-Yu, Lu Li-Min, Zhao Xian-Hao, Wei Xiao-Nan, Tang Yan-Lin. Spectral analysis and density functional theory study of tert-butylhydroquinone. Acta Physica Sinica, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [3] Zhang Xin, Chen Xing, Bai Tian, You Xing-Yan, Zhao Xin, Liu Xiang-Yang, Ye Mei-Dan. Recent advances in flexible fiber-shaped supercapacitors. Acta Physica Sinica, 2020, 69(17): 178201. doi: 10.7498/aps.69.20200159
    [4] Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang. Stretchable supercapacitors: Electrodes, electrolytes, and devices. Acta Physica Sinica, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [5] Li Ling-Dong, Ye An-Na, Zhou Sheng-Lin, Zhang Xiao-Hua, Yang Zhao-Hui. Confinement effect of carbon nanotubes on the chain mobility of conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl). Acta Physica Sinica, 2019, 68(2): 026402. doi: 10.7498/aps.68.20182008
    [6] Wu Meng-Dan, Zhou Sheng-Lin, Ye An-Na, Wang Min, Zhang Xiao-Hua, Yang Zhao-Hui. High-voltage flexible solid state supercapacitor based on neutral hydrogel/carbon nanotube arrays. Acta Physica Sinica, 2019, 68(10): 108201. doi: 10.7498/aps.68.20182288
    [7] Zhu Qi, Yuan Xie-Tao, Zhu Yi-Hao, Zhang Xiao-Hua, Yang Zhao-Hui. Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays. Acta Physica Sinica, 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [8] Yang Xiu-Tao, Liang Zhong-Guan, Yuan Yu-Jia, Yang Jun-Liang, Xia Hui. Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [9] Zhang Cheng, Deng Ming-Sen, Cai Shao-Hong. Co3O4 mesoporous nanostructure supported by Ni foam as high-performance supercapacitor electrodes. Acta Physica Sinica, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [10] Guo Li-Qiang, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte. Acta Physica Sinica, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [11] Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei, Cheng Cheng-Ping, Luo Cheng-Lin. Water permeability in carbon nanotube arrays. Acta Physica Sinica, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [12] Kang Hai-Yan, Hu Hui-Yong, Wang Bin, Xuan Rong-Xi, Song Jian-Jun, Zhao Chen-Dong, Xu Xiao-Cang. Analytic models for solid state plasma of Si/Ge/Si heterogeneous and lateral SPiN diode. Acta Physica Sinica, 2015, 64(23): 238501. doi: 10.7498/aps.64.238501
    [13] An Ping, Guo Hao, Chen Meng, Zhao Miao-Miao, Yang Jiang-Tao, Liu Jun, Xue Chen-Yang, Tang Jun. Preparation and force-sensitive properties of carbon nanotube/polydimethylsiloxane composites films. Acta Physica Sinica, 2014, 63(23): 237306. doi: 10.7498/aps.63.237306
    [14] Quan Jun, Liu Yi-Xing, Yu Ya-Bin. Dynamic response of the coherent parallel-plate capacitor to the external field. Acta Physica Sinica, 2010, 59(2): 1237-1242. doi: 10.7498/aps.59.1237
    [15] He Chun-Shan, Wang Wei-Liang, Chen Gui-Hua, Li Zhi-Bing. Image potential effect on field emission from arrays of carbon nanotubes. Acta Physica Sinica, 2009, 58(13): 241-S245. doi: 10.7498/aps.58.241
    [16] Liu Huan, Gong Ma-Li. Compact laser diode end-pumped Nd:YAG intracavity frequency-tripled quasi-continuous 355 nm laser. Acta Physica Sinica, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [17] Chen Xue-Feng, Li Hua-Mei, Li Dong-Jie, Cao Fei, Dong Xian-Lin. Study on slim-loop ferroelectric ceramics for high-power pulse capacitors. Acta Physica Sinica, 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [18] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [19] Song Jiao-Hua, Zhang Geng-Min, Zhang Zhao-Xiang, Sun Ming-Yan, Xue Zeng-Quan. A study of field emission of an array of multi-walled carbon nanotubes*. Acta Physica Sinica, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [20] Zhang Zhong-hua. PERTURBATION METHOD FOR VARIABLE BOUNDARY PROBLEMS AND APPLICATION TO THE EVALUATION OF ERRORS IN PRECISE CAPACITORS. Acta Physica Sinica, 1979, 28(4): 563-570. doi: 10.7498/aps.28.563
Metrics
  • Abstract views:  8048
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  11 February 2020
  • Accepted Date:  10 April 2020
  • Published Online:  20 June 2020

/

返回文章
返回