Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Confinement effect of carbon nanotubes on the chain mobility of conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl)

Li Ling-Dong Ye An-Na Zhou Sheng-Lin Zhang Xiao-Hua Yang Zhao-Hui

Citation:

Confinement effect of carbon nanotubes on the chain mobility of conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl)

Li Ling-Dong, Ye An-Na, Zhou Sheng-Lin, Zhang Xiao-Hua, Yang Zhao-Hui
PDF
HTML
Get Citation
  • The conjugated polymer polyflourene has been well studied for its strong blue light emission ability and high quantum efficiency behavior. It has wide applications for light emitting diodes, sensors as well as photo-detectors. Therein the $ \beta $ conformation of PFO crystals is more attractive due to its longer conjugation length, higher carrier mobility and better luminous efficiency. Therefore it is great essential to control the formation and stability of $ \beta $ conformation of PFO crystals to develop new kind of photo-electronic devices. As is known, polymeric materials confined in a nanometer-sized space often exhibit unique properties compared with their bulk state, such as abnormal chain mobility, molecular assembly and phase transition behavior. These factors are of great significance to develop new kind of material and applications. Generally the confined condition includes quantum dot (zero-dimensional, 0D), nanowire or nanotube (1D), ultrathin film (2D) and nanoparticle (3D). In this paper, we design a unique 1D nanoconfined environment based on vertically aligned carbon nanotube (CNT) array structure. An ultra-high CNT density is achieved through a solvent-induced contraction process. The adjacent narrow carbon nanotube gap thus forms a quasi-1 confined nano-space with the tunable size ranging from 5 to 50 nm. Then we infiltrate the conjugated polymer poly(9,9-dioctylfluorene-2,7-diyl) (PFO) into those nano-gaps of carbon nanotube arrays through a solvent evaporation method to obtain the PFO infilled CNT array composite film. It is found that the chain mobility of PFO molecules in such a 1D nano-confined space of carbon nanotubes is significantly suppressed compared with the scenario of the spin-coated PFO film. The transition speed between different crystal forms of PFO declines greatly, which meanwhile improves the thermal stability of the $ \beta $ conformation of PFO crystal. Additionally, the aligned carbon nanotubes have great effects on the orientation and distribution of PFO chains. The PFO crystals are confirmed to grow preferentially along the longitudinal direction of CNT array, which is potential to grow PFO crystals with high quality and excellent performance. Thus, such a PFO/CNT array composite film can have great potential to prepare PFO photovoltaic devices with excellent luminescent properties and high stability in the future.
      Corresponding author: Yang Zhao-Hui, yangzhaohui@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21204059), the Specially-Appointed Professor Plan in Jiangsu Province, China (Grant Nos. SR10800215, SR10800312), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181430).
    [1]

    Cook J H, Santos J, Li H, Al-Attar H A, Bryce M R, Monkman A P 2014 J. Mater. Chem. C 2 5587Google Scholar

    [2]

    Schelkle K M, Bender M, Jeltsch K, Buckup T, Mullen K, Hamburger M, Bunz U H 2015 Angew. Chem. Int. Ed. 54 14545Google Scholar

    [3]

    Luo J, Zhou Y, Niu Z Q, Zhou Q F, Ma Y G, Pei J 2007 J. Am. Chem. Soc. 129 11314Google Scholar

    [4]

    Zhong C, Duan C, Huang F, Wu H, Cao Y 2011 Chem. Mater. 23 326Google Scholar

    [5]

    Cingil H E, Storm I M, Yorulmaz Y, Te B D W, De V R, Cohen S M A, Sprakel J 2015 J. Am. Chem. Soc. 137 9800Google Scholar

    [6]

    Lv F T, Qiu T, Liu L B, Ying J M, Wang S 2016 Small 12 696Google Scholar

    [7]

    Inganas O, Zhang F, Andersson M R 2009 Acc. Chem. Res. 42 1731Google Scholar

    [8]

    Wu H, Ying L, Yang W, Cao Y 2009 Chem. Soc. Rev. 38 3391Google Scholar

    [9]

    Scherf U, List E J W 2002 Adv. Mater. 14 477Google Scholar

    [10]

    Chen S H, Su A C, Su C H, Chen S A 2005 Macromolecules 38 379Google Scholar

    [11]

    Chen S H, Chou H L, Su A C, Chen S A 2004 Macromolecules 37 6833Google Scholar

    [12]

    Grell M, Bradley D D C, Ungar G, Hill J, Whitehead K S 1999 Macromolecules 32 5810Google Scholar

    [13]

    Lee C C, Lai S Y, Su W B, Chen H L, Chung C L, Chen J H 2013 J. Phys. Chem. C 117 20387Google Scholar

    [14]

    Chunwaschirasiri W, Tanto B, Huber D L, Winokur M J 2005 Phys. Rev. Lett. 94 107402Google Scholar

    [15]

    Arif M, Volz C, Guha S 2006 Phys. Rev. Lett. 96 025503Google Scholar

    [16]

    Cadby A J 2000 Phys. Rev. B 62 15604Google Scholar

    [17]

    Lu H H, Liu C Y, Chang C H, Chen S A 2007 Adv. Mater. 19 2574Google Scholar

    [18]

    Peet J, Brocker E, Xu Y, Bazan G C 2008 Adv. Mater. 20 1882Google Scholar

    [19]

    Asada K, Kobayasi T, Naito H 2006 Japanese Journal of Applied Physics Part 2-Letters and Express Letters 45 L247Google Scholar

    [20]

    Zhang Q, Chi L, Hai G, Fang Y, Li X, Xia R, Huang W, Gu E 2017 Molecules 22 315Google Scholar

    [21]

    Huang L, Huang X, Sun G, Gu C, Lu D, Ma Y 2012 J. Phys. Chem. C 116 7993Google Scholar

    [22]

    Li T, Liu B, Zhang H, Ren J, Bai Z, Li X, Ma T, Lu D 2016 Polymer 103 299Google Scholar

    [23]

    Li T, Huang L, Bai Z, Li X, Liu B, Lu D 2016 Polymer 88 71Google Scholar

    [24]

    O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180Google Scholar

    [25]

    Grimm S, Martín J, Rodriguez G, Fernández-Gutierrez M, Mathwig K, Wehrspohn R B, Gösele U, San Roman J, Mijangos C, Steinhart M 2010 J. Mater. Chem. 20 3171Google Scholar

    [26]

    Liu C L, Chen H L 2018 Soft Matter 14 5461Google Scholar

    [27]

    Li M, Wu H, Huang Y, Su Z 2012 Macromolecules 45 5196Google Scholar

    [28]

    Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W 2007 Macromolecules 40 6617Google Scholar

    [29]

    Garcia G M C, Linares A, Hernandez J J, Rueda D R, Ezquerra T A, Poza P, Davies R J 2010 Nano Lett. 10 1472Google Scholar

    [30]

    Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E, Thurn A T 2006 Phys. Rev. Lett. 97 027801Google Scholar

    [31]

    Hui W, Wei W, Huixian Yang A, Su Z 2007 Macromolecules 40 4244Google Scholar

    [32]

    Wu H, Wang W, Huang Y, Su Z 2009 Macromol Rapid Commun. 30 194Google Scholar

    [33]

    Wu Y, Gu Q, Ding G, Tong F, Hu Z, Jonas A M 2013 ACS Macro Lett. 2 535Google Scholar

    [34]

    Ding G, Wu Y, Weng Y, Zhang W, Hu Z 2013 Macromolecules 46 8638Google Scholar

    [35]

    O'Brien G A, Quinn A J, Tanner D A, Redmond G 2006 Adv. Mater. 18 2379Google Scholar

    [36]

    O'Carroll D, Iacopino D, O'Riordan A, Lovera P, O'Connor É, O'Brien G A, Redmond G 2008 Adv. Mater. 20 42Google Scholar

    [37]

    Steinhart M, Wendorff J H, Greiner A, Wehrspohn R B, Nielsch K, Schilling J, Choi J, Gösele U 2002 Science 296 1997Google Scholar

    [38]

    Ding G, Li C, Li X, Wu Y, Liu J, Li Y, Hu Z, Li Y 2015 Nanoscale 7 11024Google Scholar

    [39]

    Wei S, Zhang Y, Liu J, Li X, Wu Y, Wei H, Weng Y, Gao X, Li Y, Wang S D, Hu Z 2015 Adv. Mater. Interfaces 2 1500153Google Scholar

    [40]

    Zhang P, Huang H, He T, Hu Z 2012 ACS Macro Lett. 1 1007Google Scholar

    [41]

    Li X H, Shen X Z, Gao X, Weng Y Y 2017 RSC Adv. 7 55885Google Scholar

    [42]

    Ajayan P M, Lijima S 1993 Nature 361 333Google Scholar

    [43]

    Ugarte D, Stöckli T, Bonard J M, Châtelain A, Heer W A D 1998 Appl. Phys. A 67 101

    [44]

    Nakamura A, Koyama T, Miyata Y, Shinohara H 2016 J. Phys. Chem. C 120 4647Google Scholar

    [45]

    Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321Google Scholar

    [46]

    Bai Z, Liu Y, Li T, Li X, Liu B, Liu B, Lu D 2016 J. Phys. Chem. C 120 27820Google Scholar

    [47]

    Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987Google Scholar

    [48]

    Zhou S, Sheng J, Yang Z, Zhang X 2018 J. Mater. Chem. A 6 8763Google Scholar

    [49]

    Li X, Bai Z, Liu B, Li T, Lu D 2017 J. Phys. Chem. C 121 14443Google Scholar

    [50]

    Jen T H, Wang K K , Chen S A 2012 Polymer 53 5850Google Scholar

    [51]

    Chen S H, Su A C, Chen S A 2005 J. Phys. Chem. B 109 10067Google Scholar

    [52]

    Torkkeli M, Galbrecht F, Scherf U, Knaapila M 2015 Macromolecules 48 5244Google Scholar

    [53]

    Sheng J, Zhou S, Yang Z, Zhang X 2018 Langmuir 34 3678Google Scholar

    [54]

    Wang M, Li L, Zhou S, Tang R, Yang Z, Zhang X 2018 Langmuir 34 10702Google Scholar

  • 图 1  PFO的化学结构式及三种不同的构象结构及其特征内扭角的示意图 (a) R=(CH2)7CH3; (b) $\alpha$构象; (c) $\gamma $构象; (d) $\beta $构象

    Figure 1.  Chemical structure of PFO and Schematic illustration of three distinct conformational structures and their characteristic intrachain torsional angles: (a) R=(CH2)7CH3; (b) $\alpha$-phase; (c) $\gamma $-phase; (d) $\beta $-phase.

    图 2  (a) PFO/S-ACNTs样品制备流程图; (b) ACNTs阵列收缩前后的对照图; (c) ACNTs的SEM和TEM图 (插图); (d), (e), (f) 相同放大倍数ACNTs、S-ACNTs和PFO/S-ACNTs的SEM图

    Figure 2.  (a) Schematic preparation of PFO/S-ACNTs; (b) photographs of ACNTs before and after the densification; (c) SEM and TEM (insets) images of as-grown ACNTs; (d), (e), (f) SEM cross-section images of ACNTs、S-ACNTs and PFO/S-ACNTs in the same magnification.

    图 3  (a) PFO薄膜的吸收光谱 (蓝色) 与荧光光谱 (红色); (b), (c), (d) 分别对应PFO薄膜、PFO/S-ACNTs和PFO&RCNTs薄膜随退火温度变化的荧光光谱图 (激发波长为380 nm); (e) 三种PFO样品0—0发射峰峰位随退火温度的变化

    Figure 3.  (a) UV-vis absorption spectra (blue) and PL spectra (red) of PFO film; PL spectra of PFO film, PFO/S-ACNTs and PFO&RCNTs film with different annealing conditions corresponding to (b), (c) and (d), respectively (the excitation wavelength is 380 nm); (e) annealing temperature dependence of the 0—0 emission peak of three PFO based samples.

    图 4  三种薄膜样品在不同温度下退火后的XRD衍射图 (所有样品在氮气氛围下退火1 h) (a) PFO滴膜样品; (b) PFO/S-ACNTs样品; (c) PFO & RCNTs

    Figure 4.  XRD diffraction pattern of (a) PFO drop film, (b) PFO/S-ACNTs, and (c) PFO & RCNTs at different annealing temperature (all samples are annealed in nitrogen atmosphere for 1 h).

  • [1]

    Cook J H, Santos J, Li H, Al-Attar H A, Bryce M R, Monkman A P 2014 J. Mater. Chem. C 2 5587Google Scholar

    [2]

    Schelkle K M, Bender M, Jeltsch K, Buckup T, Mullen K, Hamburger M, Bunz U H 2015 Angew. Chem. Int. Ed. 54 14545Google Scholar

    [3]

    Luo J, Zhou Y, Niu Z Q, Zhou Q F, Ma Y G, Pei J 2007 J. Am. Chem. Soc. 129 11314Google Scholar

    [4]

    Zhong C, Duan C, Huang F, Wu H, Cao Y 2011 Chem. Mater. 23 326Google Scholar

    [5]

    Cingil H E, Storm I M, Yorulmaz Y, Te B D W, De V R, Cohen S M A, Sprakel J 2015 J. Am. Chem. Soc. 137 9800Google Scholar

    [6]

    Lv F T, Qiu T, Liu L B, Ying J M, Wang S 2016 Small 12 696Google Scholar

    [7]

    Inganas O, Zhang F, Andersson M R 2009 Acc. Chem. Res. 42 1731Google Scholar

    [8]

    Wu H, Ying L, Yang W, Cao Y 2009 Chem. Soc. Rev. 38 3391Google Scholar

    [9]

    Scherf U, List E J W 2002 Adv. Mater. 14 477Google Scholar

    [10]

    Chen S H, Su A C, Su C H, Chen S A 2005 Macromolecules 38 379Google Scholar

    [11]

    Chen S H, Chou H L, Su A C, Chen S A 2004 Macromolecules 37 6833Google Scholar

    [12]

    Grell M, Bradley D D C, Ungar G, Hill J, Whitehead K S 1999 Macromolecules 32 5810Google Scholar

    [13]

    Lee C C, Lai S Y, Su W B, Chen H L, Chung C L, Chen J H 2013 J. Phys. Chem. C 117 20387Google Scholar

    [14]

    Chunwaschirasiri W, Tanto B, Huber D L, Winokur M J 2005 Phys. Rev. Lett. 94 107402Google Scholar

    [15]

    Arif M, Volz C, Guha S 2006 Phys. Rev. Lett. 96 025503Google Scholar

    [16]

    Cadby A J 2000 Phys. Rev. B 62 15604Google Scholar

    [17]

    Lu H H, Liu C Y, Chang C H, Chen S A 2007 Adv. Mater. 19 2574Google Scholar

    [18]

    Peet J, Brocker E, Xu Y, Bazan G C 2008 Adv. Mater. 20 1882Google Scholar

    [19]

    Asada K, Kobayasi T, Naito H 2006 Japanese Journal of Applied Physics Part 2-Letters and Express Letters 45 L247Google Scholar

    [20]

    Zhang Q, Chi L, Hai G, Fang Y, Li X, Xia R, Huang W, Gu E 2017 Molecules 22 315Google Scholar

    [21]

    Huang L, Huang X, Sun G, Gu C, Lu D, Ma Y 2012 J. Phys. Chem. C 116 7993Google Scholar

    [22]

    Li T, Liu B, Zhang H, Ren J, Bai Z, Li X, Ma T, Lu D 2016 Polymer 103 299Google Scholar

    [23]

    Li T, Huang L, Bai Z, Li X, Liu B, Lu D 2016 Polymer 88 71Google Scholar

    [24]

    O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180Google Scholar

    [25]

    Grimm S, Martín J, Rodriguez G, Fernández-Gutierrez M, Mathwig K, Wehrspohn R B, Gösele U, San Roman J, Mijangos C, Steinhart M 2010 J. Mater. Chem. 20 3171Google Scholar

    [26]

    Liu C L, Chen H L 2018 Soft Matter 14 5461Google Scholar

    [27]

    Li M, Wu H, Huang Y, Su Z 2012 Macromolecules 45 5196Google Scholar

    [28]

    Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W 2007 Macromolecules 40 6617Google Scholar

    [29]

    Garcia G M C, Linares A, Hernandez J J, Rueda D R, Ezquerra T A, Poza P, Davies R J 2010 Nano Lett. 10 1472Google Scholar

    [30]

    Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E, Thurn A T 2006 Phys. Rev. Lett. 97 027801Google Scholar

    [31]

    Hui W, Wei W, Huixian Yang A, Su Z 2007 Macromolecules 40 4244Google Scholar

    [32]

    Wu H, Wang W, Huang Y, Su Z 2009 Macromol Rapid Commun. 30 194Google Scholar

    [33]

    Wu Y, Gu Q, Ding G, Tong F, Hu Z, Jonas A M 2013 ACS Macro Lett. 2 535Google Scholar

    [34]

    Ding G, Wu Y, Weng Y, Zhang W, Hu Z 2013 Macromolecules 46 8638Google Scholar

    [35]

    O'Brien G A, Quinn A J, Tanner D A, Redmond G 2006 Adv. Mater. 18 2379Google Scholar

    [36]

    O'Carroll D, Iacopino D, O'Riordan A, Lovera P, O'Connor É, O'Brien G A, Redmond G 2008 Adv. Mater. 20 42Google Scholar

    [37]

    Steinhart M, Wendorff J H, Greiner A, Wehrspohn R B, Nielsch K, Schilling J, Choi J, Gösele U 2002 Science 296 1997Google Scholar

    [38]

    Ding G, Li C, Li X, Wu Y, Liu J, Li Y, Hu Z, Li Y 2015 Nanoscale 7 11024Google Scholar

    [39]

    Wei S, Zhang Y, Liu J, Li X, Wu Y, Wei H, Weng Y, Gao X, Li Y, Wang S D, Hu Z 2015 Adv. Mater. Interfaces 2 1500153Google Scholar

    [40]

    Zhang P, Huang H, He T, Hu Z 2012 ACS Macro Lett. 1 1007Google Scholar

    [41]

    Li X H, Shen X Z, Gao X, Weng Y Y 2017 RSC Adv. 7 55885Google Scholar

    [42]

    Ajayan P M, Lijima S 1993 Nature 361 333Google Scholar

    [43]

    Ugarte D, Stöckli T, Bonard J M, Châtelain A, Heer W A D 1998 Appl. Phys. A 67 101

    [44]

    Nakamura A, Koyama T, Miyata Y, Shinohara H 2016 J. Phys. Chem. C 120 4647Google Scholar

    [45]

    Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321Google Scholar

    [46]

    Bai Z, Liu Y, Li T, Li X, Liu B, Liu B, Lu D 2016 J. Phys. Chem. C 120 27820Google Scholar

    [47]

    Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987Google Scholar

    [48]

    Zhou S, Sheng J, Yang Z, Zhang X 2018 J. Mater. Chem. A 6 8763Google Scholar

    [49]

    Li X, Bai Z, Liu B, Li T, Lu D 2017 J. Phys. Chem. C 121 14443Google Scholar

    [50]

    Jen T H, Wang K K , Chen S A 2012 Polymer 53 5850Google Scholar

    [51]

    Chen S H, Su A C, Chen S A 2005 J. Phys. Chem. B 109 10067Google Scholar

    [52]

    Torkkeli M, Galbrecht F, Scherf U, Knaapila M 2015 Macromolecules 48 5244Google Scholar

    [53]

    Sheng J, Zhou S, Yang Z, Zhang X 2018 Langmuir 34 3678Google Scholar

    [54]

    Wang M, Li L, Zhou S, Tang R, Yang Z, Zhang X 2018 Langmuir 34 10702Google Scholar

  • [1] Qin Cheng-Long, Luo Xiang-Yan, Xie Quan, Wu Qiao-Dan. Molecular dynamics study of thermal conductivity of carbon nanotubes and silicon carbide nanotubes. Acta Physica Sinica, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] Sun Zhi-Wei, He Yan, Tang Yuan-Zheng. Water distribution in confined space of single-wall carbon nanotube. Acta Physica Sinica, 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [3] Ye An-Na, Zhang Xiao-Hua, Yang Zhao-Hui. Redox-enhanced solid-state supercapacitor based on hydroquinone-containing gel electrolyte/ carbon nanotube arrays. Acta Physica Sinica, 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [4] Wang Chao, Chen Ying-Cai, Zhou Yan-Li, Luo Meng-Bo. Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study. Acta Physica Sinica, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [5] Li Rui, Mi Jun-Xia. Influence of hydroxyls at interfaces on motion and friction of carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [6] Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei, Cheng Cheng-Ping, Luo Cheng-Lin. Water permeability in carbon nanotube arrays. Acta Physica Sinica, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [7] Li Rui, Sun Dai-Hai. Influence of defects on friction and motion of carbon nanotube. Acta Physica Sinica, 2014, 63(5): 056101. doi: 10.7498/aps.63.056101
    [8] Ma Hua-Li, Huo Hai-Bo, Zeng Fan-Guang, Xiang Fei, Wang Gan-Ping. Synthesis of CNT film on Cu and its intense pulsed emission characteristics. Acta Physica Sinica, 2013, 62(15): 158801. doi: 10.7498/aps.62.158801
    [9] Tong Huan-Ping, Zhang Lin-Xi. The helix transition of semirigid polymer chains confined in cylinders. Acta Physica Sinica, 2012, 61(5): 058701. doi: 10.7498/aps.61.058701
    [10] Fan Bing-Bing, Wang Li-Na, Wen He-Jing, Guan Li, Wang Hai-Long, Zhang Rui. Study on the structure of water chain encapsulated in carbon nanotube by density functional theory. Acta Physica Sinica, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [11] Zhu De-Xi, Zhen Hong-Yu, Ye Hui, Liu Xu. Green polarized electroluminescence from poly (9, 9-dioctylfluorene-alt- benzothiadiazole). Acta Physica Sinica, 2009, 58(3): 2067-2071. doi: 10.7498/aps.58.2067
    [12] Wang Lei, Zhang Zhong-Qiang, Zhang Hong-Wu. Electrowetting in double-walled carbon nanotubes: molecular dynamics simulations. Acta Physica Sinica, 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
    [13] Xie Fang, Zhu Ya-Bo, Zhang Zhao-Hui, Zhang Lin. Molecular dynamics simulation of multi-wall carbon nanotube oscillators. Acta Physica Sinica, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [14] Zhang Guo-Ying, Zhang Hui, Wei Dan, He Jun-Qi. Electronic theory studies of aluminum matrix composite reinforced by carbon nanotube. Acta Physica Sinica, 2007, 56(3): 1581-1584. doi: 10.7498/aps.56.1581
    [15] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [16] Bao Wen-Xing, Zhu Chang-Chun. Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [17] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [18] Chen Chuan-Sheng, Chen Xiao-Hua, Li Xue-Qian, Zhang Gang, Yi Guo-Jun, Zhang Hua, Hu Jing. Carbon nanotubes reinforced nickel-phosphorus base composite coating. Acta Physica Sinica, 2004, 53(2): 531-536. doi: 10.7498/aps.53.531
    [19] Song Jiao-Hua, Zhang Geng-Min, Zhang Zhao-Xiang, Sun Ming-Yan, Xue Zeng-Quan. A study of field emission of an array of multi-walled carbon nanotubes*. Acta Physica Sinica, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [20] Zhu Ya-Bo, Wang Wan-Lu, Lian Ke-Jun. . Acta Physica Sinica, 2002, 51(10): 2335-2339. doi: 10.7498/aps.51.2335
Metrics
  • Abstract views:  7371
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2018
  • Accepted Date:  29 November 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回