Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical conductivity and infrared ray photoconductivity for lattice distorted SmNiO3 perovskite oxide film

Hu Hai-Yang Chen Ji-Kun Shao Fei Wu Yong Meng Kang-Kang Li Zhi-Peng Miao Jun Xu Xiao-Guang Wang Jia-Ou Jiang Yong

Citation:

Electrical conductivity and infrared ray photoconductivity for lattice distorted SmNiO3 perovskite oxide film

Hu Hai-Yang, Chen Ji-Kun, Shao Fei, Wu Yong, Meng Kang-Kang, Li Zhi-Peng, Miao Jun, Xu Xiao-Guang, Wang Jia-Ou, Jiang Yong
PDF
HTML
Get Citation
  • The metal-to-insulator transitions achieved in rare-earth nickelate (RNiO3) receive considerable attentions owning to their potential applications in areas such as temperature sensors, non-volatile memory devices, electronic switches, etc. In contrast to conventional semiconductors, the RNiO3 is a typical electron correlation system, in which the electronic band structure is dominant by the Coulomb energy relating to the d-band and its hybridized orbitals. It was previously pointed out that lattice distortion can largely influence the electronic band structures and further significantly affect the electronic transportation properties, such as the resistivity and metal-to-insulator transition properties. Apart from directly measuring the transportation performance, the variations in the origin of carrier conduction and orbital transitions relating to the strain distortion of RNiO3 can also be reflected via their optical properties. In this work, we investigate the optical properties of samarium nickel (SmNiO3) thin films when lattice distortions are induced by interfacial strains. To introduce the interfacial strain, the SmNiO3 thin films are epitaxially grown on the strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3) single crystal substrates by using the pulsed laser deposition. A bi-axial tensile distortion happens when the SmNiO3 thin films are grown on SrTiO3 due to the smaller lattice constant of SmNiO3 than that of SrTiO3, while the one grown on LaAlO3 is strain-relaxed. We measure the infrared radiation (IR) transmission spectra of the SmNiO3 thin films grown on various substrates. The obtained IR transmission spectra are fitted by a Drude-Lorentz model and further converted into the curves of photoconductivity versus IR frequency. Comparing the difference in photoconductance between low frequency and high frequency reflects the two different origins of the conduction, which are related to intraband transition and band-to-band transition, respectively. The smaller photoconductance is observed for SmNiO3/SrTiO3 than for SmNiO3/LaAlO3 at low frequency, and this is expected to be caused by the suppression of free carriers as reported previously for tensile distorted SmNiO3. The consistence is obtained when further measuring the electronic transportation such as temperature-dependent electrical resistivity, as a higher resistivity is observed for SmNiO3/SrTiO3 than for SmNiO3/LaAlO3. The combination of the investigation of electrical transport with that of infrared transmission indicates that the tensile distortion in structure stabilizes the insulating phase to eliminate a pronounced metal-to-insulator transition and elevates the transition temperature. This is related to the respective twisting of the NiO6 octahedron when tensile distortion regulates the valance state of the transition metal and further opens the band gap, which is further confirmed by results of the X-ray absorption spectrum.
      Corresponding author: Chen Ji-Kun, jikunchen@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674013, 51602022).
    [1]

    Alonso J A, Martínez-Lope M J, Casais M T, García-Muñoz J L, Fernández-Díaz M T 2000 Phys. Rev. B 61 1756Google Scholar

    [2]

    Alonso J A, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G, Martínez-Lope M J, Casais M T 1999 Phys. Rev. Lett. 82 3871Google Scholar

    [3]

    Zaghrioui M, Bulou A, Lacorre P, Laffez P 2001 Phys. Rev. B 64 120

    [4]

    Staub U, Meijer G I, Fauth F, Allenspach R, Bednorz J G, Karpinski J 2002 Phys. Rev. Lett 88 345

    [5]

    Medarde M L 1999 J. Phys.: Condens. Matter 9 1679

    [6]

    Ihzaz N, Oumezzine M, Kreisel J, Vincent H, Pignard S 2010 Chem.Vap. Deposition 14 111

    [7]

    Alonso J A, Martínez-Lope M J, Casais M T, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G 2001 Phys. Rev. B 64 115

    [8]

    Lacorre P, Torrance J B, Pannetier J, Nazzal A I, Wang P W, Huang T C 1991 J. Solid State Chem. 91 225Google Scholar

    [9]

    García-Muñoz J L, Rodríguez-Carvajal J, Lacorre P, Torrance J B 1992 Phys. Rev. B: Condens. Matter 46 4414Google Scholar

    [10]

    Zaanen J, Sawatzky G A, Allen J W 1985 Phys. Rev. Lett. 55 418Google Scholar

    [11]

    Torrance J B, Lacorre P, Nazzal A I, Ansaldo E J, Niedermayer Ch 1992 Phys. Rev. B 45 8209

    [12]

    Conchon F, Boulle A, Guinebretière R, Dooryhée E, Hodeau J L, Girardot C 2008 J. Phys.: Condens. Matter 20 145216Google Scholar

    [13]

    Kiri P, Hyett G, Binions R 2010 Adv. Mater. Lett. 44 86

    [14]

    Frand G, Bohnke O, Lacorre P, Fourquet J L, Carré A, Eid B 1995 J. Solid State Chem. 120 157Google Scholar

    [15]

    Compton A H 1931 Butsuri 5 75

    [16]

    Conchon F, Boulle A, Girardot C, Pignard S, Guinebretière R, Dooryhée E 2007 J. Phys. D: Appl. Phys. 40 4872Google Scholar

    [17]

    Li Z, Zhou Y, Qi H, Shi N N, Pan Q, Lu M 2016 Adv. Mater. 28 9117Google Scholar

    [18]

    Kaul A, Gorbenko O, Graboy I, Novojilov M, Bosak A, Kamenev A 2002 MRS Proceedings 755 37

    [19]

    Demazeau G, Marbeuf A, Pouchard M, Hagenmuller P 1971 J. Solid State Chem. 3 582Google Scholar

    [20]

    Jaramillo R, Schoofs F, Ha S D, Ramanathan S 2013 J. Mater. Chem. C 1 2455Google Scholar

    [21]

    Catalan G, Bowman R M, Gregg J M 2000 J. Appl. Phys. 87 606Google Scholar

    [22]

    Catalan G, Bowman R M, Gregg J M 2000 Phys. Rev. B 62 7892Google Scholar

    [23]

    Novojilov M A, Gorbenko O Y, Graboy I E, Kaul A R, Zandbergen H W, Babushkina N A 2000 Appl. Phys. Lett. 76 2041Google Scholar

    [24]

    Gorbenko O Y, Samoilenkov S V, Graboy I E, Kaul A R 2002 Cheminform 33 4026

    [25]

    Ambrosini A, Hamet J F 2003 Appl. Phys. Lett. 82 727Google Scholar

    [26]

    Conchon F, Boulle A, Guinebretière R, Girardot C, Pignard S, Kreisel J 2007 Appl. Phys. Lett. 91 113

    [27]

    Kumar A, Singh P, Kaur D, Jesudasan J, Raychaudhuri P 2006 J. Phys. D: Appl. Phys. 39 5310Google Scholar

    [28]

    Nikulin I V, Novojilov M A, Kaul A R, Mudretsova S N, Kondrashov S V 2004 Mater. Res. Bull. 39 775Google Scholar

    [29]

    Adler D 1968 Rev. Mod. Phys. 40 714Google Scholar

    [30]

    Ha S D, Otaki M, Jaramillo R, Podpirka A, Ramanathan S 2012 J. Solid State Chem. 190 233Google Scholar

    [31]

    Aydogdu G H, Ha S D, Viswanath B, Ramanathan S 2011 J. Appl. Phys. 109 1601

    [32]

    Wang Y, Dai M, Ho M T, Wielunski L S, Chabal Y J 2007 Appl. Phys. Lett. 90 3101

    [33]

    Deshpande A, Inman R, Jursich G, Takoudis C 2006 Microelectron. Eng. 83 547Google Scholar

    [34]

    Hartinger C, Mayr F, Loidl A, Kopp T 2006 Phys. Rev. B 73 024408Google Scholar

    [35]

    Dresselhaus M S http://web.mit.edu/afs/athena/course/6/6.732/www/opt.pdf [2018-4-29]

    [36]

    Kuzmenko A B http://optics.unige.ch/alexey/reffit.html [2018-4-29]

    [37]

    Ruppen J, Teyssier J, Peil O E, Catalano S, Gibert M, Mravlje J, van der Marel D 2015 Phys. Rev. B 92 155145Google Scholar

    [38]

    Ha S D, Jaramillo R, Silevitch D M, Schoofs F, Kerman K, Baniecki J D, Ramanathan S 2013 Phys. Rev. B 87 125150Google Scholar

    [39]

    Jaramillo R, Ha S D, Silevitch D M, Ramanathan S 2014 Nat. Phys. 10 304Google Scholar

    [40]

    Kleiner K, Melke J, Merz M, Jakes P, Nage P, Schuppler S, Liebau V, Ehrenberg H 2015 ACS Appl. Mater. Interfaces 7 19589Google Scholar

    [41]

    Mossanek R J O, Domínguez-Cañizares G, Gutiérrez A, Abbate M, Díaz-Fernández D, Soriano L 2013 J. Phys.: Condens. Matter 25 495506Google Scholar

  • 图 1  SmNiO3晶体的钙钛矿结构 (a) 结构的多面体形式; (b) 结构的球棍形式

    Figure 1.  Perovskite structure of SmNiO3 crystal: (a) Polyhedron form of structure; (b) the stick form of structure.

    图 2  不同基底上生长的SmNiO3薄膜的XRD 图谱和 RSM 图 (a) SrTiO3 (XRD); (b) LaAlO3 (XRD); (c) SrTiO3 (RSM); (d) LaAlO3 (RSM)

    Figure 2.  XRD patterns and (114) RSM diagram of SmNiO3 films grown on different substrates: (a) SrTiO3 (XRD); (b) LaAlO3 (XRD); (c) SrTiO3 (RSM); (d) LaAlO3 (RSM).

    图 3  不同基体上的SNO薄膜的电阻率-温度曲线 (a) SrTiO3; (b) LaAlO3

    Figure 3.  Resistivity temperature curves of SNO thin films on different substrates: (a) SrTiO3; (b) LaAlO3.

    图 4  不同基体上的SmNiO3薄膜透射率的拟合结果 (a) LaAlO3, (b) SrTiO3 ; 不同基体上的SmNiO3薄膜的光电导率实部与波数的关系曲线 (c) LaAlO3, (d) SrTiO3

    Figure 4.  Fitting results of transmittance of SmNiO3 thin films on different substrates: (a) LaAlO3, (b) SrTiO3; the relation curve of the real part of the optical conductivity and wave number of SmNiO3 film: (c) LaAlO3, (d) SrTiO3.

    图 5  不同衬底上的SmNiO3薄膜发生金属绝缘转变时Ni—O—Ni键角及NiO6八面体的旋转状态 (a) LaAlO3; (b) SrTiO3; (c) SmNiO3薄膜的电子能带跃迁图

    Figure 5.  The Ni—O—Ni bond angle and the rotation of NiO6 when the SmNiO3 film on different substrates transform from insulating state to metal state: (a) LaAlO3; (b) SrTiO3; (c) SmNiO3 film electron band transition diagram.

    图 6  SmNiO3/SrTiO3 (001) 和 SmNiO3/LaAlO3 (001)薄膜的元素吸收谱 (a) O元素L-边吸收谱; (b) Ni元素K-边吸收谱

    Figure 6.  Absorption spectra of SmNiO3/SrTiO3 (001) and SmNiO3/LaAlO3 (001) films: (a) K-edge absorption spectrum of O element; (b) L-edge absorption spectrum of Ni element.

    表 1  不同基体上的SmNiO3薄膜透射率的Lorentz拟合参数

    Table 1.  Lorentz fitted parameters of transmittance of SmNiO3 thin films on different substrates.

    LaAlO3 ($\omega_\infty$ = 3.36)
    #$\omega_{\rm o}$$\omega_{\rm p}$$\gamma$($\omega_{\rm p}/\omega_{\rm o}$)2$\gamma/\omega_{\rm o}$
    1−1.57 × 1041.94 × 101−6.05 × 1041.53 × 10−63.86
    26.73 × 10391.27 × 10359.41 × 10685.82 × 10−10−4.15 × 1028
    31.09 × 1034.23 × 1028.11 × 1021.52 × 10−17.46 × 10−1
    41.72 × 1033.97 × 1021.47 × 1035.34 × 10−28.52 × 10−1
    59.55 × 10147.07 × 10147.09 × 10231.51 × 10−1−2.46 × 108
    65.39 × 10149.37 × 10149.02 × 10233.38 × 10−23.70 × 108
    SrTiO3 ($\omega_\infty$ = 3.07)
    #$\omega_{\rm o}$$\omega_{\rm p}$$\gamma$($\omega_{\rm p}/\omega_{\rm o}$)2$\gamma/\omega_{\rm o}$
    17.04 × 1019.99 × 1019.952.021.41 × 10−1
    21.50 × 1029.98 × 1019.734.43 × 10−16.49 × 10−2
    33.64 × 10431.80 × 1037−1.00 × 10703.38 × 10−12−2.97 × 1029
    41.18 × 1012.80 × 1024.635.61 × 1023.91 × 10−1
    54.27 × 1022.56 × 1023.50 × 1013.61 × 10−18.20 × 10−2
    63.75 × 1022.55 × 1024.06 × 1014.63 × 10−11.08 × 10−1
    74.29 × 1093.99 × 1098.32 × 10123.54 × 10−29.20 × 102
    82.68 × 1082.88 × 1091.00 × 10141.81 × 10−19.91 × 103
    93.28 × 1093.11 × 1092.30 × 10104.29 × 10−23.36 × 103
    104.70 × 1092.85 × 1099.42 × 10138.26 × 10−26.58 × 103
    DownLoad: CSV
  • [1]

    Alonso J A, Martínez-Lope M J, Casais M T, García-Muñoz J L, Fernández-Díaz M T 2000 Phys. Rev. B 61 1756Google Scholar

    [2]

    Alonso J A, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G, Martínez-Lope M J, Casais M T 1999 Phys. Rev. Lett. 82 3871Google Scholar

    [3]

    Zaghrioui M, Bulou A, Lacorre P, Laffez P 2001 Phys. Rev. B 64 120

    [4]

    Staub U, Meijer G I, Fauth F, Allenspach R, Bednorz J G, Karpinski J 2002 Phys. Rev. Lett 88 345

    [5]

    Medarde M L 1999 J. Phys.: Condens. Matter 9 1679

    [6]

    Ihzaz N, Oumezzine M, Kreisel J, Vincent H, Pignard S 2010 Chem.Vap. Deposition 14 111

    [7]

    Alonso J A, Martínez-Lope M J, Casais M T, García-Muñoz J L, Fernández-Díaz M T, Aranda M A G 2001 Phys. Rev. B 64 115

    [8]

    Lacorre P, Torrance J B, Pannetier J, Nazzal A I, Wang P W, Huang T C 1991 J. Solid State Chem. 91 225Google Scholar

    [9]

    García-Muñoz J L, Rodríguez-Carvajal J, Lacorre P, Torrance J B 1992 Phys. Rev. B: Condens. Matter 46 4414Google Scholar

    [10]

    Zaanen J, Sawatzky G A, Allen J W 1985 Phys. Rev. Lett. 55 418Google Scholar

    [11]

    Torrance J B, Lacorre P, Nazzal A I, Ansaldo E J, Niedermayer Ch 1992 Phys. Rev. B 45 8209

    [12]

    Conchon F, Boulle A, Guinebretière R, Dooryhée E, Hodeau J L, Girardot C 2008 J. Phys.: Condens. Matter 20 145216Google Scholar

    [13]

    Kiri P, Hyett G, Binions R 2010 Adv. Mater. Lett. 44 86

    [14]

    Frand G, Bohnke O, Lacorre P, Fourquet J L, Carré A, Eid B 1995 J. Solid State Chem. 120 157Google Scholar

    [15]

    Compton A H 1931 Butsuri 5 75

    [16]

    Conchon F, Boulle A, Girardot C, Pignard S, Guinebretière R, Dooryhée E 2007 J. Phys. D: Appl. Phys. 40 4872Google Scholar

    [17]

    Li Z, Zhou Y, Qi H, Shi N N, Pan Q, Lu M 2016 Adv. Mater. 28 9117Google Scholar

    [18]

    Kaul A, Gorbenko O, Graboy I, Novojilov M, Bosak A, Kamenev A 2002 MRS Proceedings 755 37

    [19]

    Demazeau G, Marbeuf A, Pouchard M, Hagenmuller P 1971 J. Solid State Chem. 3 582Google Scholar

    [20]

    Jaramillo R, Schoofs F, Ha S D, Ramanathan S 2013 J. Mater. Chem. C 1 2455Google Scholar

    [21]

    Catalan G, Bowman R M, Gregg J M 2000 J. Appl. Phys. 87 606Google Scholar

    [22]

    Catalan G, Bowman R M, Gregg J M 2000 Phys. Rev. B 62 7892Google Scholar

    [23]

    Novojilov M A, Gorbenko O Y, Graboy I E, Kaul A R, Zandbergen H W, Babushkina N A 2000 Appl. Phys. Lett. 76 2041Google Scholar

    [24]

    Gorbenko O Y, Samoilenkov S V, Graboy I E, Kaul A R 2002 Cheminform 33 4026

    [25]

    Ambrosini A, Hamet J F 2003 Appl. Phys. Lett. 82 727Google Scholar

    [26]

    Conchon F, Boulle A, Guinebretière R, Girardot C, Pignard S, Kreisel J 2007 Appl. Phys. Lett. 91 113

    [27]

    Kumar A, Singh P, Kaur D, Jesudasan J, Raychaudhuri P 2006 J. Phys. D: Appl. Phys. 39 5310Google Scholar

    [28]

    Nikulin I V, Novojilov M A, Kaul A R, Mudretsova S N, Kondrashov S V 2004 Mater. Res. Bull. 39 775Google Scholar

    [29]

    Adler D 1968 Rev. Mod. Phys. 40 714Google Scholar

    [30]

    Ha S D, Otaki M, Jaramillo R, Podpirka A, Ramanathan S 2012 J. Solid State Chem. 190 233Google Scholar

    [31]

    Aydogdu G H, Ha S D, Viswanath B, Ramanathan S 2011 J. Appl. Phys. 109 1601

    [32]

    Wang Y, Dai M, Ho M T, Wielunski L S, Chabal Y J 2007 Appl. Phys. Lett. 90 3101

    [33]

    Deshpande A, Inman R, Jursich G, Takoudis C 2006 Microelectron. Eng. 83 547Google Scholar

    [34]

    Hartinger C, Mayr F, Loidl A, Kopp T 2006 Phys. Rev. B 73 024408Google Scholar

    [35]

    Dresselhaus M S http://web.mit.edu/afs/athena/course/6/6.732/www/opt.pdf [2018-4-29]

    [36]

    Kuzmenko A B http://optics.unige.ch/alexey/reffit.html [2018-4-29]

    [37]

    Ruppen J, Teyssier J, Peil O E, Catalano S, Gibert M, Mravlje J, van der Marel D 2015 Phys. Rev. B 92 155145Google Scholar

    [38]

    Ha S D, Jaramillo R, Silevitch D M, Schoofs F, Kerman K, Baniecki J D, Ramanathan S 2013 Phys. Rev. B 87 125150Google Scholar

    [39]

    Jaramillo R, Ha S D, Silevitch D M, Ramanathan S 2014 Nat. Phys. 10 304Google Scholar

    [40]

    Kleiner K, Melke J, Merz M, Jakes P, Nage P, Schuppler S, Liebau V, Ehrenberg H 2015 ACS Appl. Mater. Interfaces 7 19589Google Scholar

    [41]

    Mossanek R J O, Domínguez-Cañizares G, Gutiérrez A, Abbate M, Díaz-Fernández D, Soriano L 2013 J. Phys.: Condens. Matter 25 495506Google Scholar

  • [1] Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping. Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer. Acta Physica Sinica, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [2] Fang Xiao-Nan, Wei Qin, Sui Na-Na, Kong Zhi-Yong, Liu Jing, Du Yan-Ling. Spacer-layer-tunable ferromagnetic half-metal-ferromagnetic insulator transition in SrVO3/SrTiO3 superlattice. Acta Physica Sinica, 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [3] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [4] Li Yun, Lu Wen-Jian. Tuning metal-insulator transition in δ-doped La:SrTiO3 superlattice by varying doping dimensionality and concentration. Acta Physica Sinica, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [5] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [6] Dao Liu-Yun, Zhang Zi-Tao, Xiao Yu-Tong, Zhang Ming-Hao, Wang Shuai, He Jun, Jia Jin-Shan, Yu Le-Jun, Sun Bo, Xiong Chang-Min. Light-enhanced gating effect on the persistent photoconductivity at LaAlO3/SrTiO3 interface. Acta Physica Sinica, 2019, 68(6): 067302. doi: 10.7498/aps.68.20182204
    [7] Xu Bing, Qiu Zi-Yang, Yang Run, Dai Yao-Min, Qiu Xiang-Gang. Optical properties of topological semimetals. Acta Physica Sinica, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [8] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [9] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [10] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [11] Jiang Zhao, Chen Xue-Kang. Study on controlling the stress in flexible Al/PI film by interface alloying. Acta Physica Sinica, 2015, 64(21): 216802. doi: 10.7498/aps.64.216802
    [12] Wang Huai-Qiang, Yang Yun-You, Ju Yan, Sheng Li, Xing Ding-Yu. Phase transition of ultrathin Bi2Se3 film sandwiched between ferromagnetic insulators. Acta Physica Sinica, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [13] Wang Chang-Lei, Tian Zhen, Xing Qi-Rong, Gu Jian-Qiang, Liu Feng, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy. Acta Physica Sinica, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [14] Chen Wei-Lan, Gu Pei-Fu, Wang Ying, Zhang Yue-Guang, Liu Xu. Analysis of the thermal stress in infrared films. Acta Physica Sinica, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [15] Ma Jian-Hua, Sun Jing-Lan, Meng Xiang-Jian, Lin Tie, Shi Fu-Wen, Chu Jun-Hao. Dielectric and interface characteristics of SrTiO3 with a MIS structure. Acta Physica Sinica, 2005, 54(3): 1390-1395. doi: 10.7498/aps.54.1390
    [16] YUAN XIAN-ZHANG, PEI HUI-YUAN, LU WEI, LI NING, SHI GUO-LIANG, FANG JIA-XIONG, SHEN XUE-CHU. INFRAREDPHOTOCONDUCTIVITYSPECTRAOFDEEPLEVELS IN Zn0.04Cd0.96Te. Acta Physica Sinica, 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [17] CHEN YAN-SONG. EXPERIMENTAL STUDY ON INFRARED PHOTORESPONSE OF FERROELECTRIC THIN FILM DETECTOR PbZrTiO3. Acta Physica Sinica, 1998, 47(8): 1378-1382. doi: 10.7498/aps.47.1378
    [18] Liu Kun, Zhu Jun-Hao, Chen Shi-Wei, Zhao Jun, Tang Ding-Yuan. . Acta Physica Sinica, 1995, 44(7): 1137-1140. doi: 10.7498/aps.44.1137
    [19] ZHAO YONG, ZHUGE XIANG-BIN, HE YE-YE. INSULATOR-METAL TRANSITION AND SUPERCONDUCTI- VITY INDUCED BY HOLE DOPING IN Y1-xCaxBa2Cu3O6 SYSTEM. Acta Physica Sinica, 1992, 41(7): 1151-1156. doi: 10.7498/aps.41.1151
    [20] YANG YONG-HONG, XING DING-YU, GONG CHANG-DE. METAL-INSULATOR TRANSITION IN YBa2Cu3O7-x. Acta Physica Sinica, 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
Metrics
  • Abstract views:  10966
  • PDF Downloads:  183
  • Cited By: 0
Publishing process
  • Received Date:  09 August 2018
  • Accepted Date:  19 November 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回