搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电协同增强的场效应对LaAlO3/SrTiO3界面中持续光电导的调控

刀流云 张子涛 肖煜同 张明昊 王帅 何珺 贾金山 余乐军 孙波 熊昌民

引用本文:
Citation:

光电协同增强的场效应对LaAlO3/SrTiO3界面中持续光电导的调控

刀流云, 张子涛, 肖煜同, 张明昊, 王帅, 何珺, 贾金山, 余乐军, 孙波, 熊昌民

Light-enhanced gating effect on the persistent photoconductivity at LaAlO3/SrTiO3 interface

Dao Liu-Yun, Zhang Zi-Tao, Xiao Yu-Tong, Zhang Ming-Hao, Wang Shuai, He Jun, Jia Jin-Shan, Yu Le-Jun, Sun Bo, Xiong Chang-Min
PDF
HTML
导出引用
  • LaAlO3/SrTiO3异质结界面体系具有新奇的二维自由电子气现象、暂态光电导效应、持续光电导效应等丰富的光电性质, 是近年来科学界研究的热点之一. 本文研究了场效应对LaAlO3/SrTiO3界面光电导效应的调控, 发现光电协同增强的场效应可以使得LaAlO3/SrTiO3界面产生显著的持续光电导效应, 进一步研究发现: 在光电协同效应的影响下, 随着负的背栅门电压的增加, 持续光电导的数值增大, 在–70 V附近达到极值; 随着负的背栅门电压处理时间的增加, 持续光电导的数值单调增加. LaAlO3/SrTiO3异质结中这种场增强的持续光电导效应可为多参数可调的光电子记忆器件的研发提供参考依据.
    The LaAlO3/SrTiO3 interface has been one of the topics studied most during the past few years due to its many intriguing properties such as the two-dimensional electron gas, transient photoconductivity (PC), persistent photoconductivity (PPC), and the coexistence of the PC and PPC. Of them, the PPC effect is the most interesting because of its potential application in exploring the photoelectric memory devices. Until now, tuning of the PPC of the LaAlO3/SrTiO3 interface under the external stimuli, such as electric or magnetic field is less addressed, while the relevant knowledge is of great value for exploring the memory devices with multifunctionality. In this paper, we report on an electric field control of the persistent PPC at the LaAlO3/SrTiO3 interface. Our LaAlO3/SrTiO3 heterojunction is fabricated by growing the LaAlO3 film on the SrTiO3 substrates through using pulsed laser deposition. The substrate temperature is kept at 750 ℃ and the partial pressure of oxygen is maintained at 3.3 × 10–5 Torr (1 Torr = 1.33322 × 102 Pa) during the deposition. The thickness of LaAlO3 film is controlled to be about 2 nm by setting an appropriate deposition time. The X-ray diffraction experiment confirms that the LAO film is well epitaxial and of single phase. To guarantee the good electric contacts, Al electrodes are soldered at the LaAlO3/SrTiO3 interface and the back side of the SrTiO3 respectively by ultrasonic welding. We find that the PPC at the LaAlO3/SrTiO3 interface can be significantly reinforced and modulated by the light-enhanced gating effects: that is, after a negative back gate voltage processing combined with a simultaneous light illumination, the LaAlO3/SrTiO3 interface can exhibit a notable PPC effect. And the PPC effect increases as the negative gate voltage increases, and then attains a maximum at a back gate voltage of about –70 V. Further increase of the negative gate voltage can cause the PPC to decrease. Additionally, the PPC is also found to increase monotonically with increasing the gating time. The present result can be understood in terms of the migration of the oxygen vacancies under the influence of photoelectric synergetic effect. This field enhanced PPC effects at the LaAlO3/SrTiO3 interface may find their applications in designing the photoelectric memory devices with electric tunability.
      通信作者: 熊昌民, cmxiong@bnu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0405101)和国家自然科学基金(批准号: 11474024)资助的课题.
      Corresponding author: Xiong Chang-Min, cmxiong@bnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405101) and the National Natural Science Foundation of China (Grant No. 11474024).
    [1]

    Ohtomoa A, Hwang H Y 2004 Nature 427 423Google Scholar

    [2]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [3]

    Richter C, Boschker H, Dietsche W, Fillis-Tsirakis E, Jany R, Loder F, Kourkoutis L F, Muller D A, Kirtley J R, Schneider C W, Mannhart J 2013 Nature 502 528Google Scholar

    [4]

    Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B, Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802Google Scholar

    [5]

    Caviglia A D, Gariglio S, Cancellieri C, Sacépé B, Fête A, Reyren N, Gabay M, Morpurgo A F, Triscone J M 2010 Phys. Rev. Lett. 105 236802Google Scholar

    [6]

    Liu Z Q, Li C J, Lu W M, Huang X H, Huang Z, Zeng S W, Qiu X P, Huang L S, Annadi A, Chen J S, Coey J M D, Venkatesan T, Ariando 2013 Phys. Rev. B 87 201102(R)Google Scholar

    [7]

    Herranz G, Basletić M, Bibes M, Carrétéro C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzić A, Broto J M, Barthélémy A, Fert A 2007 Phys. Rev. Lett. 98 216803Google Scholar

    [8]

    Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D 2007 Phys. Rev. B 75 121404Google Scholar

    [9]

    Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A, Beasley M R 2007 Phys. Rev. Lett. 98 196802Google Scholar

    [10]

    Zhang H R, Zhang Y, Zhang H, Zhang J, Shen X, Guan X X, Chen Y Z, Yu R C, Pryds N, Chen Y S, Shen B G , Sun J R 2017 Phys. Rev. B 96 195167Google Scholar

    [11]

    Guduru V K, Granados del Aguila A, Wenderich S, Kruize M K, McCollam A, Christianen P C M, Zeitler U, Brinkman A, Rijnders G, Hilgenkamp H, Maan J C 2013 Appl. Phys. Lett. 102 051604Google Scholar

    [12]

    Lu H L, Liao Z M, Zhang L, Yuan W T, Wang Y, Ma X M, Yu D P 2013 Sci. Rep. 3 2870Google Scholar

    [13]

    Tarun M C, Selim F A, McCluskey M D 2013 Phys. Rev. Lett. 111 187403Google Scholar

    [14]

    Tebano A, Fabbri E, Pergolesi D, Balestrino G, Traversa E 2012 ACS Nano 6 1278Google Scholar

    [15]

    Ristic Z, di Capua R, Chiarella F, de Luca G M, Maggio-Aprile I, Radovic M, Salluzzo M 2012 Phys. Rev. B 86 045127Google Scholar

    [16]

    Rastogi A, Pulikkotil J J, Budhani R C 2014 Phys. Rev. B 89 125127Google Scholar

    [17]

    Jin K X, Lin W, Luo B C, Wu T 2012 Sci. Rep. 5 8778Google Scholar

    [18]

    Lei Y, Li Y, Chen Y Z, Xie Y W, Chen Y S, Wang S H, Wang J, Shen B G, Pryds N, Hwang H Y, Sun J R 2014 Nat. Commun. 5 5554Google Scholar

    [19]

    Ravikumar V, Wolf D, Dravid V P 1995 Phys. Rev. Lett. 74 960Google Scholar

    [20]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

  • 图 1  LAO/STO测量接线示意图

    Fig. 1.  Sketch of the experimental setup of the LAO/STO device.

    图 2  LAO/STO样品的界面R-T特性曲线

    Fig. 2.  R-T curve measured at LAO/STO interface.

    图 3  LAO/STO界面电阻R与门电压Vgate随时间t的变化 (a)在不同光照下Rt的变化; (b)Vgatet的变化

    Fig. 3.  Time dependence of resistance R and gate voltage Vgate of LAO/STO: (a) Time dependence of R under different light illumination; (b) time dependence of gate voltage.

    图 4  光照对LAO/STO界面电阻R的影响, 图中“on”和“off”分别代表光照的开和关

    Fig. 4.  Effect of light illumination on the LAO/STO resistance. “on” and “off” represent the switch on and off of the illumination, respectively.

    图 5  LAO/STO界面Rt的变化, 其中测量期间, 门电压或光照来回“开”和“关”; 图中, “L”代表加光照, “U”代表加电压; “on”和“off”分别代表门电压或光照的开和关; 内插图为830—1460 s区间的放大图

    Fig. 5.  R of the LAO/STO interface as a function of response time while the gate voltage (marked by “U”) and light illumination (marked by “L”) is switched on and off. Inset is a close view of the R-time curve between 830 s and 1460 s.

    图 6  LAO/STO界面R分别经不同栅压处理后的随t变化, 其中测量期间, 门电压或光照来回“开”和“关” (图中, “L”代表加光照, “U”代表加电压; “on”和“off”分别代表门电压或光照的开和关) (a) –40 V; (b) –60 V; (c) –70 V; (d) –80 V

    Fig. 6.  Time dependences of R of the LAO/STO interface after the processing of various gate voltages while the gate voltages (marked by “U”) and light illumination (marked by “L”) are switched on and off: (a) –40 V; (b) –60 V; (c) –70 V; (d) –80 V.

    图 7  PPC值随Vgate的变化, 其中内插图为RnVgate的变化

    Fig. 7.  Relationship between the PPC value and gate voltage (Vgate). Inset is the dependence of Rn on Vgate.

    图 8  门电压的处理时间td对PPC值的影响关系, 插图为Rntd的变化关系

    Fig. 8.  The PPC value as a function of gating time td. Inset is the dependence of Rn on td.

  • [1]

    Ohtomoa A, Hwang H Y 2004 Nature 427 423Google Scholar

    [2]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [3]

    Richter C, Boschker H, Dietsche W, Fillis-Tsirakis E, Jany R, Loder F, Kourkoutis L F, Muller D A, Kirtley J R, Schneider C W, Mannhart J 2013 Nature 502 528Google Scholar

    [4]

    Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B, Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802Google Scholar

    [5]

    Caviglia A D, Gariglio S, Cancellieri C, Sacépé B, Fête A, Reyren N, Gabay M, Morpurgo A F, Triscone J M 2010 Phys. Rev. Lett. 105 236802Google Scholar

    [6]

    Liu Z Q, Li C J, Lu W M, Huang X H, Huang Z, Zeng S W, Qiu X P, Huang L S, Annadi A, Chen J S, Coey J M D, Venkatesan T, Ariando 2013 Phys. Rev. B 87 201102(R)Google Scholar

    [7]

    Herranz G, Basletić M, Bibes M, Carrétéro C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzić A, Broto J M, Barthélémy A, Fert A 2007 Phys. Rev. Lett. 98 216803Google Scholar

    [8]

    Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D 2007 Phys. Rev. B 75 121404Google Scholar

    [9]

    Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A, Beasley M R 2007 Phys. Rev. Lett. 98 196802Google Scholar

    [10]

    Zhang H R, Zhang Y, Zhang H, Zhang J, Shen X, Guan X X, Chen Y Z, Yu R C, Pryds N, Chen Y S, Shen B G , Sun J R 2017 Phys. Rev. B 96 195167Google Scholar

    [11]

    Guduru V K, Granados del Aguila A, Wenderich S, Kruize M K, McCollam A, Christianen P C M, Zeitler U, Brinkman A, Rijnders G, Hilgenkamp H, Maan J C 2013 Appl. Phys. Lett. 102 051604Google Scholar

    [12]

    Lu H L, Liao Z M, Zhang L, Yuan W T, Wang Y, Ma X M, Yu D P 2013 Sci. Rep. 3 2870Google Scholar

    [13]

    Tarun M C, Selim F A, McCluskey M D 2013 Phys. Rev. Lett. 111 187403Google Scholar

    [14]

    Tebano A, Fabbri E, Pergolesi D, Balestrino G, Traversa E 2012 ACS Nano 6 1278Google Scholar

    [15]

    Ristic Z, di Capua R, Chiarella F, de Luca G M, Maggio-Aprile I, Radovic M, Salluzzo M 2012 Phys. Rev. B 86 045127Google Scholar

    [16]

    Rastogi A, Pulikkotil J J, Budhani R C 2014 Phys. Rev. B 89 125127Google Scholar

    [17]

    Jin K X, Lin W, Luo B C, Wu T 2012 Sci. Rep. 5 8778Google Scholar

    [18]

    Lei Y, Li Y, Chen Y Z, Xie Y W, Chen Y S, Wang S H, Wang J, Shen B G, Pryds N, Hwang H Y, Sun J R 2014 Nat. Commun. 5 5554Google Scholar

    [19]

    Ravikumar V, Wolf D, Dravid V P 1995 Phys. Rev. Lett. 74 960Google Scholar

    [20]

    Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar

  • [1] 樊译颉, 张阮, 陈宇, 蔡星汉. CrCl3隧穿磁阻的界面效应与多场效应调控. 物理学报, 2024, 73(13): 137302. doi: 10.7498/aps.73.20240431
    [2] 乔宇杰, 张子涛, 邵婷娜, 赵强, 陈星宇, 陈美慧, 朱芳慧, 聂家财. LaAlO3/SrTiO3异质界面磁场调控的反常金属态. 物理学报, 2023, 72(13): 137302. doi: 10.7498/aps.72.20230410
    [3] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响. 物理学报, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [4] 陈许敏, 叶盼, 王继光, 霍德璇, 曹东兴. 钙钛矿超晶格SrTiO3/BaTiO3的挠曲电效应. 物理学报, 2022, 71(20): 206302. doi: 10.7498/aps.71.20220988
    [5] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [6] 息剑峰, 李宝河, 刘丹, 李熊, 耿爱丛, 李笑. LaAlO3/SrTiO3界面增强光伏效应. 物理学报, 2021, 70(8): 086802. doi: 10.7498/aps.70.20201330
    [7] 刘川川, 郝飞翔, 殷月伟, 李晓光. Pt/BiFeO3/Nb:SrTiO3异质结的光伏效应和光调控整流特性. 物理学报, 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [8] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [9] 何冬梅, 彭斌, 张万里, 张文旭. 掺铌SrTiO3中的逆自旋霍尔效应. 物理学报, 2019, 68(10): 106101. doi: 10.7498/aps.68.20190118
    [10] 阮璐风, 王磊, 孙得彦. Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响. 物理学报, 2017, 66(18): 187301. doi: 10.7498/aps.66.187301
    [11] 刘琳, 王永田. 光照对HF/Fe(NO3)3溶液中制备硅纳米线的作用研究. 物理学报, 2015, 64(14): 148201. doi: 10.7498/aps.64.148201
    [12] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析. 物理学报, 2013, 62(19): 197201. doi: 10.7498/aps.62.197201
    [13] 王兰喜, 陈学康, 吴敢, 曹生珠, 尚凯文. 晶界对金刚石紫外探测器时间响应性能的影响. 物理学报, 2012, 61(3): 038101. doi: 10.7498/aps.61.038101
    [14] 施卫, 马湘蓉, 薛红. 半绝缘GaAs光电导开关的瞬态热效应. 物理学报, 2010, 59(8): 5700-5705. doi: 10.7498/aps.59.5700
    [15] 秦毅, 张辉, 谈松林, 刘婷, 张鹏翔. [(SrTiO3)n/(SrTi0.8Nb0.2O3)m]20/LaAlO3超晶格的制备及其激光感生热电电压效应. 物理学报, 2009, 58(5): 3497-3502. doi: 10.7498/aps.58.3497
    [16] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性. 物理学报, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [17] 余云鹏, 林璇英, 林舜辉, 黄 锐. 光照和偏压对微晶硅薄膜室温电导的影响. 物理学报, 2006, 55(4): 2038-2043. doi: 10.7498/aps.55.2038
    [18] 徐润, 沈明荣, 葛水兵. 溶胶-凝胶法制备BaTiO3/SrTiO3多层膜的介电增强效应. 物理学报, 2002, 51(5): 1139-1143. doi: 10.7498/aps.51.1139
    [19] 崔大复, 王焕华, 戴守愚, 周岳亮, 陈正豪, 杨国桢, 刘凤琴, 奎热西, 钱海杰. Sb掺杂SrTio3透明导电薄膜的光电子能谱研究. 物理学报, 2002, 51(1): 187-191. doi: 10.7498/aps.51.187
    [20] 屠锦洪, 詹黎. 部分相干光照明下旋转双光栅衍射干涉效应. 物理学报, 1991, 40(9): 1424-1424. doi: 10.7498/aps.40.1424
计量
  • 文章访问数:  7721
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-14
  • 修回日期:  2019-01-20
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回