搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LaAlO3/SrTiO3异质界面磁场调控的反常金属态

乔宇杰 张子涛 邵婷娜 赵强 陈星宇 陈美慧 朱芳慧 聂家财

引用本文:
Citation:

LaAlO3/SrTiO3异质界面磁场调控的反常金属态

乔宇杰, 张子涛, 邵婷娜, 赵强, 陈星宇, 陈美慧, 朱芳慧, 聂家财

Anomalous metallic state regulated by magnetic field at LaAlO3/SrTiO3 heterointerface

Qiao Yu-Jie, Zhang Zi-Tao, Shao Ting-Na, Zhao Qiang, Chen Xing-Yu, Chen Mei-Hui, Zhu Fang-Hui, Nie Jia-Cai
PDF
HTML
导出引用
  • 自LaAlO3/SrTiO3异质界面发现高迁移率的二维电子气以来, 其二维超导电性、界面磁性和自旋轨道耦合等诸多物理性质已经被广泛研究. 对于二维超导体, 零温下超导-反常金属相变的起源仍然是一个悬而未决的问题. 传统理论认为在超导-绝缘量子相变中只存在2种基态, 即库珀对的超导基态和绝缘基态. 然而在研究超导颗粒膜中超导电性的演化与厚度和温度的关系时发现, 存在一个中间金属态破坏了超导体和绝缘体之间的直接过渡. 这种中间金属态的标志性特征是, 在超导转变温度之下存在饱和的剩余电阻, 与之对应的基态称作反常金属态. 本文主要对在LaAlO3/SrTiO3(001)异质界面磁场诱导的超导-反常金属量子相变进行了系统的研究. 在没有外加磁场的情况下, 电阻-温度(R-T)曲线和电流-电压(I-V)特性曲线表明样品在超导转变温度之下处于超导态. 外加磁场会导致样品在低温下出现饱和电阻、正的巨磁阻和低电流范围内的线性I-V曲线. 另外, 霍尔电阻在一定的磁场之下会出现零电阻平台, 而此时纵向电阻不为零, 表现出明显的玻色金属态的特征. 研究结果表明, 磁场调节的LaAlO3/SrTiO3(001)异质界面可以成为一个可控研究反常金属态的理想平台.
    Since the discovery of two-dimensional electron gas with high mobility at the LaAlO3/SrTiO3 heterointerface, many physical properties such as two-dimensional superconductivity, magnetism and spin-orbit coupling have been widely studied. The origin of the transition from quantum superconductor to metal at zero temperature in two-dimensional superconductor is still an open problem, which has been discussed intensely. According to the conventional theory, when the temperature is close to zero, the superconductor-insulator transition can be observed by applying a magnetic field or magnetic field effect of disorder, and the ground state should be superconducting or insulating.However, when Jaeger et al. (Jaeger H M, Haviland D B, Orr B G, Goldman A M 1989 Phys. Rev. B 40 182) studied the relationship between superconductivity evolution and thickness and temperature in a superconducting granular film, they found that there exists an intermediate metal state that can destroy the direct transition between superconducting and insulating. The intermediate metal state is characterized by the existence of saturation resistance at superconducting transition temperature, and the corresponding ground state is called anomalous metallic state. In addition to the saturation of resistance at low temperature, the characteristics of an anomalous metallic state also include the linear current-voltage (I-V) characteristics in the low current range, the giant positive magnetoresistance (MR), the vanishing of Hall resistance (Rxy), and the tuning capability adjusted by changing a variety of parameters including degree of disorder, gate voltage and magnetic field.In this work, we systematically investigate the electrical transport properties of LaAlO3/SrTiO3 (001) heterointerface in a perpendicular magnetic field at low temperature. The R-T curves and the I-V characteristics in zero magnetic field show that LaAlO3/SrTiO3 (001) heterointerface is in a superconducting state. However, after a small magnetic field is applied, the LaAlO3/SrTiO3 (001) heterointerface has the characteristics of resistance saturation at low temperature, linear I-V characteristics, giant positive MR, abnormal Hall response, indicating the clear characteristics of an anomalous metallic state. The sample undergoes a transition from quantum superconductor to metal at temperatures approaching to zero.In addition, we observe that the anomalous metallic state in an unusually large region under the action of magnetic field, and our main observations are summarized in the H-T phase diagram. By analyzing the relationship between the resistance of the anomalous metallic regime and the magnetic field, and the vanish of Hall resistance, we infer that the anomalous metallic state observed in LaAlO3/SrTiO3 (001) heterointerface can be explained by Bose metal model. According to our findings, the magnetic field regulated LaAlO3/SrTiO3 (001) heterointerface appears as a special platform to study the details of anomalous metallic state in a controllable way.
      通信作者: 聂家财, jcnie@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 92065110, 11974048, 12074334)资助的课题.
      Corresponding author: Nie Jia-Cai, jcnie@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065110, 11974048, 12074334).
    [1]

    Tinkham M 2004 Introduction to Superconductivity (New York: Courier Corporation) p110

    [2]

    Phillips P, Dalidovich D 2003 Science 302 243Google Scholar

    [3]

    Goldman A M 2010 Int. J. Mod. Phys. B 24 4081Google Scholar

    [4]

    Jaeger H M, Haviland D B, Orr B G, Goldman A M 1989 Phys. Rev. B 40 182Google Scholar

    [5]

    Kapitulnik A, Kivelson S A, Spivak B 2019 Rev. Mod. Phys. 91 011002Google Scholar

    [6]

    He Z H, Tu H Y, Gao K H, Yu G L, Li Z Q 2020 Phys. Rev. B 102 224502Google Scholar

    [7]

    Ephron D, Yazdani A, Kapitulnik A, Beasley M R 1996 Phys. Rev. Lett. 76 1529Google Scholar

    [8]

    Mason N, Kapitulnik A 1999 Phys. Rev. Lett. 82 5341Google Scholar

    [9]

    Mason N, Kapitulnik A 2002 Phys. Rev. B 65 220505Google Scholar

    [10]

    Breznay N P, Kapitulnik A 2017 Sci. Adv. 3 e1700612Google Scholar

    [11]

    Tsen A W, Hunt B, Kim Y D, Yuan Z J, Jia S, Cava R J, Hone J, Kim P, Dean C R, Pasupathy A N 2016 Nat. Phys. 12 208Google Scholar

    [12]

    Saito Y, Kasahara Y, Ye J, Iwasa Y, Nojima T 2015 Science 350 409Google Scholar

    [13]

    Li L, Chen C, Watanabe K, Taniguchi T, Zheng Y, Xu Z, Pereira V M, Loh K P, Neto A H C 2019 Nano Lett. 19 4126Google Scholar

    [14]

    Han Z, Allain A, Arjmandi-Tash H, Tikhonov K, Feigel’man M, Sacépé B, Bouchiat V 2014 Nat. Phys. 10 380Google Scholar

    [15]

    Bøttcher C G L, Nichele F, Kjaergaard M, Suominen H J, Shabani J, Palmstrøm C J, Marcus C M 2018 Nat. Phys. 14 1138Google Scholar

    [16]

    Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, Xie Y W 2021 Science 372 721Google Scholar

    [17]

    Chen Z Y, Adrian G, Swartz A G, Yoon H, Inoue H, Merz T A, Lu D, Xie Y W, Yuan H T, Hikita Y, Raghu S, Hwang H Y 2018 Nat. Commun. 9 4008Google Scholar

    [18]

    Chen Z Y, Wang B Y, Swartz A G, Yoon H, Hikita Y, Raghu S, Hwang H Y 2021 npj Quantum Mater. 6 15Google Scholar

    [19]

    Das D, Doniach S 1999 Phys. Rev. B 60 1621Google Scholar

    [20]

    Das D, Doniach S 2001 Phys. Rev. B 64 134511Google Scholar

    [21]

    Shimshoni E, Auerbach A, Kapitulnik A 1998 Phys. Rev. Lett. 80 3352Google Scholar

    [22]

    Galitski V M, Refael G, Fisher M P A, Senthil T 2005 Phys. Rev. Lett. 95 077002Google Scholar

    [23]

    Wang P J, Huang K, Sun J, Hu J J, Fu H L, Lin X 2019 Appl. Phys. Lett. 90 023905Google Scholar

    [24]

    Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y, Iwasa Y 2016 Nat. Phys. 12 144Google Scholar

    [25]

    Kozuka Y, Kim M, Bell C, Kim B G, Hikita Y, Hwang H Y 2009 Nature 462 487Google Scholar

    [26]

    Reyren N, Thiel S, Caviglia A D, Fitting Kourkoutis L, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [27]

    Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang J, Li Y R 2019 Science 366 1505Google Scholar

    [28]

    Feigel’man M V, Geshkenbein V B, Larkin A I 1990 Physica C 167 177Google Scholar

  • 图 1  (a) 无外加磁场时LaAlO3/SrTiO3(001)异质界面的R-T曲线, 左上角插图是R-T曲线在高温区的放大图, 右下角插图展示了和温度相关的上临界场$H_{{\text{c}}2}^{50\% }$$ T/{T_{\text{c}}} $的依赖关系; (b) 不同垂直磁场下的R-T曲线

    Fig. 1.  (a) R-T curves of LaAlO3/SrTiO3 (001) heterointerface in zero magnetic field. Inset in upper left corner is an enlarged view of R-T curve in high temperature region. Inset in lower right corner shows dependency relationship between temperature-dependent upper critical fields $H_{{\text{c}}2}^{50\% }$ and $ T/{T_{\text{c}}} $; (b) R-T curves in different perpendicular magnetic fields.

    图 2  T = 50 mK时, 不同垂直磁场下的I-V曲线, 插图是局域放大图, 其中黑色实线是对数据的线性拟合

    Fig. 2.  I-V curves in different perpendicular magnetic fields at T = 50 mK. Inset is a magnification, black lines are linear fitting.

    图 3  (a) 不同磁场下的Arrhenius曲线; (b) 不同磁场下Arrhenius曲线的高温区局域放大图 (彩色实线是利用(2)式对数据进行的拟合); (c) 热激活能$U/{k_{\text{B}}}$$\ln H$的关系 (红色实线是利用(3)式对数据进行的拟合)

    Fig. 3.  (a) Arrhenius curves in different magnetic fields; (b) magnification of Arrhenius curves in high temperature region in the different magnetic fields (Color lines are linear fitting by Eq. (2)); (c) relationship between activation energy $U/{k_{\text{B}}}$ and $\ln H$ (Red line is empirical fit by Eq. (3)).

    图 4  (a) 不同温度下的Rxx-H曲线, 插图是MR曲线; (b) 不同温度下的lgR-lg(HHc0)曲线, 其中黑色实线是利用(4)式对数据进行的拟合, 插图是2${\nu _0}$随温度的变化关系

    Fig. 4.  (a) Rxx-H curves at different temperatures, and inset is MR curves; (b) lgR-lg(HHc0) curves at different temperatures. Black lines are fitting curves by Eq. (4), and inset shows 2${\nu _0}$ vs. T.

    图 5  (a) T = 50 mK下的霍尔电阻Rxy与外加磁场的变化关系, 插图是低磁场下的局域放大图; (b) T = 50 mK下的纵向电阻Rxx与外加磁场的变化关系, 插图是低磁场下的局域放大图.

    Fig. 5.  (a) Hall resistance Rxy as a function of magnetic field at T = 50 mK, and inset is a magnification of low magnetic field; (b) longitudinal resistance Rxx as a function of magnetic field at T = 50 mK, and inset is a magnification of low magnetic field.

    图 6  LaAlO3/SrTiO3(001)体系的H-T相图, 背景是不同磁场下R-T曲线的二维彩图. 缩写分别表示样品处于SC, 超导态; AM, 反常金属态; NORMAL, 正常态; TAFF, 热激活磁通流区

    Fig. 6.  H-T phase diagram of LaAlO3/SrTiO3 (001) system, and the background is a 2D color plot of R-T curves at differential magnetic field. Abbreviations indicate that sample is in SC, superconducting state; AM, anomalous metal state; NORMAL, normal state; TAFF, thermally activated flux flow regime.

  • [1]

    Tinkham M 2004 Introduction to Superconductivity (New York: Courier Corporation) p110

    [2]

    Phillips P, Dalidovich D 2003 Science 302 243Google Scholar

    [3]

    Goldman A M 2010 Int. J. Mod. Phys. B 24 4081Google Scholar

    [4]

    Jaeger H M, Haviland D B, Orr B G, Goldman A M 1989 Phys. Rev. B 40 182Google Scholar

    [5]

    Kapitulnik A, Kivelson S A, Spivak B 2019 Rev. Mod. Phys. 91 011002Google Scholar

    [6]

    He Z H, Tu H Y, Gao K H, Yu G L, Li Z Q 2020 Phys. Rev. B 102 224502Google Scholar

    [7]

    Ephron D, Yazdani A, Kapitulnik A, Beasley M R 1996 Phys. Rev. Lett. 76 1529Google Scholar

    [8]

    Mason N, Kapitulnik A 1999 Phys. Rev. Lett. 82 5341Google Scholar

    [9]

    Mason N, Kapitulnik A 2002 Phys. Rev. B 65 220505Google Scholar

    [10]

    Breznay N P, Kapitulnik A 2017 Sci. Adv. 3 e1700612Google Scholar

    [11]

    Tsen A W, Hunt B, Kim Y D, Yuan Z J, Jia S, Cava R J, Hone J, Kim P, Dean C R, Pasupathy A N 2016 Nat. Phys. 12 208Google Scholar

    [12]

    Saito Y, Kasahara Y, Ye J, Iwasa Y, Nojima T 2015 Science 350 409Google Scholar

    [13]

    Li L, Chen C, Watanabe K, Taniguchi T, Zheng Y, Xu Z, Pereira V M, Loh K P, Neto A H C 2019 Nano Lett. 19 4126Google Scholar

    [14]

    Han Z, Allain A, Arjmandi-Tash H, Tikhonov K, Feigel’man M, Sacépé B, Bouchiat V 2014 Nat. Phys. 10 380Google Scholar

    [15]

    Bøttcher C G L, Nichele F, Kjaergaard M, Suominen H J, Shabani J, Palmstrøm C J, Marcus C M 2018 Nat. Phys. 14 1138Google Scholar

    [16]

    Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, Xie Y W 2021 Science 372 721Google Scholar

    [17]

    Chen Z Y, Adrian G, Swartz A G, Yoon H, Inoue H, Merz T A, Lu D, Xie Y W, Yuan H T, Hikita Y, Raghu S, Hwang H Y 2018 Nat. Commun. 9 4008Google Scholar

    [18]

    Chen Z Y, Wang B Y, Swartz A G, Yoon H, Hikita Y, Raghu S, Hwang H Y 2021 npj Quantum Mater. 6 15Google Scholar

    [19]

    Das D, Doniach S 1999 Phys. Rev. B 60 1621Google Scholar

    [20]

    Das D, Doniach S 2001 Phys. Rev. B 64 134511Google Scholar

    [21]

    Shimshoni E, Auerbach A, Kapitulnik A 1998 Phys. Rev. Lett. 80 3352Google Scholar

    [22]

    Galitski V M, Refael G, Fisher M P A, Senthil T 2005 Phys. Rev. Lett. 95 077002Google Scholar

    [23]

    Wang P J, Huang K, Sun J, Hu J J, Fu H L, Lin X 2019 Appl. Phys. Lett. 90 023905Google Scholar

    [24]

    Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y, Iwasa Y 2016 Nat. Phys. 12 144Google Scholar

    [25]

    Kozuka Y, Kim M, Bell C, Kim B G, Hikita Y, Hwang H Y 2009 Nature 462 487Google Scholar

    [26]

    Reyren N, Thiel S, Caviglia A D, Fitting Kourkoutis L, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [27]

    Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang J, Li Y R 2019 Science 366 1505Google Scholar

    [28]

    Feigel’man M V, Geshkenbein V B, Larkin A I 1990 Physica C 167 177Google Scholar

  • [1] 刘荣肇, 樊振军, 王浩成, 宁昊明, 米振宇, 刘广耀, 宋小会. 锌离子掺杂钴基金属有机材料[(CH3)2NH2]Co1–xZnx(HCOO)3中的低温反常磁现象. 物理学报, 2023, 72(3): 030201. doi: 10.7498/aps.72.20221761
    [2] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变. 物理学报, 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [3] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [4] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究. 物理学报, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [5] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变. 物理学报, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [6] 息剑峰, 李宝河, 刘丹, 李熊, 耿爱丛, 李笑. LaAlO3/SrTiO3界面增强光伏效应. 物理学报, 2021, 70(8): 086802. doi: 10.7498/aps.70.20201330
    [7] 刀流云, 张子涛, 肖煜同, 张明昊, 王帅, 何珺, 贾金山, 余乐军, 孙波, 熊昌民. 光电协同增强的场效应对LaAlO3/SrTiO3界面中持续光电导的调控. 物理学报, 2019, 68(6): 067302. doi: 10.7498/aps.68.20182204
    [8] 焦媛媛, 孙建平, Prashant Shahi, 刘哲宏, 王铂森, 龙有文, 程金光. Pb掺杂对Cd2Ru2O7反常金属态的调控. 物理学报, 2018, 67(12): 127402. doi: 10.7498/aps.67.20180343
    [9] 阮璐风, 王磊, 孙得彦. Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响. 物理学报, 2017, 66(18): 187301. doi: 10.7498/aps.66.187301
    [10] 陈顺生, 熊良斌, 杨昌平. Nd0.7Sr0.3MnO3陶瓷中界面陷阱态相关电阻转变行为. 物理学报, 2016, 65(8): 087302. doi: 10.7498/aps.65.087302
    [11] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析. 物理学报, 2013, 62(19): 197201. doi: 10.7498/aps.62.197201
    [12] 秦毅, 张辉, 谈松林, 刘婷, 张鹏翔. [(SrTiO3)n/(SrTi0.8Nb0.2O3)m]20/LaAlO3超晶格的制备及其激光感生热电电压效应. 物理学报, 2009, 58(5): 3497-3502. doi: 10.7498/aps.58.3497
    [13] 史力斌, 郑 岩, 任骏原, 李明标, 张国华. YBa2Cu3O7-δ/LaAlO3和Tl2Ba2CaCu2O8/LaAlO3高温超导薄膜内的应变对其微波表面电阻影响的研究. 物理学报, 2008, 57(2): 1183-1189. doi: 10.7498/aps.57.1183
    [14] 马建华, 孙璟兰, 孟祥建, 林 铁, 石富文, 褚君浩. SrTiO3金属-绝缘体-半导体结构的介电与界面特性. 物理学报, 2005, 54(3): 1390-1395. doi: 10.7498/aps.54.1390
    [15] 刘文森, 马桂荣, 张九安, 梁九卿. 量子玻色流体中的压缩玻色子对数态. 物理学报, 1997, 46(9): 1699-1709. doi: 10.7498/aps.46.1699
    [16] 颜君, 张培鸿, 仝晓民, 李家明. 碱金属nf里德伯态精细结构反常物理机制的理论研究. 物理学报, 1996, 45(12): 1978-1985. doi: 10.7498/aps.45.1978
    [17] 黄洪斌. 非平衡玻色凝结的相干态处理. 物理学报, 1993, 42(9): 1385-1394. doi: 10.7498/aps.42.1385
    [18] 俞育德, 解思深, H. BOYSEN. LaAlO3晶体结构的研究. 物理学报, 1993, 42(4): 605-609. doi: 10.7498/aps.42.605
    [19] 张其瑞, 周先意, 王劲松, 管惟炎. 纵向磁场中超导金属玻璃Zr78Co22的载流电阻态. 物理学报, 1988, 37(6): 1036-1041. doi: 10.7498/aps.37.1036
    [20] 曹忠胜, 赵忠贤, 冯本政. 金属玻璃CuTi合金的电阻率. 物理学报, 1985, 34(5): 652-662. doi: 10.7498/aps.34.652
计量
  • 文章访问数:  3626
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 修回日期:  2023-04-28
  • 上网日期:  2023-05-04
  • 刊出日期:  2023-07-05

/

返回文章
返回