Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-wavelength self-starting mode-locking Er-doped fiber laser with MnPS3 saturable absorber

Yu Qiang Guo Kun Chen Jie Wang Tao Wang Jin Shi Xin-Yao Wu Jian Zhang Kai Zhou Pu

Citation:

Dual-wavelength self-starting mode-locking Er-doped fiber laser with MnPS3 saturable absorber

Yu Qiang, Guo Kun, Chen Jie, Wang Tao, Wang Jin, Shi Xin-Yao, Wu Jian, Zhang Kai, Zhou Pu
PDF
HTML
Get Citation
  • As a member of the metal phosphorus trichalcogenide family, MPS3 is widely used in nonlinear optics and devices, which can be regarded as a significant benefit for the excellent photonic and optoelectronic properties. In this work, the MnPS3 nanosheet is prepared by the chemical vapor transport method and the MnPS3 saturable absorber is demonstrated by modifying mechanical exfoliation. To the best of our knowledge, the dual-wavelength self-starting mode-locking erbium-doped fiber laser with MnPS3 saturable absorber is demonstrated for the first time. The dual wavelength mode-locked laser with a pulse repetition rate of 5.102 MHz at 1565.19 nm and 1565.63 nm is proposed. Its maximum output power at the dual-wavelength is 27.2 MW. The mode-locked laser can self-start and stably run for more than 280 h.
      Corresponding author: Wu Jian, wujian15@nudt.edu.cn ; Zhang Kai, kzhang2015@sinano.ac.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant Nos. 61922082, 61875223, 61801472) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3610)
    [1]

    Penilla E H, Devia Cruz L F, Wieg A T, Martinez Torres P, Cuando Espitia N, Sellappan P, Kodera Y, Aguilar G, Garay J E 2019 Science 365 803Google Scholar

    [2]

    Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar

    [3]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [4]

    Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112Google Scholar

    [5]

    Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS nano 4 803Google Scholar

    [6]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [7]

    Wu H S, Song J, Wu J, Xu J, Xiao H, Leng J, Zhou P 2018 IEEE J. Sel. Top. Quant. 24 0901206Google Scholar

    [8]

    Hong S, Ledee F, Park J, Song S, Lee H, Lee Y S, Kim B, Yeom D I, Deleporte E, Oh K 2018 Laser Photonics Rev. 12 1800118Google Scholar

    [9]

    黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 物理学报 63 084202Google Scholar

    Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202Google Scholar

    [10]

    Liu X, Li X, Tang Y, Zhang S 2020 Opt. Lett. 45 161Google Scholar

    [11]

    Ahmad H, Salim M A M, Thambiratnam K, Norizan S F, Harun S W 2016 Laser Phys. Lett. 13 095103Google Scholar

    [12]

    Hisyam M B, Rusdi M F M, Latiff A A, Harun S W 2017 Ieee J. Sel. Top. Quant. 23 39Google Scholar

    [13]

    Wang T, Jin X, Yang J, Wu J, Yu Q, Pan Z, Shi X, Xu Y, Wu H, Wang J, He T, Zhang K, Zhou P 2019 ACS Appl. Mater. Inter. 11 36854Google Scholar

    [14]

    Wang T, Shi X, Wang J, Xu Y, Chen J, Dong Z, Jiang M, Ma P, Su R, Ma Y, Wu J, Zhang K, Zhou P 2019 Sci. China Inf. Sci. 62 220406Google Scholar

    [15]

    Liu J, Li X B, Wang D, Lau W M, Peng P, Liu L M 2014 J. Chem. Phys. 140 054707Google Scholar

    [16]

    Liu J, Zhao F, Wang H, Zhang W, Hu X, Li X, Wang Y 2019 Opt. Mater. 89 100Google Scholar

    [17]

    史鑫尧 2019 硕士学位论文 (合肥: 中国科学技术大学)

    Shi X Y 2019 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [18]

    Hou X, Zhang X, Ma Q, Tang X, Hao Q, Cheng Y, Qiu T 2020 Adv. Funct. Mater. 30 1910171Google Scholar

    [19]

    Gusmão R, Sofer Z, Pumera M 2019 Adv. Funct. Mater. 29 1805975Google Scholar

    [20]

    Yin Q, Wang J, Shi X Y, Wang T, Yang J, Zhao X X, Shen Z J, Wu J, Zhang K, Zhou P, Jiang Z F 2019 Chin. Phys. B 28 084208Google Scholar

    [21]

    Liu J, Li X, Xu Y, Ge Y, Wang Y, Zhang F, Wang Y, Fang Y, Yang F, Wang C, Song Y, Xu S, Fan D, Zhang H 2019 Nanoscale 11 14383Google Scholar

    [22]

    Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q, Kloc C 2016 ACS Nano 10 1738Google Scholar

    [23]

    Cheng Z, Shifa T A, Wang F, Gao Y, He P, Zhang K, Jiang C, Liu Q, He J 2018 Adv. Mater. 30 1707433Google Scholar

    [24]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [25]

    Kumar R, Jenjeti R N, Austeria M P, Sampath S 2019 J. Mater. Chem. C 7 324Google Scholar

    [26]

    Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A 2020 ACS Nano 14 2424Google Scholar

    [27]

    Kinyanjui M K, Koester J, Boucher F, Wildes A, Kaiser U 2018 Phys. Rev. B 98 035417Google Scholar

    [28]

    邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 物理学报 68 114204Google Scholar

    Qiu X L, Wang S S, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar

    [29]

    Shi X, Wang T, Wang J, Xu Y, Yang Z, Yu Q, Wu J, Zhang K, Zhou P 2019 Opt. Mater. Express 9 2348Google Scholar

    [30]

    Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y 2020 Photon. Res. 8 70Google Scholar

    [31]

    Wu X, Zhou Z W, Yin J D, Zhang M, Zhou L L, Na Q X, Wang J T, Yu Y, Yang J B, Chi R H, Yan P G 2020 Nanotechnology 31 245204Google Scholar

    [32]

    Guo C, Wei J, Yan P, Luo R, Ruan S, Wang J, Guo B, Hua P, Lue Q 2020 Appl. Phys. Express 13 012013Google Scholar

    [33]

    Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 Chin. Phys. B 28 056301Google Scholar

  • 图 1  MnPS3晶体生长及表征 (a)化学气相传输法制备MnPS3晶体的工艺流程示意图; (b) MnPS3单晶的照片; (c) MnPS3单晶的拉曼光谱

    Figure 1.  Characteristics of MnPS3 crystals: (a) Chemical vapor transport method; (b) picture of MnPS3; (c) Raman spectrum for MnPS3

    图 2  MnPS3-SA的SEM表征 (a)随机选取的样品SEM图像和元素分析表; (b)−(d) Mn, P和S的EDX元素面扫描

    Figure 2.  SEM characteristics of MnPS3 -SA: (a) SEM image of a randomly selected MnPS3 flake, and elemental analysis of this sample; (b)−(d) EDX element mappings for Mn, P, and S.

    图 3  MnPS3纳米片的TEM表征 (a) MnPS3纳米片形貌; (b) MnPS3纳米片的HRTEM像; (c) SAED图

    Figure 3.  TEM characterization of MnPS3 nanosheets: (a) TEM image of a MnPS3 nanosheet on a copper grid; (b) the HRTEM image of the MnPS3 nanosheet; (c) the corresponding SAED showing its single crystal nature.

    图 4  MnPS3-SA掺铒光纤激光器的实验装置

    Figure 4.  Experimental setup of the erbium-doped fiber laser.

    图 5  基于MnPS3-SA的脉冲光纤激光器的性能 (a)输出功率与抽运功率的关系; (b)输出光谱; (c)脉冲序列; (d)脉冲脉宽; (e) 0−10 MHz射频信号; (f)射频基频信号

    Figure 5.  Performances of the pulse fiber laser based on MnPS3-SA: (a) The output power versus the pump power; (b) output optical spectrum; (c) the pulse trace; (d) the duration of single pulse; (e) the radio frequency spectrum from 0−10 MHz; (f) the radio frequency spectrum with ~64 dB (inset).

    图 6  基于MnPS3-SA的脉冲光纤激光器在70, 120, 170, 220和270 mW抽运功率下的(a)光谱、(b)波长和(c)频率特性

    Figure 6.  Performances of the pulse fiber laser based on MnPS3-SA with the pump power at 70, 120, 170, 220, and 270 mW pump power: (a) Spectrum; (b) wavelength; (c) frequency.

    图 7  基于MnPS3-SA的脉冲激光长时间工作稳定性 (a)第1, 7, 8, 11, 12 天的输出光谱; (b)中心波长; (c)输出功率

    Figure 7.  Output spectrum of the EDFL based on MnPS3-SA: (a) Output spectrum recorded on 1st, 7th, 8th, 11th, 12th day; (b) wavelength peak position; (c) output power.

  • [1]

    Penilla E H, Devia Cruz L F, Wieg A T, Martinez Torres P, Cuando Espitia N, Sellappan P, Kodera Y, Aguilar G, Garay J E 2019 Science 365 803Google Scholar

    [2]

    Fermann M E, Hartl I 2013 Nat. Photonics 7 868Google Scholar

    [3]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [4]

    Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112Google Scholar

    [5]

    Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS nano 4 803Google Scholar

    [6]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [7]

    Wu H S, Song J, Wu J, Xu J, Xiao H, Leng J, Zhou P 2018 IEEE J. Sel. Top. Quant. 24 0901206Google Scholar

    [8]

    Hong S, Ledee F, Park J, Song S, Lee H, Lee Y S, Kim B, Yeom D I, Deleporte E, Oh K 2018 Laser Photonics Rev. 12 1800118Google Scholar

    [9]

    黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 物理学报 63 084202Google Scholar

    Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202Google Scholar

    [10]

    Liu X, Li X, Tang Y, Zhang S 2020 Opt. Lett. 45 161Google Scholar

    [11]

    Ahmad H, Salim M A M, Thambiratnam K, Norizan S F, Harun S W 2016 Laser Phys. Lett. 13 095103Google Scholar

    [12]

    Hisyam M B, Rusdi M F M, Latiff A A, Harun S W 2017 Ieee J. Sel. Top. Quant. 23 39Google Scholar

    [13]

    Wang T, Jin X, Yang J, Wu J, Yu Q, Pan Z, Shi X, Xu Y, Wu H, Wang J, He T, Zhang K, Zhou P 2019 ACS Appl. Mater. Inter. 11 36854Google Scholar

    [14]

    Wang T, Shi X, Wang J, Xu Y, Chen J, Dong Z, Jiang M, Ma P, Su R, Ma Y, Wu J, Zhang K, Zhou P 2019 Sci. China Inf. Sci. 62 220406Google Scholar

    [15]

    Liu J, Li X B, Wang D, Lau W M, Peng P, Liu L M 2014 J. Chem. Phys. 140 054707Google Scholar

    [16]

    Liu J, Zhao F, Wang H, Zhang W, Hu X, Li X, Wang Y 2019 Opt. Mater. 89 100Google Scholar

    [17]

    史鑫尧 2019 硕士学位论文 (合肥: 中国科学技术大学)

    Shi X Y 2019 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [18]

    Hou X, Zhang X, Ma Q, Tang X, Hao Q, Cheng Y, Qiu T 2020 Adv. Funct. Mater. 30 1910171Google Scholar

    [19]

    Gusmão R, Sofer Z, Pumera M 2019 Adv. Funct. Mater. 29 1805975Google Scholar

    [20]

    Yin Q, Wang J, Shi X Y, Wang T, Yang J, Zhao X X, Shen Z J, Wu J, Zhang K, Zhou P, Jiang Z F 2019 Chin. Phys. B 28 084208Google Scholar

    [21]

    Liu J, Li X, Xu Y, Ge Y, Wang Y, Zhang F, Wang Y, Fang Y, Yang F, Wang C, Song Y, Xu S, Fan D, Zhang H 2019 Nanoscale 11 14383Google Scholar

    [22]

    Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q, Kloc C 2016 ACS Nano 10 1738Google Scholar

    [23]

    Cheng Z, Shifa T A, Wang F, Gao Y, He P, Zhang K, Jiang C, Liu Q, He J 2018 Adv. Mater. 30 1707433Google Scholar

    [24]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [25]

    Kumar R, Jenjeti R N, Austeria M P, Sampath S 2019 J. Mater. Chem. C 7 324Google Scholar

    [26]

    Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A 2020 ACS Nano 14 2424Google Scholar

    [27]

    Kinyanjui M K, Koester J, Boucher F, Wildes A, Kaiser U 2018 Phys. Rev. B 98 035417Google Scholar

    [28]

    邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 物理学报 68 114204Google Scholar

    Qiu X L, Wang S S, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar

    [29]

    Shi X, Wang T, Wang J, Xu Y, Yang Z, Yu Q, Wu J, Zhang K, Zhou P 2019 Opt. Mater. Express 9 2348Google Scholar

    [30]

    Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y 2020 Photon. Res. 8 70Google Scholar

    [31]

    Wu X, Zhou Z W, Yin J D, Zhang M, Zhou L L, Na Q X, Wang J T, Yu Y, Yang J B, Chi R H, Yan P G 2020 Nanotechnology 31 245204Google Scholar

    [32]

    Guo C, Wei J, Yan P, Luo R, Ruan S, Wang J, Guo B, Hua P, Lue Q 2020 Appl. Phys. Express 13 012013Google Scholar

    [33]

    Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 Chin. Phys. B 28 056301Google Scholar

  • [1] He Liang, Peng Xue-Fang, Shen Xiao-Yu, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Low repetition rate passive mode-locked semiconductor disk laser. Acta Physica Sinica, 2024, 73(12): 124205. doi: 10.7498/aps.73.20240441
    [2] Cui Wen-Wen, Xing Xiao-Wei, Xiao Yue-Jia, Liu Wen-Jun. Research progress of mode-locked pulsed fiber lasers with high damage threshold saturable absorber. Acta Physica Sinica, 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [3] Dai Chuan-Sheng, Dong Zhi-Peng, Lin Jia-Qiang, Yao Pei-Jun, Xu Li-Xin, Gu Chun. Passively Q-switched and mode-locked 1.9 μm Tm-doped fiber laser based on pure water as saturable absorber. Acta Physica Sinica, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [4] Yuan Hao, Zhu Fang-Xiang, Wang Jin-Tao, Yang Rong, Wang Nan, Yu Yang, Yan Pei-Guang, Guo Jin-Chuan. Generation of ultra-fast pulse based on bismuth saturable absorber. Acta Physica Sinica, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [5] Dou Zhi-Yuan, Zhang Bin, Liu Shuai-Lin, Hou Jing. High-power 1.6 μm noise-like square pulse generation in an all-fiber mode-locked laser. Acta Physica Sinica, 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [6] Zhou Feng, Cai Yu, Zou De-Feng, Hu Ding-Tong, Zhang Ya-Jing, Song You-Jian, Hu Ming-Lie. Internal dynamic detection of soliton molecules in Ti:sapphire femtosecond laser. Acta Physica Sinica, 2020, 69(8): 084202. doi: 10.7498/aps.69.20191989
    [7] Wang Xiao-Fa, Zhang Jun-Hong, Gao Zi-Ye, Xia Guang-Qiong, Wu Zheng-Mao. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber. Acta Physica Sinica, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [8] Ling Wei-Jun, Xia Tao, Dong Zhong, Liu Qing, Lu Fei-Ping, Wang Yong-Gang. Passively Q-switched mode-locked Tm, Ho:LLF laser with a WS2 saturable absorber. Acta Physica Sinica, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [9] Lian Fu-Qiang, Fan Zhong-Wei, Bai Zhen-Ao, Liu Yi-Zhou, Lin Wei-Ran, Zhang Xiao-Lei, Zhao Tian-Zhuo. Femtosecond fiber laser for high-stability and high-quality pulse compression. Acta Physica Sinica, 2015, 64(16): 164207. doi: 10.7498/aps.64.164207
    [10] Dou Zhi-Yuan, Tian Jin-Rong, Li Ke-Xuan, Yu Zhen-Hua, Hu Meng-Ting, Huo Ming-Chao, Song Yan-Rong. High-repetition-rate passively mode-locked erbium-doped all fiber laser. Acta Physica Sinica, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [11] Lian Fu-Qiang, Fan Zhong-Wei, Bai Zhen-Ao, Yu Jin, Lin Wei-Ran, Zhang Xiao-Lei, Liu Di, Zhao Tian-Zhuo. A Nd:YAG regenerative amplifier seeded by 1064 nm picosecond fiber. Acta Physica Sinica, 2014, 63(13): 134207. doi: 10.7498/aps.63.134207
    [12] Feng De-Jun, Hang Wen-Yu, Jiang Shou-Zhen, Ji Wei, Jia Dong-Fang. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser. Acta Physica Sinica, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [13] Cao Shi-Ying, Zhu Yue, Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang. Passively mode-locked Nd:Gd0.1Y0.9VO4 laser with a semiconductor saturable absorber mirror. Acta Physica Sinica, 2009, 58(9): 6269-6272. doi: 10.7498/aps.58.6269
    [14] Chai Lu, Yan Shi, Xue Ying-Hong, Liu Qing-Wen, Ge Wen-Qi, Wang Qing-Yue, Su Liang-Bi, Xu Xiao-Dong, Zhao Guang-Jun, Xu Jun. Saturable absorption of Yb3+/Na+ codoped CaF2 crystals at 1050nm. Acta Physica Sinica, 2008, 57(5): 2966-2970. doi: 10.7498/aps.57.2966
    [15] Lin Hong-Huan, Lu Zhen-Hua, Wang Jian-Jun, Zhang Ying, Wang Feng-Rui, Xu Dang-Peng, Zhang Rui, Li Ming-Zhong, Deng Qing-Hua, Luo Yi-Ming, Tang Jun, Ding Lei. Gain-guided solitons in positive dispersion lasers. Acta Physica Sinica, 2008, 57(9): 5646-5650. doi: 10.7498/aps.57.5646
    [16] Song You-Jian, Hu Ming-Lie, Liu Qing-Wen, Li Jin-Yan, Chen Wei, Chai Lu, Wang Qing-Yue. A mode-locked Yb3+-doped double-clad large-mode-area fiber laser. Acta Physica Sinica, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [17] Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang, Zhao Jiang-Shan, Wang Yong, Zhang Wei-Li, Xing Qi-Rong. . Acta Physica Sinica, 2001, 50(1): 68-72. doi: 10.7498/aps.50.68
    [18] CHAI LU, WANG QING-YUE, ZHAO JIANG-SHAN, XING QI-RONG, ZHANG ZHI-GANG. EXPERIMENTAL STUDY ON THE MECHANISM OF A SELF-STARTING KERR-LENS-MODE-LOCKING USING A SEMICONDUCTOR SATURABLE ABSORBER MIRROR. Acta Physica Sinica, 2001, 50(7): 1298-1301. doi: 10.7498/aps.50.1298
    [19] HUANG ZHI-JIAN, SUN JUN-QIANG, HUANG DE-XIU. THEORETICAL ANALYSIS OF FAST AND SLOW SATURABLE ABSORBER MODE LOCKING ERBIUM DOPED FIBER LASERS. Acta Physica Sinica, 1998, 47(1): 9-18. doi: 10.7498/aps.47.9
    [20] LI SHI-CHEN. ANALYSIS ON LiNbO3 CRYSTAL PIEZOELECTRIC RESONATORAND LASER MODE LOCKER. Acta Physica Sinica, 1993, 42(6): 1020-1026. doi: 10.7498/aps.42.1020
Metrics
  • Abstract views:  10641
  • PDF Downloads:  326
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2020
  • Accepted Date:  29 March 2020
  • Available Online:  09 May 2020
  • Published Online:  20 September 2020

/

返回文章
返回