Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser

Zhang Qian Jin Xin-Xin Zhang Meng Zheng Zheng

Citation:

Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser

Zhang Qian, Jin Xin-Xin, Zhang Meng, Zheng Zheng
PDF
HTML
Get Citation
  • The two-dimensional (2D) nanomaterial saturable absorber represented by graphene is widely used in ultrafast fiber lasers due to its unique nonlinear optical properties. In this paper, we summarize the research and development of 2D nanomaterials as saturable absorbers in mid-infrared ultrafast mode-locked fiber lasers in recent years, and introduce the atomic structure and nonlinear optical characteristics of 2D nanomaterials, and saturable absorber device integration methods. The laser performance parameters such as center wavelength, repetition frequency and average output power of the laser are discussed, and the femtosecond fiber laser based on black phosphorus saturable absorber in the middle infrared band is highlighted. Finally, the developments and challenges of 2D materials in mid-infrared pulsed fiber laser are also addressed.
      Corresponding author: Zhang Meng, mengzhang10@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51778030, 51978024)
    [1]

    Hu J J, Meyer J, Richardson K, Shah L 2013 Opt. Mater. Express 3 1571Google Scholar

    [2]

    Gaimard Q, Triki M, Nguyen-Ba T, Cerutti L, Boissier G, Teissier R, Baranov A, Rouillard Y, Vicet A 2015 Opt. Express 23 19118Google Scholar

    [3]

    Geiser P 2015 Sensors 15 22724Google Scholar

    [4]

    Schwaighofer A, Alcaraz M R, Araman C, Goicoechea H, Lendl B 2016 Sci. Rep. 6 33556Google Scholar

    [5]

    Nishii J, Morimoto S, Inagawa I, Iizuka R, Yamashita T, Yamagishi T 1992 J Non. Cryst. Solids. 140 199Google Scholar

    [6]

    Spiers G D, Menzies R T, Jacob J, Christensen L E, Phillips M W, Choi Y, Browell E V 2011 Appl. Opt. 50 2098Google Scholar

    [7]

    Fuller T A 1986 Laser. Surg. Med. 6 399Google Scholar

    [8]

    Petersen C R, Moller U, Kubat I, Zhou B B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z Q, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar

    [9]

    Ouyang D, Zhao J, Zheng Z, Liu M, Li C, Ruan S, Yan P, Pei J 2016 IEEE Photon. J. 8 1600910Google Scholar

    [10]

    Zhang M, Kelleher E J R, Popov S V, Taylor J R 2014 Opt. Fiber Technol. 20 666Google Scholar

    [11]

    Wei C, Shi H X, Luo H Y, Zhang H, Lyu Y J, Liu Y 2017 Opt. Express 25 19170Google Scholar

    [12]

    Tang P H, Qin Z P, Liu J, Zhao C J, Xie G Q, Wen S C, Qian L J 2015 Opt. Lett. 40 4855Google Scholar

    [13]

    Li P, Ruehl A, Grosse-Wortmann U, Hartl I 2014 Opt. Lett. 39 6859Google Scholar

    [14]

    Li L, Huang H T, Su L, Shen D Y, Tang D Y, Klimczak M, Zhao L M 2019 Appl. Opt. 58 2745Google Scholar

    [15]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [16]

    Woodward R I, Kelleher E J R 2015 Appl. Sci-Basel 5 1440Google Scholar

    [17]

    Du J, Zhang M, Guo Z, Chen J, Zhu X, Hu G, Peng P, Zheng Z, Zhang H 2017 Sci. Rep. 7 42357Google Scholar

    [18]

    Song Y F, Chen S, Zhang Q, Li L, Zhao L M, Zhang H, Tang D Y 2016 Opt. Express 24 25933Google Scholar

    [19]

    Howe R C T, Hu G, Yang Z, Hasan T 2015 Proc. SPIE 9553 95530RGoogle Scholar

    [20]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611Google Scholar

    [21]

    Cusati T, Fiori G, Gahoi A, Passi V, Lemme M C, Fortunelli A, Iannaccone G 2017 Sci. Rep. 7 5109Google Scholar

    [22]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2013 Opt. Express 21 12797Google Scholar

    [23]

    Koski K J, Wessells C D, Reed B W, Cha J J, Kong D S, Cui Y 2012 J. Am. Chem. Soc. 134 13773Google Scholar

    [24]

    Boguslawski J, Sobon G, Zybala R, Sotor J 2015 Opt. Lett. 40 2786Google Scholar

    [25]

    Dou Z Y, Song Y R, Tian J R, Liu J H, Yu Z H, Fang X H 2014 Opt. Express 22 24055Google Scholar

    [26]

    Chi C, Lee J, Koo J, Lee J H 2014 Laser Phys 24 105106Google Scholar

    [27]

    Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S, Lee J H 2014 Opt. Express 22 7865Google Scholar

    [28]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [29]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [30]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [31]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Letters 10 1271Google Scholar

    [32]

    Mao D, Zhang S L, Wang Y D, Gan X T, Zhang W D, Mei T, Wang Y G, Wang Y S, Zeng H B, Zhao J L 2015 Opt. Express 23 27509Google Scholar

    [33]

    Zhang M, Hu G, Hu G, Howe R C T, Chen L, Zheng Z, Hasan T 2015 Sci. Rep. 5 17482Google Scholar

    [34]

    Ye Z L, Cao T, O'Brien K, Zhu H Y, Yin X B, Wang Y, Zhang X 2014 Nature 513 214Google Scholar

    [35]

    Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [36]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [37]

    Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 11183Google Scholar

    [38]

    Low T, Roldan R, Wang H, Xia F N, Avouris P, Moreno L M, Guinea F 2014 Phys. Rev. Lett. 113 106802Google Scholar

    [39]

    Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar

    [40]

    Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885Google Scholar

    [41]

    Zhang Q, Jiang X, Zhang M, Jin X, Zhang H, Zheng Z 2020 Nanoscale 12 4586Google Scholar

    [42]

    Cho H S, Deng H, Miyasaka K, Dong Z, Cho M, Neimark A V, Kang J K, Yaghi O M, Terasaki O 2015 Nature 527 503Google Scholar

    [43]

    Maspoch D, Ruiz-Molina D, Wurst K, Domingo N, Cavallini M, Biscarini F, Tejada J, Rovira C, Veciana J 2003 Nat. Mater. 2 190Google Scholar

    [44]

    Evans O R, Lin W B 2002 Acc. Chem. Res. 35 511Google Scholar

    [45]

    Qu F, Jiang H, Yang M 2016 Nanoscale 8 16349Google Scholar

    [46]

    Guo B 2018 Chin. Opt. Lett. 16 020004Google Scholar

    [47]

    Du Z, Yang S, Li S, Lou J, Zhang S, Wang S, Li B, Gong Y, Song L, Zou X, Ajayan P M 2020 Nature 577 492Google Scholar

    [48]

    Sotor J, Sobon G, Macherzynski W, Paletko P, Grodecki K, Abramski K M 2014 Opt. Mater. Express 4 1Google Scholar

    [49]

    Chang Y M, Kim H, Lee J H, Song Y W 2010 Appl. Phys. Lett. 97 211102Google Scholar

    [50]

    Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 Acs Nano 7 9260Google Scholar

    [51]

    Zhang X D, Xie Y 2013 Chem. Soc. Rev. 42 8187Google Scholar

    [52]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [53]

    Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z M, McGovern I T, Duesberg G S, Coleman J N 2009 J. Am. Chem. Soc. 131 3611Google Scholar

    [54]

    Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N 2011 Adv. Mater. 23 3944Google Scholar

    [55]

    Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C T, Wu Q, Zheng Z, Hasan T 2018 Opt. Express 26 12506Google Scholar

    [56]

    Zhang M, Kelleher E J R, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R 2012 Opt. Express 20 25077Google Scholar

    [57]

    Sotor J, Pawliszewska M, Sobon G, Kaczmarek P, Przewolka A, Pasternak I, Cajzl J, Peterka P, Honzatko P, Kasik I, Strupinski W, Abramski K 2016 Opt. Lett. 41 2592Google Scholar

    [58]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438Google Scholar

    [59]

    Moore J E 2010 Nature 464 194Google Scholar

    [60]

    Wang J, Chen H, Jiang Z, Yin J, Wang J, Zhang M, He T, Li J, Yan P, Ruan S 2018 Opt. Lett. 43 1998Google Scholar

    [61]

    Wang J, Lu W, Li J, Chen H, Jiang Z, Wang J, Zhang W, Zhang M, Li I L, Xu Z, Liu W, Yan P 2018 IEEE J. Selec. Top. Quant. 24 1100706Google Scholar

    [62]

    Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Opt. Express 25 16916Google Scholar

    [63]

    Wang Z, Zhan L, Wu J, Zou Z, Zhang L, Qian K, He L, Fang X 2015 Opt. Lett. 40 3699Google Scholar

    [64]

    Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C 2009 Adv. Mater. 21 3874Google Scholar

    [65]

    Cui Y D, Lu F F, Liu X M 2017 Sci. Rep. 7 40080Google Scholar

    [66]

    Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe R C T, Shehzad K, Yang Z, Zhu X, Woodward R I, Jussila H, Peng P, Sun Z, Kelleher E J R, Zhang M, Xu Y, Hasan T 2017 Nat. Commun. 8 278Google Scholar

    [67]

    Sobon G, Sotor J, Przewolka A, Pasternak I, Strupinski W, Abramski K 2016 Opt. Express 24 20359Google Scholar

    [68]

    Sotor J, Boguslawski J, Martynkien T, Mergo P, Krajewska A, Przewloka A, Strupinski W, Sobon G 2017 Opt. Lett. 42 1592Google Scholar

    [69]

    Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R A, Peyghambarian N 2016 Photonics Technol. Lett. 28 7Google Scholar

    [70]

    Xu H Y, Wan X J, Ruan Q J, Yang R H, Du T J, Chen N, Cai Z P, Luo Z Q 2018 IEEE J. Selec. Top. Quant. 24 1100209Google Scholar

    [71]

    Fang Y, Ge Y, Wang C, Zhang H 2020 Laser.Photonics.Rev 14 1900098Google Scholar

    [72]

    Qin Z P, Xie G Q, Zhao C J, Wen S C, Yuan P, Qian L J 2016 Opt. Lett. 41 56Google Scholar

    [73]

    Qin Z P, Hai T, Xie G Q, Ma J G, Yuan P, Qian L J, Li L, Zhao L M, Shen D Y 2018 Opt. Express 26 8224Google Scholar

    [74]

    Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2017 Opt. Lett. 42 5010Google Scholar

    [75]

    Zhao J Q, Zhou J, Li L, Klimczak M, Komarov A, Su L, Tang D Y, Shen D Y, Zhao L M 2019 Opt. Express 27 29770Google Scholar

    [76]

    Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080Google Scholar

    [77]

    Zhao L M, Tang D Y, Wu X, Lei D J, Wen S C 2007 Opt. Lett. 32 3191Google Scholar

    [78]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 31446Google Scholar

    [79]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 9339Google Scholar

    [80]

    Pawliszewska M, Martynkien T, Przewloka A, Sotor J 2018 Opt. Lett. 43 38Google Scholar

    [81]

    Yin K, Zhang B, Li L, Jiang T, Zhou X, Hou J 2015 Photon. Res. 3 72Google Scholar

    [82]

    Lee J, Koo J, Lee J, Jhon Y M, Lee J H 2017 Opt. Mater. Express 7 2968Google Scholar

    [83]

    Zhang Q, Jin X, Hu G, Zhang M, Jiang X, Zheng Z, Hasan T 2020 Conference on Lasers and Electro-Optics San Jose, USA, May 11–15, 2020 pSW4R.7

  • 图 1  超快脉冲激光器中实体可饱和吸收体研究进展[16]

    Figure 1.  Development of materials as real saturable absorber (SA) in lasers[16].

    图 2  二维纳米材料原子结构图 (a)石墨烯[19]; (b) TIs[23]; (c) TMDs[28,29]; (d) BP[36]; (e) MOFs[41]

    Figure 2.  Atomic structures of two-dimensional (2D) materials: (a) Graphene[19]; (b) TIs[23]; (c) TMDs[28,29]; (d) BP[36]; (e) MOFs[41].

    图 3  二维纳米材料制备方法原理图: 自上而下、自下而上、拓扑转化法

    Figure 3.  Schematic diagram fabrication methods of 2D materials: Top-down, bottom-up methods and Topological transformation.

    图 4  Ni-MOF结构特征图 (a) Ni-MOF SEM图; (b) Ni-MOF AFM图; (c) Ni-MOF拉曼谱[41]

    Figure 4.  (a) SEM image of the Ni-MOF showing a 2D layer structure; (b) AFM image of the Ni-MOF dissolved in an IPA solution; (c) raman spectrum of the Ni-MOF[41].

    图 5  (a) 双探头平衡探测法装置; (b) 1934 nm激光照射下材料可饱和吸收体数据及其拟合曲线[41]

    Figure 5.  (a) The setup of balanced twin-detector measurement; (b) the measured saturable absorption data and their corresponding fitting curve under 1934 nm laser irradiation[41].

    图 6  (a)开孔Z-扫描实验装置[64]; (b)基于Z-扫描可饱和吸收特性曲线图[55]

    Figure 6.  (a) A typical data set from Z-scan experiment of the SA device[64]; (b) the typical shapes of Z-scan measurements[55].

    图 7  二维纳米材料光纤集成: 传输集成法((a)三明治结构材料转移至光纤端面[66]); 倏逝波集成法((b) D型光纤[65]、(c)锥形光纤[41])

    Figure 7.  Fiber integration with two-dimensional materials: Transmission integration method ((a) sandwiching structure transferring SA on fiber end[66]); evanescent-wave integration method ((b) D-typed fiber[65], (c) tapered fiber[41]).

    图 8  (a)石墨烯脉冲激光器装置图[56]; (b)脉冲自相关图; (c)光谱图; (d) BP脉冲激光器装置图[40]; (e) 脉冲自相关图; (f)光谱图

    Figure 8.  (a) Setup of graphene based mode-locked fiber laser[56]; (b) autocorrection trace; (c) optical spectrum; (d) setup of the BP mode-locked fiber laser[40]; (e) autocorrelation trace; (f) optical spectrum.

    图 9  基于BP可饱和吸收体色散管理掺铥锁模光纤激光器最短脉冲 (a)激光器实验装置图; (b)锁模脉冲自相关图[83]

    Figure 9.  The shortest-pulse Tm-doped fiber laser based on BP at 2 μm spectral region: (a) Setup of Tm:fiber mode-locked laser; (b) autocorrelation trace[83].

    表 1  二维纳米材料带隙与载流子弛豫时间总结

    Table 1.  Bandgaps and carrier lifetime of 2D materials.

    2D materialGrapheneTIsTMDsBPMOFs
    Bandgap/eV00.2—0.31—2.00.3—20.85
    Carrier
    lifetime
    Fast: < 200 fs
    Slow: ~1 ps
    Fast: 0.3—2 ps
    Slow: 3—23 ps
    Fast: ~1—3 ps
    Slow: 70—400 ps
    Fast: 360 fs
    Slow: 1.3 ps
    DownLoad: CSV

    表 2  中红外波段各种二维纳米材料可饱和吸收体锁模光纤激光器性能总结

    Table 2.  Summary of mid-infrared mode-locked fiber lasers using 2D material based SAs.

    2D materialFabrication methodLaser typeλ/nmPulse width/psRepetition rate/MHzPower/mWRef.
    GrapheneLPETDF19403.66.462[56]
    GrapheneCVDTDF18841.220.51.35[22]
    GrapheneNPETDF19500.25523.51210[67]
    GrapheneCVDTDF19450.258.8713[68]
    GrapheneCVDEr:ZBLAN28004225.418[69]
    BPMETDF19100.73936.81.5[40]
    BPMEEr:ZBLAN28004224613[72]
    BPSonicationEr:ZBLAN3.53460028.9140[73]
    TMDs-WTe2MSDTDF19151.2518.7239.9[74]
    TIs-Bi2Te3METm/Ho19350.79527.920[27]
    MOFsSolvothermalTDF18821.313.92.87[41]
    DownLoad: CSV

    表 3  基于二维纳米材料可饱和吸收体掺铥/钬超快锁模光纤激光器性能对比

    Table 3.  Output Performance Comparison of reported thulium-doped and holmium-doped fiber lasers mode-locked with nanomaterial SAs

    2D materialFabrication methodLaser typeλ/nmPulse width/fsRepetition rate/MHzSpectral width /nmRef.
    GrapheneCVDTm19402606.469.4[78]
    GrapheneCVDTm1876603416.6[79]
    GrapheneCVDTm194520558.8727.5[68]
    GrapheneHo206019020.9853.6[80]
    TIs-Bi2Te3OpticallyTm/Ho1909126021.53.6[81]
    TIs-Bi2Te3METm/Ho193579527.95.6[27]
    TMDs-WSe2CVDTm1864116011.363.19[61]
    TMDs-MoTe2CVDTm193095214.354.45[60]
    TMDs-MoSe2LPETm/Ho191292018.214.62[82]
    BPMETm191073936.85.8[40]
    BPLPETm188613920.9555.6[83]
    DownLoad: CSV
  • [1]

    Hu J J, Meyer J, Richardson K, Shah L 2013 Opt. Mater. Express 3 1571Google Scholar

    [2]

    Gaimard Q, Triki M, Nguyen-Ba T, Cerutti L, Boissier G, Teissier R, Baranov A, Rouillard Y, Vicet A 2015 Opt. Express 23 19118Google Scholar

    [3]

    Geiser P 2015 Sensors 15 22724Google Scholar

    [4]

    Schwaighofer A, Alcaraz M R, Araman C, Goicoechea H, Lendl B 2016 Sci. Rep. 6 33556Google Scholar

    [5]

    Nishii J, Morimoto S, Inagawa I, Iizuka R, Yamashita T, Yamagishi T 1992 J Non. Cryst. Solids. 140 199Google Scholar

    [6]

    Spiers G D, Menzies R T, Jacob J, Christensen L E, Phillips M W, Choi Y, Browell E V 2011 Appl. Opt. 50 2098Google Scholar

    [7]

    Fuller T A 1986 Laser. Surg. Med. 6 399Google Scholar

    [8]

    Petersen C R, Moller U, Kubat I, Zhou B B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z Q, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar

    [9]

    Ouyang D, Zhao J, Zheng Z, Liu M, Li C, Ruan S, Yan P, Pei J 2016 IEEE Photon. J. 8 1600910Google Scholar

    [10]

    Zhang M, Kelleher E J R, Popov S V, Taylor J R 2014 Opt. Fiber Technol. 20 666Google Scholar

    [11]

    Wei C, Shi H X, Luo H Y, Zhang H, Lyu Y J, Liu Y 2017 Opt. Express 25 19170Google Scholar

    [12]

    Tang P H, Qin Z P, Liu J, Zhao C J, Xie G Q, Wen S C, Qian L J 2015 Opt. Lett. 40 4855Google Scholar

    [13]

    Li P, Ruehl A, Grosse-Wortmann U, Hartl I 2014 Opt. Lett. 39 6859Google Scholar

    [14]

    Li L, Huang H T, Su L, Shen D Y, Tang D Y, Klimczak M, Zhao L M 2019 Appl. Opt. 58 2745Google Scholar

    [15]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [16]

    Woodward R I, Kelleher E J R 2015 Appl. Sci-Basel 5 1440Google Scholar

    [17]

    Du J, Zhang M, Guo Z, Chen J, Zhu X, Hu G, Peng P, Zheng Z, Zhang H 2017 Sci. Rep. 7 42357Google Scholar

    [18]

    Song Y F, Chen S, Zhang Q, Li L, Zhao L M, Zhang H, Tang D Y 2016 Opt. Express 24 25933Google Scholar

    [19]

    Howe R C T, Hu G, Yang Z, Hasan T 2015 Proc. SPIE 9553 95530RGoogle Scholar

    [20]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611Google Scholar

    [21]

    Cusati T, Fiori G, Gahoi A, Passi V, Lemme M C, Fortunelli A, Iannaccone G 2017 Sci. Rep. 7 5109Google Scholar

    [22]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2013 Opt. Express 21 12797Google Scholar

    [23]

    Koski K J, Wessells C D, Reed B W, Cha J J, Kong D S, Cui Y 2012 J. Am. Chem. Soc. 134 13773Google Scholar

    [24]

    Boguslawski J, Sobon G, Zybala R, Sotor J 2015 Opt. Lett. 40 2786Google Scholar

    [25]

    Dou Z Y, Song Y R, Tian J R, Liu J H, Yu Z H, Fang X H 2014 Opt. Express 22 24055Google Scholar

    [26]

    Chi C, Lee J, Koo J, Lee J H 2014 Laser Phys 24 105106Google Scholar

    [27]

    Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S, Lee J H 2014 Opt. Express 22 7865Google Scholar

    [28]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [29]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [30]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [31]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Letters 10 1271Google Scholar

    [32]

    Mao D, Zhang S L, Wang Y D, Gan X T, Zhang W D, Mei T, Wang Y G, Wang Y S, Zeng H B, Zhao J L 2015 Opt. Express 23 27509Google Scholar

    [33]

    Zhang M, Hu G, Hu G, Howe R C T, Chen L, Zheng Z, Hasan T 2015 Sci. Rep. 5 17482Google Scholar

    [34]

    Ye Z L, Cao T, O'Brien K, Zhu H Y, Yin X B, Wang Y, Zhang X 2014 Nature 513 214Google Scholar

    [35]

    Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166Google Scholar

    [36]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [37]

    Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 11183Google Scholar

    [38]

    Low T, Roldan R, Wang H, Xia F N, Avouris P, Moreno L M, Guinea F 2014 Phys. Rev. Lett. 113 106802Google Scholar

    [39]

    Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar

    [40]

    Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885Google Scholar

    [41]

    Zhang Q, Jiang X, Zhang M, Jin X, Zhang H, Zheng Z 2020 Nanoscale 12 4586Google Scholar

    [42]

    Cho H S, Deng H, Miyasaka K, Dong Z, Cho M, Neimark A V, Kang J K, Yaghi O M, Terasaki O 2015 Nature 527 503Google Scholar

    [43]

    Maspoch D, Ruiz-Molina D, Wurst K, Domingo N, Cavallini M, Biscarini F, Tejada J, Rovira C, Veciana J 2003 Nat. Mater. 2 190Google Scholar

    [44]

    Evans O R, Lin W B 2002 Acc. Chem. Res. 35 511Google Scholar

    [45]

    Qu F, Jiang H, Yang M 2016 Nanoscale 8 16349Google Scholar

    [46]

    Guo B 2018 Chin. Opt. Lett. 16 020004Google Scholar

    [47]

    Du Z, Yang S, Li S, Lou J, Zhang S, Wang S, Li B, Gong Y, Song L, Zou X, Ajayan P M 2020 Nature 577 492Google Scholar

    [48]

    Sotor J, Sobon G, Macherzynski W, Paletko P, Grodecki K, Abramski K M 2014 Opt. Mater. Express 4 1Google Scholar

    [49]

    Chang Y M, Kim H, Lee J H, Song Y W 2010 Appl. Phys. Lett. 97 211102Google Scholar

    [50]

    Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 Acs Nano 7 9260Google Scholar

    [51]

    Zhang X D, Xie Y 2013 Chem. Soc. Rev. 42 8187Google Scholar

    [52]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [53]

    Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z M, McGovern I T, Duesberg G S, Coleman J N 2009 J. Am. Chem. Soc. 131 3611Google Scholar

    [54]

    Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N 2011 Adv. Mater. 23 3944Google Scholar

    [55]

    Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C T, Wu Q, Zheng Z, Hasan T 2018 Opt. Express 26 12506Google Scholar

    [56]

    Zhang M, Kelleher E J R, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R 2012 Opt. Express 20 25077Google Scholar

    [57]

    Sotor J, Pawliszewska M, Sobon G, Kaczmarek P, Przewolka A, Pasternak I, Cajzl J, Peterka P, Honzatko P, Kasik I, Strupinski W, Abramski K 2016 Opt. Lett. 41 2592Google Scholar

    [58]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438Google Scholar

    [59]

    Moore J E 2010 Nature 464 194Google Scholar

    [60]

    Wang J, Chen H, Jiang Z, Yin J, Wang J, Zhang M, He T, Li J, Yan P, Ruan S 2018 Opt. Lett. 43 1998Google Scholar

    [61]

    Wang J, Lu W, Li J, Chen H, Jiang Z, Wang J, Zhang W, Zhang M, Li I L, Xu Z, Liu W, Yan P 2018 IEEE J. Selec. Top. Quant. 24 1100706Google Scholar

    [62]

    Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Opt. Express 25 16916Google Scholar

    [63]

    Wang Z, Zhan L, Wu J, Zou Z, Zhang L, Qian K, He L, Fang X 2015 Opt. Lett. 40 3699Google Scholar

    [64]

    Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C 2009 Adv. Mater. 21 3874Google Scholar

    [65]

    Cui Y D, Lu F F, Liu X M 2017 Sci. Rep. 7 40080Google Scholar

    [66]

    Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe R C T, Shehzad K, Yang Z, Zhu X, Woodward R I, Jussila H, Peng P, Sun Z, Kelleher E J R, Zhang M, Xu Y, Hasan T 2017 Nat. Commun. 8 278Google Scholar

    [67]

    Sobon G, Sotor J, Przewolka A, Pasternak I, Strupinski W, Abramski K 2016 Opt. Express 24 20359Google Scholar

    [68]

    Sotor J, Boguslawski J, Martynkien T, Mergo P, Krajewska A, Przewloka A, Strupinski W, Sobon G 2017 Opt. Lett. 42 1592Google Scholar

    [69]

    Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R A, Peyghambarian N 2016 Photonics Technol. Lett. 28 7Google Scholar

    [70]

    Xu H Y, Wan X J, Ruan Q J, Yang R H, Du T J, Chen N, Cai Z P, Luo Z Q 2018 IEEE J. Selec. Top. Quant. 24 1100209Google Scholar

    [71]

    Fang Y, Ge Y, Wang C, Zhang H 2020 Laser.Photonics.Rev 14 1900098Google Scholar

    [72]

    Qin Z P, Xie G Q, Zhao C J, Wen S C, Yuan P, Qian L J 2016 Opt. Lett. 41 56Google Scholar

    [73]

    Qin Z P, Hai T, Xie G Q, Ma J G, Yuan P, Qian L J, Li L, Zhao L M, Shen D Y 2018 Opt. Express 26 8224Google Scholar

    [74]

    Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2017 Opt. Lett. 42 5010Google Scholar

    [75]

    Zhao J Q, Zhou J, Li L, Klimczak M, Komarov A, Su L, Tang D Y, Shen D Y, Zhao L M 2019 Opt. Express 27 29770Google Scholar

    [76]

    Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080Google Scholar

    [77]

    Zhao L M, Tang D Y, Wu X, Lei D J, Wen S C 2007 Opt. Lett. 32 3191Google Scholar

    [78]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 31446Google Scholar

    [79]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 9339Google Scholar

    [80]

    Pawliszewska M, Martynkien T, Przewloka A, Sotor J 2018 Opt. Lett. 43 38Google Scholar

    [81]

    Yin K, Zhang B, Li L, Jiang T, Zhou X, Hou J 2015 Photon. Res. 3 72Google Scholar

    [82]

    Lee J, Koo J, Lee J, Jhon Y M, Lee J H 2017 Opt. Mater. Express 7 2968Google Scholar

    [83]

    Zhang Q, Jin X, Hu G, Zhang M, Jiang X, Zheng Z, Hasan T 2020 Conference on Lasers and Electro-Optics San Jose, USA, May 11–15, 2020 pSW4R.7

  • [1] Yu Xue-Zhou, Huang Chang-Bao, Wu Hai-Xin, Hu Qian-Qian, Liu Guo-Jin, Li Ya, Zhu Zhi-Cheng, Qi Hua-Bei, Ni You-Bao, Wang Zhen-You. Theoretical study of Dy3+, Na+: PbGa2S4 mid-infrared laser based on experimental parameters. Acta Physica Sinica, 2024, 73(16): 164203. doi: 10.7498/aps.73.20240223
    [2] Yao Xiao-Dai, Wu Shuang, Zhao Rui, Wu Miao-Xin, Liu Hang, Jin Guang-Yong, Yu Yong-Ji. 3.4 μm mid-infrared pulse train laser based on stepped acousto-optic Q-switched external cavity pumped MgO:PPLN optical parametric oscillator. Acta Physica Sinica, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [3] Yang Jia-Qi, Zhao Gang, Jiao Kang, Gao Jian, Yan Xiao-Juan, Zhao Yan-Ting, Ma Wei-Guang, Jia Suo-Tang. Research on generation of stable mid-infrared lasers with narrow linewidths based on optical feedback locking. Acta Physica Sinica, 2024, 73(1): 014205. doi: 10.7498/aps.73.20231049
    [4] Xia Wen-Xin, Fu Shi-Jie, Zhang Jun-Xiang, Zhang Lu, Sheng Quan, Luo Xue-Wen, Shi Wei, Yao Jian-Quan. Numerical analysis and optimization of 2.8 μm lightly-erbium-doped fluoride fiber laser based on cascaded transition. Acta Physica Sinica, 2023, 72(22): 224205. doi: 10.7498/aps.72.20230903
    [5] Zhang Di-Yu, Lan Wen-Di, Li Xue-Feng, Zhang Su-Su, Guo Fu-Ming, Yang Yu-Jun. Influence of driving-laser wavelength on emission of high-order harmonic wave generated by atoms irradiated by ultrashort laser pulse. Acta Physica Sinica, 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [6] Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong. Optimization of thermal performance of cladding power stripper in fiber laser. Acta Physica Sinica, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [7] Hao Qian-Qian, Zong Meng-Yu, Zhang Zhen, Huang Hao, Zhang Feng, Liu Jie, Liu Dan-Hua, Su Liang-Bi, Zhang Han. Bismuth nanosheets based saturable-absorption passively Q-switching mid-infrared single-crystal fiber laser. Acta Physica Sinica, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [8] Liu Zhi-Wei, Zhang Bin, Chen Yu. Two-dimensional nanomaterials and their derivatives for laser protection. Acta Physica Sinica, 2020, 69(18): 184201. doi: 10.7498/aps.69.20200313
    [9] Yang Wen-Hai, Diao Wen-Ting, Cai Chun-Xiao, Song Xue-Rui, Feng Fu-Pan, Zheng Yao-Hui, Duan Chong-Di. Comparative study of squeezed vacuum states prepared by using 1064-nm solid-state and fiber-laser as pump source. Acta Physica Sinica, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [10] Hu Bo, Wu Yue-Hao, Zheng Yu-Lu, Dai Shi-Xun. Fabrication and characterization of chalcogenide glass microsphere lasers operating at 2 μm. Acta Physica Sinica, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [11] Wang Cong, Liu Jie, Zhang Han. Ultrafast pulse lasers based on two-dimensinal nanomaterials. Acta Physica Sinica, 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [12] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [13] Zhou Rui, Zhang Jing, Hu Man-Li, Feng Zhong-Yao, Gao Hong, Yang Yang, Zhang Jing-Hua, Qiao Xue-Guang. A vibration detection system based on two-stage polarization maintaining fiber Sagnac loop fiber laser. Acta Physica Sinica, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [14] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [15] Jiang Jian, Chang Jian-Hua, Feng Su-Juan, Mao Qing-He. Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers. Acta Physica Sinica, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [16] Zhang Chi, Hu Ming-Lie, Song You-Jian, Zhang Xin, Chai Lu, Wang Qing-Yue. An Yb-doped large-mode-area photonic crystal fiber mode-locking laser with free output coupler. Acta Physica Sinica, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [17] Ren Guang-Jun, Wei Zhen, Yao Jian-Quan. Q-switched pulse polarization-maintaining Nd3+-doped fiber laser. Acta Physica Sinica, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [18] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [19] Wang Jian-Ming, Duan Kai-Liang, Wang Yi-Shan. Experimental study of coherent beam combining of two fiber lasers. Acta Physica Sinica, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [20] Ren Guang-Jun, Zhang Qiang, Wang Peng, Yao Jian-Quan. Study of Nd3+-doped polarization-maintaining fiber laser. Acta Physica Sinica, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
Metrics
  • Abstract views:  11043
  • PDF Downloads:  330
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2020
  • Accepted Date:  12 June 2020
  • Available Online:  17 September 2020
  • Published Online:  20 September 2020

/

返回文章
返回