Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Counter-rotating effect on frequency shift of flux qubit in ultrastrongly coupled circuit-quantum-electrodynamics system

Chen Zhen Wang Shuai-Peng Li Tie-Fu You Jian-Qiang

Citation:

Counter-rotating effect on frequency shift of flux qubit in ultrastrongly coupled circuit-quantum-electrodynamics system

Chen Zhen, Wang Shuai-Peng, Li Tie-Fu, You Jian-Qiang
PDF
HTML
Get Citation
  • In recent years, quantum Rabi model has aroused considerable interest because of its fundamental importance and potential applications in quantum technologies. For a conventional cavity-quantum-electrodynamic (cavity-QED) system involving the interaction between an atom and photons in a cavity, the atom-photon coupling frequency is much smaller than the transition frequency of the atom and the frequency of the cavity mode. This cavity-QED system is usually described by the Jaynes-Cummings model in which the rotating-wave approximation can be adopted by neglecting the counter-rotating coupling terms in the Hamiltonian of the system. However, by designing the unique structure of the superconducting circuit, the ultrastrong-coupling regime can be achieved in a circuit-QED system in which the counter-rotating coupling terms become as important as the rotating terms. Thus, the rotating-wave approximation cannot be used in the ultrastrongly coupled circuit-QED system. Owing to the ultrastrong coupling, this circuit-QED system is described by the standard quantum Rabi model when a superconducting qubit is coupled only to a single resonator mode. In this work, we experimentally study an ultrastrongly coupled circuit-QED system consisting of a four-junction superconducting flux qubit and a muti-mode coplanar-waveguide resonator. The transmission-spectrum measurement and numerical simulations show that the system is in the ultrastrong-coupling regime. By changing the photon number in the resonator, we observe the frequency shift of the flux qubit via the spectroscopic measurement. This frequency shift contains the contributions from not only the rotating-coupling terms but also the counter-rotating terms, which is in good agreement with the theory. The result indicates that this ultrastrongly-coupled quantum system can be used as a good platform to investigate the quantum Rabi model and has potential applications in various aspects of quantum technology, such as quantum simulation, ultrafast quantum gates, entangled-state preparation and protected qubits.
      Corresponding author: Li Tie-Fu, litf@tsinghua.edu.cn ; You Jian-Qiang, jqyou@zju.edu.cn
    [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [2]

    You J Q, Nori F 2005 Phys. Today 58 42Google Scholar

    [3]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [4]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [5]

    You J Q, Nori F 2003 Phys. Rev. B 68 064509Google Scholar

    [6]

    Yang C P, Chu S I, Han S 2003 Phys. Rev. A 67 042311Google Scholar

    [7]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162Google Scholar

    [8]

    赵士平, 刘玉玺, 郑东宁 2018 物理学报 67 228501Google Scholar

    Zhao S P, Liu Y X, Zheng D N 2018 Acta Phys. Sin. 67 228501Google Scholar

    [9]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718

    [10]

    Nakamura Y, Pashkin Yu A, Tsai J S 1999 Nature 398 786Google Scholar

    [11]

    Mooij J E, Orlando T P, Levitov L, Tian L, van der Wal C H, Lloyd S 1999 Science 285 1036Google Scholar

    [12]

    Yu Y, Han S, Chu X, Chu S I, Wang Z 2002 Science 296 889Google Scholar

    [13]

    Martinis J M, Nam S, Aumentado J, Urbina C 2002 Phys. Rev. Lett. 89 117901Google Scholar

    [14]

    You J Q, Hu X, Ashhab S, Nori F 2007 Phys. Rev. B 75 140515Google Scholar

    [15]

    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Commun. 7 12964Google Scholar

    [16]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [17]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O’Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [18]

    金贻荣, 郑东宁 2017 科学通报 62 3935Google Scholar

    Jin Y R, Zheng D N 2017 Chin. Sci. Bull. 62 3935Google Scholar

    [19]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [20]

    Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X, Pan J W 2019 Science 364 753Google Scholar

    [21]

    Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang D W, Wang H, Zhu S Y 2019 Science 365 574Google Scholar

    [22]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [23]

    Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A, Gross R 2010 Nat. Phys. 6 772Google Scholar

    [24]

    Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, Semba K 2017 Nat. Phys. 13 44

    [25]

    Forn-Díaz P, García-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M, Lupascu A 2017 Nat. Phys. 13 39

    [26]

    Chen Z, Wang Y, Li T F, Tian L, Qiu Y Y, Inomata K, Yoshihara F, Han S, Nori F, Tsai J S, You J Q 2017 Phys. Rev. A 96 012325Google Scholar

    [27]

    Abdumalikov A A, Astafiev O, Nakamura Y, Pashkin Y A, Tsai J S 2008 Phys. Rev. B 78 180502Google Scholar

    [28]

    Zhu X B, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M, Mizuochi N, Semba K 2011 Nature 478 221Google Scholar

    [29]

    Zhu X B, Matsuzaki Y, Amsüss R, Kakuyanagi K, Shimo-Oka T, Mizuochi N, Nemoto K, Semba K, J. Munro W, Saito S 2014 Nat. Commun. 5 3524Google Scholar

    [30]

    Bertet P, Chiorescu I, Chiorescu G, Semba K, Harmans C J P M, DiVincenzo D P, Mooij J E 2005 Phys, Rev. Lett. 95 257002Google Scholar

    [31]

    Qiu Y, Xiong W, He X L, Li T F, You J Q 2016 Sci. Rep. 6 28622Google Scholar

    [32]

    Puebla R, Hwang M J, Casanova J, Plenio M B 2017 Phys. Rev. Lett. 118 073001Google Scholar

    [33]

    Wang Y M, Ballester D, Romero G, Scarani V, Solano E 2012 Phys. Scr. T 147 014031Google Scholar

    [34]

    Ashhab S, Nori F 2010 Phys. Rev. A 81 042311Google Scholar

    [35]

    Nataf P, Ciuti C 2011 Phys. Rev. Lett. 107 190402Google Scholar

  • 图 1  实验装置 (a)测量系统, 其中信号由网络分析仪和微波源发出, 经过衰减合成后进入稀释制冷机内部, 样品处在制冷机的最低温区, 测试时温度为20 mK; (b)共面波导谐振腔示意图, 磁通量子比特处于谐振腔中心, 黄色、蓝色曲线分别为第一、三模式电流分布; (c)磁通量子比特扫描电子显微镜图像

    Figure 1.  Experimental setup: (a) Measurement system: signals from both the PNA and the PSG generator are combined and attenuated before entering the dilution refrigerator; the sample is placed in the sample chamber of the refrigerator whose working temperature is 20 mK; (b) the schematic of the coplanar-waveguide resonator, with a four-junction flux qubit located at the center of the resonator; yellow and blue curves are current distributions of the first and third modes of the resonator, respectively; (c) the scanning electron microscope images of the flux qubit.

    图 2  系统传输谱随磁通量偏置的变化 (a)腔第三模式传输谱随磁通量偏置的变化; (b)腔第一模式传输谱随磁通量偏置的变化; 图中拟合红色虚线为哈密顿量(2)式数值解的结果

    Figure 2.  The transmission |S21| as a function of the flux bias: (a) The transmission |S21| of the third mode of the resonator as a function of the flux bias; (b) the transmission |S21| of the first mode of the resonator as a function of the flux bias. Red dashed curves are the fitting results numerically obtained from the Hamiltonian (2) equation.

    图 3  腔第一模式测量的系统能谱随外加磁通偏置的变化, 红色拟合虚线代表量子比特基态到激发态跃迁频率, 测量时腔内的平均光子数为${\bar n_1} = {\rm{4}}{\rm{.7}} \times {\rm{1}}{{\rm{0}}^{ - 3}}$

    Figure 3.  The spectrum measured using the first mode of the resonator as a function of the flux bias. The red dashed curve is the numerical result for the qubit transition and the average photon number in the resonator is ${\bar n_1} = $4.7 × 10–3.

    图 4  量子比特频率随光子数的变化, 红色实线表示包含交流斯塔克和布洛赫-西格特效应的拟合曲线, 蓝色虚线只包含交流斯塔克效应

    Figure 4.  The qubit transition frequency as a function of the average photon number. The red solid curve denotes the simulation results when both the ac Stark and Bloch-Siegert shifts are included. The blue dashed curve denotes the simulation results when only the Bloch-Siegert shift is included.

  • [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [2]

    You J Q, Nori F 2005 Phys. Today 58 42Google Scholar

    [3]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [4]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [5]

    You J Q, Nori F 2003 Phys. Rev. B 68 064509Google Scholar

    [6]

    Yang C P, Chu S I, Han S 2003 Phys. Rev. A 67 042311Google Scholar

    [7]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162Google Scholar

    [8]

    赵士平, 刘玉玺, 郑东宁 2018 物理学报 67 228501Google Scholar

    Zhao S P, Liu Y X, Zheng D N 2018 Acta Phys. Sin. 67 228501Google Scholar

    [9]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718

    [10]

    Nakamura Y, Pashkin Yu A, Tsai J S 1999 Nature 398 786Google Scholar

    [11]

    Mooij J E, Orlando T P, Levitov L, Tian L, van der Wal C H, Lloyd S 1999 Science 285 1036Google Scholar

    [12]

    Yu Y, Han S, Chu X, Chu S I, Wang Z 2002 Science 296 889Google Scholar

    [13]

    Martinis J M, Nam S, Aumentado J, Urbina C 2002 Phys. Rev. Lett. 89 117901Google Scholar

    [14]

    You J Q, Hu X, Ashhab S, Nori F 2007 Phys. Rev. B 75 140515Google Scholar

    [15]

    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Commun. 7 12964Google Scholar

    [16]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [17]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O’Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [18]

    金贻荣, 郑东宁 2017 科学通报 62 3935Google Scholar

    Jin Y R, Zheng D N 2017 Chin. Sci. Bull. 62 3935Google Scholar

    [19]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [20]

    Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X, Pan J W 2019 Science 364 753Google Scholar

    [21]

    Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang D W, Wang H, Zhu S Y 2019 Science 365 574Google Scholar

    [22]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [23]

    Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A, Gross R 2010 Nat. Phys. 6 772Google Scholar

    [24]

    Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, Semba K 2017 Nat. Phys. 13 44

    [25]

    Forn-Díaz P, García-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M, Lupascu A 2017 Nat. Phys. 13 39

    [26]

    Chen Z, Wang Y, Li T F, Tian L, Qiu Y Y, Inomata K, Yoshihara F, Han S, Nori F, Tsai J S, You J Q 2017 Phys. Rev. A 96 012325Google Scholar

    [27]

    Abdumalikov A A, Astafiev O, Nakamura Y, Pashkin Y A, Tsai J S 2008 Phys. Rev. B 78 180502Google Scholar

    [28]

    Zhu X B, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M, Mizuochi N, Semba K 2011 Nature 478 221Google Scholar

    [29]

    Zhu X B, Matsuzaki Y, Amsüss R, Kakuyanagi K, Shimo-Oka T, Mizuochi N, Nemoto K, Semba K, J. Munro W, Saito S 2014 Nat. Commun. 5 3524Google Scholar

    [30]

    Bertet P, Chiorescu I, Chiorescu G, Semba K, Harmans C J P M, DiVincenzo D P, Mooij J E 2005 Phys, Rev. Lett. 95 257002Google Scholar

    [31]

    Qiu Y, Xiong W, He X L, Li T F, You J Q 2016 Sci. Rep. 6 28622Google Scholar

    [32]

    Puebla R, Hwang M J, Casanova J, Plenio M B 2017 Phys. Rev. Lett. 118 073001Google Scholar

    [33]

    Wang Y M, Ballester D, Romero G, Scarani V, Solano E 2012 Phys. Scr. T 147 014031Google Scholar

    [34]

    Ashhab S, Nori F 2010 Phys. Rev. A 81 042311Google Scholar

    [35]

    Nataf P, Ciuti C 2011 Phys. Rev. Lett. 107 190402Google Scholar

  • [1] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [2] Tan Wei-Han, Zhao Chao-Ying, Guo Qi-Zhi. Entanglement criterion of N qubit system. Acta Physica Sinica, 2023, 72(1): 010301. doi: 10.7498/aps.72.20221524
    [3] Zhao Yan-Jun, Tan Ning, Wang Yu-Qi, Zheng Ya-Rui, Wang Hui, Liu Wu-Ming. Quantum state transport in a square-lattice superconducting qubit circuit under gauge potential. Acta Physica Sinica, 2023, 72(10): 100304. doi: 10.7498/aps.72.20222349
    [4] Xu Da, Wang Yi-Pu, Li Tie-Fu, You Jian-Qiang. Coherent coupling in a driven qubit-magnon hybrid quantum system. Acta Physica Sinica, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [5] Liao Qing-Hong, Deng Wei-Can, Wen Jian, Zhou Nan-Run, Liu Nian-Hua. Phonon blockade induced by a non-Hermitian Hamiltonian in a nanomechanical resonator coupled with a qubit. Acta Physica Sinica, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [6] Yang Jian-Yong, Chen Hua-Jun. All-optical mass sensing based on ultra-strong coupling quantum dot-nanomechanical resonator system. Acta Physica Sinica, 2019, 68(24): 246302. doi: 10.7498/aps.68.20190607
    [7] Yang Yang, Wang An-Min, Cao Lian-Zhen, Zhao Jia-Qiang, Lu Huai-Xin. Correlation and coherence for two-qubit system coupled to XY spin chains. Acta Physica Sinica, 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [8] Chen Kun, Deng You-Jin. Higgs mode near superfluid-to-Mott-insulatortransition studied by the quantum Monte Carlo method. Acta Physica Sinica, 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [9] Yang Yang, Wang An-Min. Quantum correlation for a central two-qubit system coupled to Ising chain. Acta Physica Sinica, 2013, 62(13): 130305. doi: 10.7498/aps.62.130305
    [10] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [11] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Photon squeezing of the Rabi model. Acta Physica Sinica, 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [12] Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu. Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [13] Gao Kuan-Yun, Zhao Cui-Lan. Properties of quantum bit in quantum ring. Acta Physica Sinica, 2008, 57(7): 4446-4449. doi: 10.7498/aps.57.4446
    [14] XU KUN-MING, SHEN YA-FEI, YAO XI-XIAN. THE MAGNETIC FIELD DEPENDENCE OF THE QUASI-FLU- XON OF EXCITATION IN THE CIRCULAR SYMMETRIC ANNULAR JOSEPHSON JUNCTION. Acta Physica Sinica, 1989, 38(6): 938-946. doi: 10.7498/aps.38.938
    [15] DING XIU-XIANG, LIANG JIU-QING. ANGULAR MOMENTUM OF SUPERELECTRONS AND THE MAGNETIC FLUX QUANTIZATION. Acta Physica Sinica, 1988, 37(11): 1752-1759. doi: 10.7498/aps.37.1752
    [16] ZHANG YU-HENG. THE PHYSICAL ESSENCE FOR THE STEP STRUCTURES OR OSCILLATING EFFECT OF DC JOSEPHSON CORRENT WITHIN ONE FLUX QUANTUM PERIOD φ0. Acta Physica Sinica, 1984, 33(2): 210-220. doi: 10.7498/aps.33.210
    [17] ZHANG YU-HENG, SHEN XIU-LING, ZHENG JIE-FEI, WU YAN, WANG MAO-QUAN. THE STEP STRUCTURES EFFECT OF DC JOSEPHSON CURRENT WITHIN ONE FLUX QUANTUM PERIOD φ0(Ⅱ)—— JOSEPHSON JUNCTION WITH LARGER DIMENSIONS. Acta Physica Sinica, 1984, 33(8): 1075-1083. doi: 10.7498/aps.33.1075
    [18] ZHANG YU-HENG, LI YU-ZHI, ZHENG JIE-FEI. THE STEP STRUCTURE EFFECT OF DC JOSEPHSON CURRENT WITHIN ONE FLUX QUANTUM PERIOD (Ⅰ)——SQUID CONSISTING OF TWO JUNCTIONS. Acta Physica Sinica, 1984, 33(1): 58-68. doi: 10.7498/aps.33.58
    [19] CHENG GENG-HUA, ZHANG YU-HENG. THE SUPERCURRENT OSCILLATIONS WITHIN ONE FLUX QUANTUM PERIOD φ0 FOR WEAK LINKS (Ⅱ)——THE SUPERCONDUCTING RING CONTAINING A WEAK LINK. Acta Physica Sinica, 1982, 31(7): 932-938. doi: 10.7498/aps.31.932
    [20] ZHANG YU-HENG, CHENG GENG-HUA. THE SUPERCURRENT OSCILLATIONS WITHIN ONE FLUX QUANTUM PERIOD φ0 FOR WEAK LINKS (I)——THE JOSEPHSON JUNCTION. Acta Physica Sinica, 1982, 31(6): 749-757. doi: 10.7498/aps.31.749
Metrics
  • Abstract views:  7103
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2020
  • Accepted Date:  24 April 2020
  • Published Online:  20 June 2020

/

返回文章
返回