Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical investigation of one-dimensional unsteady detonation wave characteristics of magnesium particle-air mixture

Liu Long Xia Zhi-Xun Huang Li-Ya Ma Li-Kun Chen Bin-Bin

Citation:

Numerical investigation of one-dimensional unsteady detonation wave characteristics of magnesium particle-air mixture

Liu Long, Xia Zhi-Xun, Huang Li-Ya, Ma Li-Kun, Chen Bin-Bin
PDF
HTML
Get Citation
  • In this paper, a one-dimensional unsteady model is established for the detonation of magnesium particle-air mixture. Through numerical simulation, the influences of the loss caused by the side wall of the detonation tube, the diameter of the magnesium particles, the initial equivalent ratio of the magnesium particles, and the deposition process on the surface of the particles, and the ignition energy on the structure and development of the detonation wave and the distribution of the flow field parameters inside the detonation wave are obtained. The studies show that there appear oscillations during the propagation of the fully developed one-dimensional unsteady detonation wave of magnesium particle-air mixture, but the amplitude is less than 1 m/s. Considering the loss of the wall, the pressure and temperature inside the detonation wave decrease with the inner diameter of the detonation tube decreasing, thus leading the propagation velocity and the thickness of the detonation wave decreasing. In the case without the wall loss, as the initial particle size increases, the detonation wave velocity remains unchanged, and the detonation wave thickness monotonically increases. With the wall loss taken into consideration, the stable velocity and thickness of detonation wave are lower than without considering the wall loss under the same initial conditions. Both the difference between the velocities and the difference between thickness values under the conditions with and without considering the wall loss increase as initial particle size increases. The detonation wave thickness with a double-size-distribution initial particle size is more than that with an equivalent single-size-distribution. Meanwhile the stable propagation velocity of the former is less than that of the latter. In the range of initial particle equivalent ratio of 0.5–2, as the initial equivalent ratio increases, the stable velocity of ideal detonation wave first increases and then decreases, and the thickness of the detonation wave first decreases and then increases. Considering the loss of the wall, with the increase of the initial equivalence ratio, the stable velocity of detonation wave first decreases and then increases and the thickness of the detonation wave monotonically decreases. When the initial equivalence ratio of the initial particles is in a lower range (0.337–0.382), the melting of MgO occurs near the CJ plane. As a result, the melting process of MgO has no significant effect on the stability of the detonation wave propagation, but has a greater influence on the structure of the detonation wave: when the initial equivalence ratio is lower in the above range, MgO in the detonation wave is partially melted and then re-solidified. When the initial equivalence ratio is higher in the above range, the MgO at the CJ plane is still in the melting process, and there is a low-strength secondary compression process in the detonation wave. Considering the fact that the combustion products are deposited on the particle surface, the detonation wave velocity increases while the corresponding thickness of the detonation wave remains almost unchanged with the increase of the deposition rate. The parameters of the ignition region have no influence on the final stable propagation state of the detonation wave, but will affect the development process of the detonation wave. Selecting appropriate paraneters of ignition zone can shorten the distance of denotation wave reaching to the steady propagation.
      Corresponding author: Xia Zhi-Xun, zxxia@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 51706241, 11572349)
    [1]

    Veyssiere B, Ingignoli W 2003 Shock Waves 12 291Google Scholar

    [2]

    Palaszewski B, Jurns J, Breisacher K, Kearns K 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p4191

    [3]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov, Yu A 2010 Dokl. Phys. 55 142Google Scholar

    [4]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2011 Combust. Explo. Shock. 47 473Google Scholar

    [5]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2012 Combust. Explo. Shock. 48 203Google Scholar

    [6]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2013 Combust. Explo. Shock. 49 705Google Scholar

    [7]

    Bykovskii F A, Zhdan S A, Vedernikov E F 2014 Combust. Explo. Shock. 50 214Google Scholar

    [8]

    刘龙, 夏智勋, 黄利亚, 马立坤, 那旭东 2019 物理学报 68 244701Google Scholar

    Liu L, Xia Z X, Huang L Y, Ma L K, Na X D 2019 Acta Phys. Sin. 68 244701Google Scholar

    [9]

    Gosteev Y A, Fedorov A V 2005 Combust. Expl. Shock Waves 41 190Google Scholar

    [10]

    Zhang F. 2009 Shock Wave Science and Technology Reference Library (Vol.4) (Berlin, Heidelberg: Springer) pp99, 153, 159

    [11]

    Cassel H M, Liebman I 1962 Combust. Flame. 6 153Google Scholar

    [12]

    洪滔, 秦承森 1999 爆炸与冲击 19 335Google Scholar

    Hong T, Qing C S 1999 Expl. Shock Wave 19 335Google Scholar

    [13]

    Derevyaga M E, Stesik L N, Fedorin E A 1978 Combust. Explo. Shock. 5 3

    [14]

    冯运超 2014 硕士学位论文(长沙: 国防科学技术大学)

    Feng Y C 2014 Master Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [15]

    Pilling N B, Bedworth R E 1923 Journal Inst. Met 29 529

    [16]

    Ezhovskii G K, Ozerov E S 1977 Combust. Explo. Shock. 13 716Google Scholar

    [17]

    Ezhovskii G K, Ozerov E S, Roshchenya Y V 1979 Combust. Explo. Shock. 15 194Google Scholar

    [18]

    Bloshenko V N, Merzhanov A G, Khaikin B I 1976 Combust. Explo. Shock. 12 612Google Scholar

    [19]

    Valov A E, Gusachenko E I, Shevtsov V I 1991 Combust. Explo. Shock. 27 393Google Scholar

    [20]

    洪滔, 秦承森 2004 爆炸与冲击 24 193Google Scholar

    Hong T, Qing C S 2004 Expl. Shock Wave 24 193Google Scholar

    [21]

    Lee  J  H  S  1998  The Detonation Phenomenon (New York:Cambridge University Press) p108

    [22]

    Steinberg T A, Wilson D, Benz F 1992 Combust. Flame 91 200Google Scholar

    [23]

    杨晋朝 2013 博士学位论文(长沙: 国防科学技术大学)

    Yang J C 2013 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [24]

    杨涛, 方丁酉, 唐乾刚 2008 火箭发动机燃烧原理 (长沙: 国防科技大学出版社)

    Yang T, Fang D J, Tang Q G 2008 Combustion Principle of Rocket Engine (Changsha: National Defense Science and Technology University Press) (in Chinese)

    [25]

    Abbud-Madrid A, Modak A, Branch M C 2001 J. Propul. Power 17 852Google Scholar

    [26]

    Fox T W, Rackett C W, Nicholls J A 1978 Proceedings of the 11th International Symposium on Shock Waves and Tubes, Seattle, USA, July 11–14, 1978 p262

    [27]

    韦伟, 翁春生 2017 固体火箭技术 40 41

    Wei W, Wen C S 2017 J. Solid Rock. Technol. 40 41

    [28]

    潘啸, 翁春生 2017 南京理工大学学报(自然科学版) 41 1

    Pan X, Weng C H 2017 J. Nanjing Univ. Sci. Technol. 41 1

    [29]

    杨晋朝, 夏智勋, 胡建新 2013 物理学报 62 074701Google Scholar

    Yang J C, Xia Z X, Hu J X 2013 Acta Phys. Sin. 62 074701Google Scholar

    [30]

    Fedorov A V, Khmel’ T A 1999 Combust. Expl. Shock Waves 9 313

    [31]

    Zhang F, Grönig H, Van de Ven A 2001 Shock Waves 11 53Google Scholar

    [32]

    Li Y, Alexander C G, Wolanski P, Kauffman C W, Sichel M 1993 13 th International Colloquium on Dynamics of Explosions and Reactive Systems Nagoya, Japan, July 28–August 2, 1991 p170

    [33]

    Tulis A J, Selman J R 1982 19th Symposium (International) on Combustion, The Combustion Institute, Haifa, Israel, August 8–13 1982 p655

    [34]

    刘庆明, 范宝春, 陈志华, 李鸿志 1997 实验力学 12 376

    Liu Q M, Fan B C, Chen Z H, Li H Z 1997 J. Exp. Mech. 12 376

  • 图 1  不同网格尺度对应的压力分布

    Figure 1.  Spatial distribution of the gas-phase pressure with different grid sizes.

    图 2  不同时刻爆震波压力峰附近的压力分布

    Figure 2.  Pressure distribution near peak at different time.

    图 3  不同燃烧模型对应的爆震波内流场参数分布 (a) 密度和浓度; (b) 速度; (c) 温度; (d) 压力

    Figure 3.  Parameters distribution in detonation wave with different combustion models: (a) Density and concentration; (b) velocity; (c) temperature; (d) pressure.

    图 4  ${f_{\rm{S}} } = 1.1$时对应的稳定传播状态爆震波两相温度分布

    Figure 4.  Temperature distribution of gas and particle phases inside steady detonation wave with ${f_{\rm{S}} } = 1.1$.

    图 5  爆震波参数随${f_{\rm{S}} }$的变化 (a) 爆震波厚度; (b) CJ面两相温度; (c) CJ面颗粒相浓度; (d) 爆震波速度

    Figure 5.  Variation of detonation parameters with different value of ${f_{\rm{S}} }$: (a) Thickness; (b) temperature at CJ plane; (c) particle concentration at CJ plane; (d) velocity

    图 6  不同管径条件下爆震波内的压力和气相温度分布 (a) 压力; (b) 气相温度

    Figure 6.  Pressure and gas-phase temperature distribution inside detonation wave with different tube inner-diameters: (a) Pressure; (b) gas-phase temperature.

    图 7  稳定传播的爆震波速度和爆震波厚度随初始当量比的变化 (a) 速度; (b) 厚度

    Figure 7.  Variation of steady velocity and thickness of detonation wave with different initial equivalent ratio: (a) Velocity; (b) thickness.

    图 8  不同当量比条件下爆震波内气相密度分布

    Figure 8.  Gas-phase density distribution inside detonation wave with different initial equivalent ratio.

    图 9  不同初始当量比条件下爆震波内参数分布 (a)压力; (b)温度

    Figure 9.  Parameters distribution inside detonation wave with different initial equivalent ratio: (a) Pressure; (b) temperature.

    图 10  不同初始当量比条件下不同位置处的爆震波压力峰值

    Figure 10.  Pressure peak at different position with different initial equivalent ratio.

    图 11  不同点火区长度对应的爆震波速度发展过程

    Figure 11.  Development of detonation wave velocity with different length of ignition zone.

    图 12  不同点火区参数对应的爆震波速度发展过程

    Figure 12.  Development of detonation wave velocity with different field parameters of ignition zone.

    表 1  不同模型对应的爆震波稳定速度和厚度

    Table 1.  Steady velocity and thickness of detonation wave with different models.

    参数本文模型文献[29]模型两相ZND模型
    爆震波速度/(m·s–1)178617891782.28
    爆震波厚度/m0.3270.0550.331
    DownLoad: CSV

    表 2  不同爆震管内径条件下爆震波稳定传播速度、厚度和rCJ/r0

    Table 2.  Steady velocity, thickness and rCJ/r0 at CJ plane of detonation wave with different tube inner-diameters.

    管径$\infty $1 m0.3 m0.15 m0.075 m
    稳定速度/(m·s–1)17861777.51758.517331691.5
    爆震波厚度/m0.3270.2970.2540.2340.2185
    CJ面rCJ/r0 < 0.10.1620.1990.2390.277
    注: 管径$\infty $表示不考虑管壁损失的理想条件
    DownLoad: CSV

    表 3  不同颗粒初始粒径对应的爆震波传播速度和厚度

    Table 3.  Steady velocity and thickness of detonation wave with different initial particle diameter.

    粒径5 μm10 μma10 μmb15 μm20 μm
    爆震波速度/(m·s–1)无损失17861786178617861786
    有损失17621733170017021662
    爆震波厚度/m无损失0.1710.3270.6220.6140.908
    有损失0.0990.2340.4460.4250.666
    注: a, 单一粒径; b, 5 μm和15 μm掺混后的平均粒径.
    DownLoad: CSV
  • [1]

    Veyssiere B, Ingignoli W 2003 Shock Waves 12 291Google Scholar

    [2]

    Palaszewski B, Jurns J, Breisacher K, Kearns K 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p4191

    [3]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov, Yu A 2010 Dokl. Phys. 55 142Google Scholar

    [4]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2011 Combust. Explo. Shock. 47 473Google Scholar

    [5]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2012 Combust. Explo. Shock. 48 203Google Scholar

    [6]

    Bykovskii F A, Zhdan S A, Vedernikov E F, Zholobov Yu A 2013 Combust. Explo. Shock. 49 705Google Scholar

    [7]

    Bykovskii F A, Zhdan S A, Vedernikov E F 2014 Combust. Explo. Shock. 50 214Google Scholar

    [8]

    刘龙, 夏智勋, 黄利亚, 马立坤, 那旭东 2019 物理学报 68 244701Google Scholar

    Liu L, Xia Z X, Huang L Y, Ma L K, Na X D 2019 Acta Phys. Sin. 68 244701Google Scholar

    [9]

    Gosteev Y A, Fedorov A V 2005 Combust. Expl. Shock Waves 41 190Google Scholar

    [10]

    Zhang F. 2009 Shock Wave Science and Technology Reference Library (Vol.4) (Berlin, Heidelberg: Springer) pp99, 153, 159

    [11]

    Cassel H M, Liebman I 1962 Combust. Flame. 6 153Google Scholar

    [12]

    洪滔, 秦承森 1999 爆炸与冲击 19 335Google Scholar

    Hong T, Qing C S 1999 Expl. Shock Wave 19 335Google Scholar

    [13]

    Derevyaga M E, Stesik L N, Fedorin E A 1978 Combust. Explo. Shock. 5 3

    [14]

    冯运超 2014 硕士学位论文(长沙: 国防科学技术大学)

    Feng Y C 2014 Master Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [15]

    Pilling N B, Bedworth R E 1923 Journal Inst. Met 29 529

    [16]

    Ezhovskii G K, Ozerov E S 1977 Combust. Explo. Shock. 13 716Google Scholar

    [17]

    Ezhovskii G K, Ozerov E S, Roshchenya Y V 1979 Combust. Explo. Shock. 15 194Google Scholar

    [18]

    Bloshenko V N, Merzhanov A G, Khaikin B I 1976 Combust. Explo. Shock. 12 612Google Scholar

    [19]

    Valov A E, Gusachenko E I, Shevtsov V I 1991 Combust. Explo. Shock. 27 393Google Scholar

    [20]

    洪滔, 秦承森 2004 爆炸与冲击 24 193Google Scholar

    Hong T, Qing C S 2004 Expl. Shock Wave 24 193Google Scholar

    [21]

    Lee  J  H  S  1998  The Detonation Phenomenon (New York:Cambridge University Press) p108

    [22]

    Steinberg T A, Wilson D, Benz F 1992 Combust. Flame 91 200Google Scholar

    [23]

    杨晋朝 2013 博士学位论文(长沙: 国防科学技术大学)

    Yang J C 2013 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [24]

    杨涛, 方丁酉, 唐乾刚 2008 火箭发动机燃烧原理 (长沙: 国防科技大学出版社)

    Yang T, Fang D J, Tang Q G 2008 Combustion Principle of Rocket Engine (Changsha: National Defense Science and Technology University Press) (in Chinese)

    [25]

    Abbud-Madrid A, Modak A, Branch M C 2001 J. Propul. Power 17 852Google Scholar

    [26]

    Fox T W, Rackett C W, Nicholls J A 1978 Proceedings of the 11th International Symposium on Shock Waves and Tubes, Seattle, USA, July 11–14, 1978 p262

    [27]

    韦伟, 翁春生 2017 固体火箭技术 40 41

    Wei W, Wen C S 2017 J. Solid Rock. Technol. 40 41

    [28]

    潘啸, 翁春生 2017 南京理工大学学报(自然科学版) 41 1

    Pan X, Weng C H 2017 J. Nanjing Univ. Sci. Technol. 41 1

    [29]

    杨晋朝, 夏智勋, 胡建新 2013 物理学报 62 074701Google Scholar

    Yang J C, Xia Z X, Hu J X 2013 Acta Phys. Sin. 62 074701Google Scholar

    [30]

    Fedorov A V, Khmel’ T A 1999 Combust. Expl. Shock Waves 9 313

    [31]

    Zhang F, Grönig H, Van de Ven A 2001 Shock Waves 11 53Google Scholar

    [32]

    Li Y, Alexander C G, Wolanski P, Kauffman C W, Sichel M 1993 13 th International Colloquium on Dynamics of Explosions and Reactive Systems Nagoya, Japan, July 28–August 2, 1991 p170

    [33]

    Tulis A J, Selman J R 1982 19th Symposium (International) on Combustion, The Combustion Institute, Haifa, Israel, August 8–13 1982 p655

    [34]

    刘庆明, 范宝春, 陈志华, 李鸿志 1997 实验力学 12 376

    Liu Q M, Fan B C, Chen Z H, Li H Z 1997 J. Exp. Mech. 12 376

  • [1] Liu Long, Xia Zhi-Xun, Huang Li-Ya, Ma Li-Kun, Na Xu-Dong. Numerical investigation of one-dimensional steady detonation wave characteristics for magnesium particle-air mixture. Acta Physica Sinica, 2019, 68(24): 244701. doi: 10.7498/aps.68.20190974
    [2] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [3] Qian Wen-Wei, Li Wei-Feng, Shi Zhe-Hang, Liu Hai-Feng, Wang Fu-Chen. Characteristics of surface waves on the granular sheet of dense granular jet impingement. Acta Physica Sinica, 2016, 65(21): 214501. doi: 10.7498/aps.65.214501
    [4] Bai Ling, Li Da-Ming, Li Yan-Qing, Wang Zhi-Chao, Li Yang-Yang. Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension model. Acta Physica Sinica, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [5] Yang Chen, Fang Chao, Zhang Jian, Cao Jian-Zhu. Study on cumulative fractional release of radionuclides in HTGR fuel particles. Acta Physica Sinica, 2014, 63(3): 032802. doi: 10.7498/aps.63.032802
    [6] Yu Bo, Chen Bo-Lun, Hou Li-Fei, Su Ming, Huang Tian-Xuan, Liu Shen-Ye. Hard X-ray measurement for indirect-driven imploding by chemical vapor deposited diamond detectors. Acta Physica Sinica, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [7] Yang Jin-Zhao, Xia Zhi-Xun, Hu Jian-Xin. Numerical studies of ignition and combustion of pulverized magnesium particle cloud. Acta Physica Sinica, 2013, 62(7): 074701. doi: 10.7498/aps.62.074701
    [8] Fang Chao, Liu Ma-Lin. The study of the Raman spectra of SiC layers in TRISO particles. Acta Physica Sinica, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [9] Yang Jin-Zhao, Xia Zhi-Xun, Hu Jian-Xin. Numerical studies of unsteady ignition of pulverized magnesium particle cloud. Acta Physica Sinica, 2012, 61(16): 164702. doi: 10.7498/aps.61.164702
    [10] Yang Yi-Tao, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Zhang Li-Qing. Synthesis of metallic nanoparticles in spinel via defects induced by the inert-gas-ion implantation. Acta Physica Sinica, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [11] Cui Ying-Chao, Xie Zi-Li, Zhao Hong, Mei Qin, Li Yi, Liu Bin, Song Li-Hong, Zhang Rong, Zheng You-Dou. Morphology and defect of a-GaN grown by metal orgamic chemical vapor deposition. Acta Physica Sinica, 2009, 58(12): 8506-8510. doi: 10.7498/aps.58.8506
    [12] Cao Zhu-Rong, Jiang Shao-En, Chen Jia-Bin, Miao Wen-Yong, Zhou Wei-Min, Chen Ming, Gu Yu-Qiu, Ding Yong-Kun. Diagnostics on DD fuel area density for indirect drive on Shenguang Ⅱ. Acta Physica Sinica, 2007, 56(9): 5330-5334. doi: 10.7498/aps.56.5330
    [13] Xie Jiang, Wen Jian-Zhong, Wang Guo-Ping, Wang Jian-Bo. Large area deposition of homogeneous Ag nanoparticles on polymeric surface and their applications. Acta Physica Sinica, 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [14] CHEN MIN, WEI HE-LIN, LIU ZU-LI, YAO KAI-LUN. EFFECT OF LOW-ENERGY DEPOSITION PARTICLES ON INITIAL STAGE OF THIN FILM. Acta Physica Sinica, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [15] LIAO MEI-YONG, QIN FU-GUANG, CHAI CHUN-LIN, LIU ZHI-KAI, YANG SHAO-YAN, YAO ZHEN-YU, WANG ZHAN-GUO. INFLUENCE OF ION ENERGY AND DEPOSITION TEMPERATURE ON THE SURFACE MORPHOLOGY OF CARBON FILMS DEPOSITED BY ION BEAMS. Acta Physica Sinica, 2001, 50(7): 1324-1328. doi: 10.7498/aps.50.1324
    [16] YANG HONG-QIONG, YANG JIAN-LUN, WEN SHU-HUAI, WANG GEN-XING, GUO YU-ZHI, TANG ZHENG-YUAN, MU WEI-BING, MA CHI. DT FUEL AREAL DENSITY DIAGNOSTIC IN DIRECT-DRIVEN IMPLOSIONS. Acta Physica Sinica, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
    [17] SONG YUAN-HONG, WANG YOU-NIAN, GOND YE. GRAZING SCATTERING AND ENERGY LOSS OF H+ MOVING NEAR A SOLID SURFACE. Acta Physica Sinica, 1999, 48(7): 1275-1281. doi: 10.7498/aps.48.1275
    [18] WANG WEN-NAI, ZANG WEN-CHENG, GU GANG, DU YOU-WEI, HONG JIAN-MING. THE MAGNETIC SURFACE EFFECT OF NICKEL ULTRAFINE PARTICLES. Acta Physica Sinica, 1992, 41(9): 1537-1541. doi: 10.7498/aps.41.1537
    [19] ZHU LI, BAO SHI-NING, XU YA-BO, WANG GENG. HREELS INVESTIGATION OF CO AND POTASSIUM CO-ADSORPTION ON Fe(110). Acta Physica Sinica, 1990, 39(10): 1691-1696. doi: 10.7498/aps.39.1691
    [20] FEI LU, ZHENG YU, ZHANG QIANG-JI, HUANG JIN-LIN, HUA ZHONG-YI. AN INVESTIGATION ON POLYCRYSTALLINE BORON AND BORON-CONTAINING METALLIC GLASSES BY SEELFS. Acta Physica Sinica, 1987, 36(9): 1213-1218. doi: 10.7498/aps.36.1213
Metrics
  • Abstract views:  5339
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2020
  • Accepted Date:  09 May 2020
  • Available Online:  17 June 2020
  • Published Online:  05 October 2020

/

返回文章
返回