Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of Rydberg many-body interaction

Zhang Zheng-Yuan Zhang Tian-Yi Liu Zong-Kai Ding Dong-Sheng Shi Bao-Sen

Citation:

Research progress of Rydberg many-body interaction

Zhang Zheng-Yuan, Zhang Tian-Yi, Liu Zong-Kai, Ding Dong-Sheng, Shi Bao-Sen
PDF
HTML
Get Citation
  • The interaction of many-body quantum system is a critical problem to be solved in the field of quantum information science. Rydberg atoms have large dipole moment, enabling them to interact with others in a long range, thereby offering us a powerful tool for studying many-body quantum physics. Meanwhile, atoms in the ground state are stable, which makes it easy to manipulate them. Therefore, Rydberg-atom many-body system is an ideal platform for studying the interaction of many-body quantum system. Studies of Rydberg-atom many-body system may contribute to understanding the properties of many-body system and putting the interaction of many-body quantum system into practical applications. In this review, we introduce some studies of properties of interaction of Rydberg-atom many-body system, including the Rydberg excitation blockade, the variation of Rabi frequencies of the many-body system and special spatial distribution of Rydberg atoms in a many-body system. Firstly, the Rydberg excitation blockade, the most important property in the Rydberg-atom many-body system, indicates that atoms’ excitation will be suppressed in a certain range around one Rydberg excitation because the interaction between the Rydberg excitation and atoms leads the energy level to shift so that atoms cannot be excited by the same pulse. Secondly, there is a collective Rabi frequency in the system, which is proportional to the square of the number of atoms in the suppressed area. And additionally, because of the Rydberg blockade effect, Rydberg excitations in the ensemble cannot be at casual positions but a regular distribution is formed. Besides the studies of properties, several researches on the applications of interaction of Rydberg-atom many-body system are introduced, including single-photon source, quantum storage, single-atom imaging, quantum simulation, etc. These applications contribute to the development of quantum community and quantum computing, which may bring us a quantum-technology time. Finally, we discuss the future development of Rydberg-atom many-body system and its further applications. Further development includes the development of many-body system with a larger number of atoms, the development of many-body system of atoms with more than one electron, and some other specific subjects based on many-system, such as Rydberg dimer and topological phase. Also some promising applications such as in studying optimization problem by quantum annealing, may become true.
      Corresponding author: Ding Dong-Sheng, dds@ustc.edu.cn
    [1]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [2]

    Dudin Y O, Li L, Bariani F, Kuzmich A 2012 Nat. Phys. 8 790Google Scholar

    [3]

    Schauß P, Cheneau M, Endres M, Fukuhara T, Hild S, Omran A, Pohl T, Gross C, Kuhr S, Bloch I 2012 Nature 491 87Google Scholar

    [4]

    Li L, Kuzmich A 2016 Nat. Commun. 7 13618Google Scholar

    [5]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001Google Scholar

    [6]

    Günter G, Robert-de-Saint-Vincent M, Schempp H, Hofmann C S, Whitlock S, Weidemüller M 2012 Phys. Rev. Lett. 108 013002Google Scholar

    [7]

    Murray C R, Mirgorodskiy I, Tresp C, Braun C, Paris-Mandoki A, Gorshkov A V, Hofferberth S, Pohl T 2018 Phys. Rev. Lett. 120 113601Google Scholar

    [8]

    Keesling A, Omran A, Levine H, Bernien H, Pichler H, Choi S, Samajdar R, Schwartz S, Silvi P, Sachdev S, Zoller P, Endres M, Greiner M, Vuletić V, Lukin M D 2019 Nature 568 207Google Scholar

    [9]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V, Lukin M D 2017 Nature 551 579Google Scholar

    [10]

    Ding D S, Busche H, Shi B S, Guo G C, Adams C S 2020 Phys. Rev. X 10 021023

    [11]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p25

    [12]

    Christoph T 2017 Ph. D. Dissertation (Stuttgart: University of Stuttgart. Physical Institute)

    [13]

    Gallagher T F 1988 Rep. Prog. Phys. 51 143

    [14]

    Gallagher T F, Cooke W E 1979 Phys. Rev. Lett. 42 835Google Scholar

    [15]

    Cooke W E, Gallagher T F 1980 Phys. Rev. A 21 588

    [16]

    Born M, Oppenheimer J R 1927 Ann. Phys. 84 457

    [17]

    Thomas A 2008 Ph. D. Dissertation (Freiburg city: Faculty of Mathematics and Physics Albert Ludwigs University of Freiburg)

    [18]

    Browaeys A, Lahaye T 2020 Nat. Phys. 16 132Google Scholar

    [19]

    Balewski J B, Krupp A T, Gaj A, Hofferberth S, Löw R, Pfau T 2014 New J. Phys. 16 063012Google Scholar

    [20]

    Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015

    [21]

    Tuchendler C, Lance A M, Browaeys A, Sortais Y R P, Grangier P 2018 arXiv:0805.3510 v2 [quant-ph]

    [22]

    Labeyrie G, Muller C A, Delande D, Miniatura C, Wilkowski D, Kaiser R 2003 Phys. Rev. Lett. 91 223904Google Scholar

    [23]

    Robicheaux F, Hernández J V 2005 Phys. Rev. A 72 063403Google Scholar

    [24]

    马文淦 2001 计算物理学 (合肥: 中国科学技术大学出版社) 第59页

    Ma W G 2001 Computational Physics (Hefei: Press of University of Science and Technology of China) p59

    [25]

    White S R 1992 Phys. Rev. Lett. 69 2863Google Scholar

    [26]

    TRG Algorithm, Hubig C, Schollwöck U http://tensornetwork. org/trg/ [2020-8-10]

    [27]

    Liao H J, Liu J G, Wang L, Xiang T 2019 Phys. Rev. X 9 031041

    [28]

    Wang H, He Y M, Chung T H, Hu H, Ying Y, Chen S, Ding X, Chen M C, Qin J, Yang X, Liu R Z, Duan Z C, Li J P, Gerhardt S, Winkler K, Jurkat J, Wang L J, Gregersen N, Huo Y H, Dai Q, Yu S, Höfling S, Lu Z Y, Pan J W 2019 Nat. Photonics 13 770Google Scholar

    [29]

    Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J, Pan J W 2006 Phys. Rev. Lett. 97 173004Google Scholar

    [30]

    Dudin Y O, Kuzmich A 2012 Science 336 887Google Scholar

    [31]

    Liu J, Zhou Y, Wang W, Liu R, He K, Li F, Xu Z 2013 Opt. Express 21 19209Google Scholar

    [32]

    Barbieri M, Roccia E, Mancino L, Sbroscia M, Gianani I, Sciarrino F 2017 Sci. Rep. 7 7247Google Scholar

    [33]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar

    [34]

    Hua Y L, Zhou Z Q, Li C F, Guo G C 2018 Chin. Phys. B 27 020303Google Scholar

    [35]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 物理学报 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X M 2019 Acta Phys. Sin. 68 030307Google Scholar

    [36]

    Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar

    [37]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 376Google Scholar

    [38]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [39]

    Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminian T H, Markham M, Twitchen D J, Childress L, Hanson R 2013 Nature 497 86Google Scholar

    [40]

    Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V, Polzik E S 2010 Phys. Rev. Lett. 104 133601Google Scholar

    [41]

    Biedermann G W, McGuinness H J, Rakholia A V, Jau Y Y, Wheeler D R, Sterk J D, Burns G R 2017 Phys. Rev. Lett. 118 163601Google Scholar

    [42]

    Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nat. Photonics 5 628Google Scholar

    [43]

    Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601Google Scholar

    [44]

    Fleischhauer M, Lukin M D 2002 Phys. Rev. A 65 022314Google Scholar

    [45]

    Fleischhauer M, Imamogu A, Marrangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [46]

    Mirgorodskiy I, Christaller F, Braun C, Paris-Mandoki A, Tresp C, Hofferberth S 2017 Phys. Rev. A 96 011402Google Scholar

    [47]

    Distante E, Padrón-Brito A, Cristiani M, Paredes-Barato D, Riedmatten H 2016 Phys. Rev. Lett. 117 113001Google Scholar

    [48]

    Betzig E, Chichester R J 1993 Science 262 1422Google Scholar

    [49]

    Pan S H, Hudson E W, Lang K M, Eisaki H, Uchida S, Davis J C 2000 Nature 403 746Google Scholar

    [50]

    Häffner H, Hänsel W, Roos C F, Benhelm J, Chen-al-kar D, Chwalla M, Körber T, Rapol U D, Riebe M, Schmidt P O, Becher C, Gühne O, Dür W, Blatt R 2005 Nature 438 643Google Scholar

    [51]

    Nelson K D, Li X, Weiss D S 2007 Nat. Phys. 3 556Google Scholar

    [52]

    Bakr W S, Gillen J I, Peng A, Fölling S, Greiner M 2009 Nature 462 74Google Scholar

    [53]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [54]

    Brahms N, Purdy T P, Brooks D W C, Botter T, Stamper-Kurn D M 2011 Nat. Phys. 7 604Google Scholar

    [55]

    Gericke T, Würtz P, Reitz D, Langen T, Ott H 2008 Nat. Phys. 4 949Google Scholar

    [56]

    Zipkes C, Palzer S, Sias C, Köhl M 2010 Nature 464 388Google Scholar

    [57]

    Verstraete F, Wolf M M, Ciac J I 2009 Nat. Phys. 5 633Google Scholar

    [58]

    Barreiro J T, Müller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P, Blatt R 2011 Nature 470 486Google Scholar

    [59]

    Lim K, Suh C, Rhee J K K 2019 Quantum Inf. Process 18 73Google Scholar

    [60]

    Tresp C, Zimmer C, Mirgorodskiy I, Gorniaczyk H, Paris-Mandoki A, Hofferberth S 2016 Phys. Rev. Lett. 117 223001Google Scholar

    [61]

    Honer J, Löw R, Weimer H, Pfau T, Büchler H P 2011 Phys. Rev. Lett. 107 093601Google Scholar

    [62]

    Trenkwalder A, Spagnolli G, Semeghini G, Coop S, Landini M, Castilho P, Pezzè L, Modugno G, Inguscio M, Smerzi A, Fattori M 2016 Nat. Phys. 12 826Google Scholar

    [63]

    Labuhn H, Barredo D, Ravets S, Léséleuc S, Macri T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [64]

    Helmrich S, Arias A, Lochead G, Wintermatel T M, Bochhold M, Diehl S, Whitlock S 2020 Nature 577 481Google Scholar

    [65]

    Bloch I, Dalibard J, Nascimbène S 2012 Nat. Phys. 8 267Google Scholar

    [66]

    Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S, Ye J 2013 Nature 501 521Google Scholar

    [67]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [68]

    Lucas A 2014 Front. Phys. 2 5

    [69]

    O’Shea D, Junge C, Volz J, Rauschenbeutel A 2013 Phys. Rev. Lett. 111 193601Google Scholar

    [70]

    Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V, Lukin M D 2009 Phys. Rev. Lett. 102 203902Google Scholar

    [71]

    Chen W, Beck K M, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletic V 2013 Science 341 768Google Scholar

    [72]

    Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoglu A 2012 Nat. Photonics 6 76Google Scholar

    [73]

    Garcia-Escartin J C, Chamorro-Posada P 2012 Phys. Rev. A 85 032309Google Scholar

    [74]

    Baur S, Tiarks D, Rempe G, Dürr S 2014 Phys. Rev. Lett. 112 073901Google Scholar

    [75]

    Li W, Lesanovsky I 2015 Phys. Rev. A 92 043828

    [76]

    Yu Y C, Dong M X, Ye Y H, Guo G C, Ding D S, Shi B S 2020 Sci. China Phys. Mech. Astron. 63 110312

    [77]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [78]

    Tiarks D, Baur S, Schneider K, Dürr S, Rempe G 2014 Phys. Rev. Lett. 113 053602Google Scholar

    [79]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601Google Scholar

    [80]

    Gorniaczyk H, Tresp C, Bienias P, Paris-Mandoki A, Li W, Mirgorodskiy I, Büchler H P, Lesanovsky I, Hofferberth S 2016 Nat. Commun. 7 12480Google Scholar

    [81]

    Hao Y M, Lin G W, Lin X M, Niu Y P, Gong S Q 2019 Sci. Rep. 9 4723

    [82]

    Norcia M A, Young A W, Kaufman A M 2018 Phys. Rev. X 8 041054

    [83]

    Saskin S, Wilson J T, Grinkenmeyer B, Tomson J D 2019 Phys. Rev. Lett. 122 143002Google Scholar

    [84]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005Google Scholar

    [85]

    Tallant J, Rittenhouse S T, Booth D, Sadeghpour H R, Shaffer J P 2012 Phys. Rev. Lett. 109 173202Google Scholar

    [86]

    Desalvo B J, Aman J A, Dunning F B, Killian T C, Sadeghpour H R, Yoshida S, Burgdörfer J 2015 Phys. Rev. A 92 031403Google Scholar

    [87]

    Dauphin A, Müller M, Martin-Delgado M A 2012 Phys. Rev. A 86 053618Google Scholar

    [88]

    Li X, Sarma S D 2015 Nat. Commun. 6 7137Google Scholar

    [89]

    Gorshkov A V, Nath R, Pohl T 2013 Phys. Rev. Lett. 110 153601Google Scholar

    [90]

    Otterbach J, Moos M, Muth D, Fleischhauer M 2013 Phys. Rev. Lett. 111 113001Google Scholar

    [91]

    Glaetzle A W, van Bijnen R M W, Zoller P, Lechner W A 2017 Nat. Commun. 8 15813Google Scholar

    [92]

    Pichler H, Wang S, Zhou L, Choi S, Lukin M D 2018 arXiv:1808.10816 [quant-ph]

    [93]

    Kokail C, Maier C, Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F, Zoller P 2019 Nature 569 355Google Scholar

  • 图 1  激光激发两原子体系能级示意图

    Figure 1.  Energy level of two-atoms system excited by one laser.

    图 2  存在频率失谐时的双原子系统能量示意图 (a) 当$\varDelta > 0$${\rm d}U/{\rm d}R > 0$时双原子系统的能量; (b) 不同频率失谐和势能情况下双原子系统的能量[19]

    Figure 2.  Schematic of binary Rydberg energy with detuning: (a) The energy of a pair of atoms with $\varDelta > 0$ and ${\rm d}U/{\rm d}R > 0$; (b) the energy of a pair of atoms with different detuning and potentials[19].

    图 3  多体态的空间有序分布图[3] (a) 直接成像结果; (b) 多次叠加结果; (c) 预测结果

    Figure 3.  Spatially ordered components of the many-body states[3]: (a) Directly imaging result; (b) accumulative result of many measurements; (c) predicted result.

    图 4  (a)一维Ising模型配分函数的张量网络表示; (b) 二维Ising模型配分函数的张量元; (c) 二维Ising模型配分函数的张量网络表示[26]

    Figure 4.  (a) Tensor network form of the partition function for 1D Ising model; (b) tensor element for the partition function of 2D Ising model; (c) tensor network form of the partition function for 2D Ising model[26]

    图 5  二维Ising模型的比热随温度倒数的变化[27]

    Figure 5.  Relationship between the specific heat and the reciprocal of the temperature[27].

    图 6  单光子源性质参数 (a) ${g^{\left( 2 \right)}}\left( 0 \right)$与有效主量子数n*关系[30], 内插图为重合光子计数与延时关系[30]; (b) 量子点方案中归一化的重合光子计数与延时关系[28]; (c) 量子点方案中平行和交叉极化情况下Hong-Ou-Mandel干涉归一化的重合光子计数与延时关系[28]

    Figure 6.  Parameters of single-photon source: (a) ${g^{\left( 2 \right)}}\left( 0 \right)$ as a function of effective principle quantum number[30]. Coincidence count as a function of time decay is showed in the inset[30]; (b) normalized coincidence count as a function of time decay using quantum dots[28]; (c) normalized coincidence count of Hong-Ou-Mandel interference as a function of time decay with parallel and cross polarization respectively using quantum dots[28].

    图 7  量子存储性质随入射光子数Nin变化[47] (a) 存储效率与存储时间关系; (b) 存储效率与Rydberg态关系

    Figure 7.  Properties of quantum storage with different number of input photons Nin[47]: (a) Storage efficiency as a function of storage time; (b) storage efficiency as a function of Rydberg states.

    图 8  基态与激发态结合能级示意图[4] (a) 写入过程; (b) 基态存储; (c) 读出过程

    Figure 8.  Schematic of energy levels combined exciting state with ground state[4]: (a) Procedure of writing; (b) storage in the ground state; (c) procedure of read.

    图 9  成像示意图与模拟结果[6] (a) 单原子成像过程示意图; (b) 没有控制光情况下的探测光吸收图; (c) 有控制光情况下的探测光吸收图

    Figure 9.  Scheme of imaging process and simulated results[6]: (a) Scheme of single-atom imaging process; (b) absorption of probe light without control light; (c) absorption of probe light with control light.

    图 10  (a) 不同源光子数情况下, 恢复门光子数与存储门光子数关系[7]; (b) 最佳减法效率对比[7]

    Figure 10.  (a) Number of retrial gate photons ${\bar a_{\rm g}}$ as a function of number of stored gate photons ${a_{\rm s}}$ with different number of source photons ${a_{\rm s}}$[7]; (b) contrast of optimal efficiency of subtraction[7].

    图 11  相图[10]和自组织行为[64] (a) Rydberg原子密度相图; (b) 没有控制光时EIT相图; (c) 自组织演化; (d) 自组织定态规律

    Figure 11.  phase diagram[10] and self-organized behaviors[64]: (a) Phase diagram of density of Rydberg atom; (b) EIT phase diagram without control light; (c) evolution in the self-organized process; (d) regulation of self-organized stationary states.

    图 12  二维量子模拟[63] (a) 不同原子数的集体拉比振荡; (b) 20个原子系统的Rydberg分数${f_{\rm R}}$变化; (c) 28个原子系统的Rydberg分数${f_{\rm R}}$变化

    Figure 12.  Quantum simulation in two dimensions[63]: (a) Collective Rabi oscillation with different number of atoms; (c) Rydberg fraction of the systems with 20 atoms; (d) Rydberg fraction of the systems with 28 atoms.

    图 13  一维多原子量子模拟[9] (a) 不同相互作用强度的演化理论结果; (b) 不同相互作用强度的演化实验结果; (c) 基态概率与系统大小的关系; (d) 出现次数的状态数的统计

    Figure 13.  Many-atom quantum simulation in one dimension[9]: (a) Predicted results of evolution with different interaction; (b) experimental results of evolution with different interaction; (c) ground-state probability as a function of system size; (d) number of states with identical number of occurrences.

    表 1  Rydberg原子的性质和主量子数的关系[11].

    Table 1.  Relation between the properties of Rydberg atom and its principal quantum number[11].

    性质与主量子数关系Na(10 d)
    束缚能n–20.14 eV
    相邻n态间的能量差n–30.023 eV
    轨道半径n2147a0
    几何截面n468000$a_0^2$
    偶极矩$\left\langle {nd\left| {er} \right|\left. {nf} \right\rangle } \right.$n2143ea0
    极化率n70.21 MHz·cm2·V–2
    辐射寿命n31.0 μs
    精细结构间隔n–3–92 MHz
    DownLoad: CSV
  • [1]

    Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nat. Phys. 5 115Google Scholar

    [2]

    Dudin Y O, Li L, Bariani F, Kuzmich A 2012 Nat. Phys. 8 790Google Scholar

    [3]

    Schauß P, Cheneau M, Endres M, Fukuhara T, Hild S, Omran A, Pohl T, Gross C, Kuhr S, Bloch I 2012 Nature 491 87Google Scholar

    [4]

    Li L, Kuzmich A 2016 Nat. Commun. 7 13618Google Scholar

    [5]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001Google Scholar

    [6]

    Günter G, Robert-de-Saint-Vincent M, Schempp H, Hofmann C S, Whitlock S, Weidemüller M 2012 Phys. Rev. Lett. 108 013002Google Scholar

    [7]

    Murray C R, Mirgorodskiy I, Tresp C, Braun C, Paris-Mandoki A, Gorshkov A V, Hofferberth S, Pohl T 2018 Phys. Rev. Lett. 120 113601Google Scholar

    [8]

    Keesling A, Omran A, Levine H, Bernien H, Pichler H, Choi S, Samajdar R, Schwartz S, Silvi P, Sachdev S, Zoller P, Endres M, Greiner M, Vuletić V, Lukin M D 2019 Nature 568 207Google Scholar

    [9]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V, Lukin M D 2017 Nature 551 579Google Scholar

    [10]

    Ding D S, Busche H, Shi B S, Guo G C, Adams C S 2020 Phys. Rev. X 10 021023

    [11]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p25

    [12]

    Christoph T 2017 Ph. D. Dissertation (Stuttgart: University of Stuttgart. Physical Institute)

    [13]

    Gallagher T F 1988 Rep. Prog. Phys. 51 143

    [14]

    Gallagher T F, Cooke W E 1979 Phys. Rev. Lett. 42 835Google Scholar

    [15]

    Cooke W E, Gallagher T F 1980 Phys. Rev. A 21 588

    [16]

    Born M, Oppenheimer J R 1927 Ann. Phys. 84 457

    [17]

    Thomas A 2008 Ph. D. Dissertation (Freiburg city: Faculty of Mathematics and Physics Albert Ludwigs University of Freiburg)

    [18]

    Browaeys A, Lahaye T 2020 Nat. Phys. 16 132Google Scholar

    [19]

    Balewski J B, Krupp A T, Gaj A, Hofferberth S, Löw R, Pfau T 2014 New J. Phys. 16 063012Google Scholar

    [20]

    Zeiher J, Schauß P, Hild S, Macrì T, Bloch I, Gross C 2015 Phys. Rev. X 5 031015

    [21]

    Tuchendler C, Lance A M, Browaeys A, Sortais Y R P, Grangier P 2018 arXiv:0805.3510 v2 [quant-ph]

    [22]

    Labeyrie G, Muller C A, Delande D, Miniatura C, Wilkowski D, Kaiser R 2003 Phys. Rev. Lett. 91 223904Google Scholar

    [23]

    Robicheaux F, Hernández J V 2005 Phys. Rev. A 72 063403Google Scholar

    [24]

    马文淦 2001 计算物理学 (合肥: 中国科学技术大学出版社) 第59页

    Ma W G 2001 Computational Physics (Hefei: Press of University of Science and Technology of China) p59

    [25]

    White S R 1992 Phys. Rev. Lett. 69 2863Google Scholar

    [26]

    TRG Algorithm, Hubig C, Schollwöck U http://tensornetwork. org/trg/ [2020-8-10]

    [27]

    Liao H J, Liu J G, Wang L, Xiang T 2019 Phys. Rev. X 9 031041

    [28]

    Wang H, He Y M, Chung T H, Hu H, Ying Y, Chen S, Ding X, Chen M C, Qin J, Yang X, Liu R Z, Duan Z C, Li J P, Gerhardt S, Winkler K, Jurkat J, Wang L J, Gregersen N, Huo Y H, Dai Q, Yu S, Höfling S, Lu Z Y, Pan J W 2019 Nat. Photonics 13 770Google Scholar

    [29]

    Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J, Pan J W 2006 Phys. Rev. Lett. 97 173004Google Scholar

    [30]

    Dudin Y O, Kuzmich A 2012 Science 336 887Google Scholar

    [31]

    Liu J, Zhou Y, Wang W, Liu R, He K, Li F, Xu Z 2013 Opt. Express 21 19209Google Scholar

    [32]

    Barbieri M, Roccia E, Mancino L, Sbroscia M, Gianani I, Sciarrino F 2017 Sci. Rep. 7 7247Google Scholar

    [33]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photonics 3 706Google Scholar

    [34]

    Hua Y L, Zhou Z Q, Li C F, Guo G C 2018 Chin. Phys. B 27 020303Google Scholar

    [35]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 物理学报 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X M 2019 Acta Phys. Sin. 68 030307Google Scholar

    [36]

    Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar

    [37]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 376Google Scholar

    [38]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [39]

    Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminian T H, Markham M, Twitchen D J, Childress L, Hanson R 2013 Nature 497 86Google Scholar

    [40]

    Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V, Polzik E S 2010 Phys. Rev. Lett. 104 133601Google Scholar

    [41]

    Biedermann G W, McGuinness H J, Rakholia A V, Jau Y Y, Wheeler D R, Sterk J D, Burns G R 2017 Phys. Rev. Lett. 118 163601Google Scholar

    [42]

    Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nat. Photonics 5 628Google Scholar

    [43]

    Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C, Yu I A 2013 Phys. Rev. Lett. 110 083601Google Scholar

    [44]

    Fleischhauer M, Lukin M D 2002 Phys. Rev. A 65 022314Google Scholar

    [45]

    Fleischhauer M, Imamogu A, Marrangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [46]

    Mirgorodskiy I, Christaller F, Braun C, Paris-Mandoki A, Tresp C, Hofferberth S 2017 Phys. Rev. A 96 011402Google Scholar

    [47]

    Distante E, Padrón-Brito A, Cristiani M, Paredes-Barato D, Riedmatten H 2016 Phys. Rev. Lett. 117 113001Google Scholar

    [48]

    Betzig E, Chichester R J 1993 Science 262 1422Google Scholar

    [49]

    Pan S H, Hudson E W, Lang K M, Eisaki H, Uchida S, Davis J C 2000 Nature 403 746Google Scholar

    [50]

    Häffner H, Hänsel W, Roos C F, Benhelm J, Chen-al-kar D, Chwalla M, Körber T, Rapol U D, Riebe M, Schmidt P O, Becher C, Gühne O, Dür W, Blatt R 2005 Nature 438 643Google Scholar

    [51]

    Nelson K D, Li X, Weiss D S 2007 Nat. Phys. 3 556Google Scholar

    [52]

    Bakr W S, Gillen J I, Peng A, Fölling S, Greiner M 2009 Nature 462 74Google Scholar

    [53]

    Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68Google Scholar

    [54]

    Brahms N, Purdy T P, Brooks D W C, Botter T, Stamper-Kurn D M 2011 Nat. Phys. 7 604Google Scholar

    [55]

    Gericke T, Würtz P, Reitz D, Langen T, Ott H 2008 Nat. Phys. 4 949Google Scholar

    [56]

    Zipkes C, Palzer S, Sias C, Köhl M 2010 Nature 464 388Google Scholar

    [57]

    Verstraete F, Wolf M M, Ciac J I 2009 Nat. Phys. 5 633Google Scholar

    [58]

    Barreiro J T, Müller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P, Blatt R 2011 Nature 470 486Google Scholar

    [59]

    Lim K, Suh C, Rhee J K K 2019 Quantum Inf. Process 18 73Google Scholar

    [60]

    Tresp C, Zimmer C, Mirgorodskiy I, Gorniaczyk H, Paris-Mandoki A, Hofferberth S 2016 Phys. Rev. Lett. 117 223001Google Scholar

    [61]

    Honer J, Löw R, Weimer H, Pfau T, Büchler H P 2011 Phys. Rev. Lett. 107 093601Google Scholar

    [62]

    Trenkwalder A, Spagnolli G, Semeghini G, Coop S, Landini M, Castilho P, Pezzè L, Modugno G, Inguscio M, Smerzi A, Fattori M 2016 Nat. Phys. 12 826Google Scholar

    [63]

    Labuhn H, Barredo D, Ravets S, Léséleuc S, Macri T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [64]

    Helmrich S, Arias A, Lochead G, Wintermatel T M, Bochhold M, Diehl S, Whitlock S 2020 Nature 577 481Google Scholar

    [65]

    Bloch I, Dalibard J, Nascimbène S 2012 Nat. Phys. 8 267Google Scholar

    [66]

    Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S, Ye J 2013 Nature 501 521Google Scholar

    [67]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [68]

    Lucas A 2014 Front. Phys. 2 5

    [69]

    O’Shea D, Junge C, Volz J, Rauschenbeutel A 2013 Phys. Rev. Lett. 111 193601Google Scholar

    [70]

    Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V, Lukin M D 2009 Phys. Rev. Lett. 102 203902Google Scholar

    [71]

    Chen W, Beck K M, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletic V 2013 Science 341 768Google Scholar

    [72]

    Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoglu A 2012 Nat. Photonics 6 76Google Scholar

    [73]

    Garcia-Escartin J C, Chamorro-Posada P 2012 Phys. Rev. A 85 032309Google Scholar

    [74]

    Baur S, Tiarks D, Rempe G, Dürr S 2014 Phys. Rev. Lett. 112 073901Google Scholar

    [75]

    Li W, Lesanovsky I 2015 Phys. Rev. A 92 043828

    [76]

    Yu Y C, Dong M X, Ye Y H, Guo G C, Ding D S, Shi B S 2020 Sci. China Phys. Mech. Astron. 63 110312

    [77]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [78]

    Tiarks D, Baur S, Schneider K, Dürr S, Rempe G 2014 Phys. Rev. Lett. 113 053602Google Scholar

    [79]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601Google Scholar

    [80]

    Gorniaczyk H, Tresp C, Bienias P, Paris-Mandoki A, Li W, Mirgorodskiy I, Büchler H P, Lesanovsky I, Hofferberth S 2016 Nat. Commun. 7 12480Google Scholar

    [81]

    Hao Y M, Lin G W, Lin X M, Niu Y P, Gong S Q 2019 Sci. Rep. 9 4723

    [82]

    Norcia M A, Young A W, Kaufman A M 2018 Phys. Rev. X 8 041054

    [83]

    Saskin S, Wilson J T, Grinkenmeyer B, Tomson J D 2019 Phys. Rev. Lett. 122 143002Google Scholar

    [84]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005Google Scholar

    [85]

    Tallant J, Rittenhouse S T, Booth D, Sadeghpour H R, Shaffer J P 2012 Phys. Rev. Lett. 109 173202Google Scholar

    [86]

    Desalvo B J, Aman J A, Dunning F B, Killian T C, Sadeghpour H R, Yoshida S, Burgdörfer J 2015 Phys. Rev. A 92 031403Google Scholar

    [87]

    Dauphin A, Müller M, Martin-Delgado M A 2012 Phys. Rev. A 86 053618Google Scholar

    [88]

    Li X, Sarma S D 2015 Nat. Commun. 6 7137Google Scholar

    [89]

    Gorshkov A V, Nath R, Pohl T 2013 Phys. Rev. Lett. 110 153601Google Scholar

    [90]

    Otterbach J, Moos M, Muth D, Fleischhauer M 2013 Phys. Rev. Lett. 111 113001Google Scholar

    [91]

    Glaetzle A W, van Bijnen R M W, Zoller P, Lechner W A 2017 Nat. Commun. 8 15813Google Scholar

    [92]

    Pichler H, Wang S, Zhou L, Choi S, Lukin M D 2018 arXiv:1808.10816 [quant-ph]

    [93]

    Kokail C, Maier C, Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F, Zoller P 2019 Nature 569 355Google Scholar

  • [1] Ding Chao, Hu Shan-shan, Deng Song, Song Hong-tian, Zhang Ying, Wang Bao-shuai, Yan Sheng, Xiao Dong-ping, Zhang Huai-qing. Based on the Rydberg Atom Electric Field Quantum Measurement Method and Polarization Influence Analysis. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241362
    [2] Zhou Fei, Jia Feng-Dong, Liu Xiu-Bin, Zhang Jian, Xie Feng, Zhong Zhi-Ping. Measurement of microwave electric field based on electromagnetically induced transparency by using cold Rydberg atoms. Acta Physica Sinica, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] Liao Qiu-Yu, Hu Heng-Jie, Chen Mao-Wei, Shi Yi, Zhao Yuan, Hua Chun-Bo, Xu Si-Liu, Fu Qi-Dong, Ye Fang-Wei, Zhou Qin. Two-dimensional spatial optical solitons in Rydberg cold atomic system under the action of optical lattice. Acta Physica Sinica, 2023, 72(10): 104202. doi: 10.7498/aps.72.20230096
    [4] Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system. Acta Physica Sinica, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [5] Li Yan. Effects of long-range inter-particle interactions and isolated defect on quantum walks of two hard-core bosons in one-dimensional lattices. Acta Physica Sinica, 2023, 72(17): 170501. doi: 10.7498/aps.72.20230642
    [6] Pei Si-Hui, Song Zi-Xuan, Lin Xing, Fang Wei. Interaction between light and single quantum-emitter in open Fabry-Perot microcavity. Acta Physica Sinica, 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [7] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [8] Li Hong-Yun, Yin Yan-Yan, Wang Qing, Wang Li-Fei. self-similarity of Rydberg hydrogen atom in parallel electric and magnetic fields. Acta Physica Sinica, 2015, 64(18): 180502. doi: 10.7498/aps.64.180502
    [9] Huang Wei, Liang Zhen-Tao, Du Yan-Xiong, Yan Hui, Zhu Shi-Liang. Rydberg-atom-based electrometry. Acta Physica Sinica, 2015, 64(16): 160702. doi: 10.7498/aps.64.160702
    [10] Wu Hai-Na, Sun Xue, Gong Wei-Jiang, Yi Guang-Yu. Influences of electron-phonon interaction on the thermoelectric effect in a parallel double quantum dot system. Acta Physica Sinica, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [11] Han Xiao-Xuan, Zhao Jian-Ming, Li Chang-Yong, Jia Suo-Tang. Potentials of long-range cesium Rydberg molecule. Acta Physica Sinica, 2015, 64(13): 133202. doi: 10.7498/aps.64.133202
    [12] Zhao Jian-Dong, Xin Jie. Van der Waals interaction between high excited states. Acta Physica Sinica, 2014, 63(13): 133201. doi: 10.7498/aps.63.133201
    [13] Li Chang-Yong, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Measurement and theoretical calculation for Stark energy and electric dipole moment of Cs Rydberg state. Acta Physica Sinica, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [14] Zhang Wang, Xu Fa-Qiang, Wang Guo-Dong, Zhang Wen-Hua, Li Zong-Mu, Wang Li-Wu, Chen Tie-Xin. Thickness dependence of the interfacial interaction for the Fe/ZnO (0001) system studied by photoemission. Acta Physica Sinica, 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [15] Li Jia-Liang, Lei Shu-Guo. Study of the XY chain with long-range interactions. Acta Physica Sinica, 2008, 57(9): 5944-5950. doi: 10.7498/aps.57.5944
    [16] Yan Li-Fen, Wang Hong-Cheng, She Wei-Long. Influence of diffusion on the interaction between photovoltaic spatial solitons. Acta Physica Sinica, 2006, 55(10): 5257-5262. doi: 10.7498/aps.55.5257
    [17] MA JIN-YI, QIU XI-JUN. INTERACTION BETWEEN AN ELECTRONIC SYSTEM AND MULTIPHOTONS IN A STRONG LASER FIELD. Acta Physica Sinica, 2001, 50(3): 416-421. doi: 10.7498/aps.50.416
    [18] ZHANG SEN, QIU JI-ZHEN, WANG GANG. LEVEL STRUCTURE OF THE RYDBERG STATES OF CALCIUM ATOM IN ELECTRIC FIELD. Acta Physica Sinica, 1989, 38(3): 481-486. doi: 10.7498/aps.38.481
    [19] HE XING-HONG, LI BAI-WEN, ZHANG CHENG-XIU. POLARIZABILITIES OF HIGH RYDBERG ALKALI ATOMS. Acta Physica Sinica, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
    [20] ZHANG SEN, QIU JI-ZHEN, HU SU-FEN, LU JIE, ZHONG JIAN-WEI, LIANG YI, SUN JIA-ZHEN. ELECTRIC FIELD EFFECTS ON Sr ATOM RYDBERG STATES. Acta Physica Sinica, 1988, 37(6): 983-988. doi: 10.7498/aps.37.983
Metrics
  • Abstract views:  17267
  • PDF Downloads:  886
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2020
  • Accepted Date:  07 June 2020
  • Available Online:  19 June 2020
  • Published Online:  20 September 2020

/

返回文章
返回