Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanical failures in solid-state lithium batteries and their solution

Liang Yu-Hao Fan Li-Zhen

Citation:

Mechanical failures in solid-state lithium batteries and their solution

Liang Yu-Hao, Fan Li-Zhen
PDF
HTML
Get Citation
  • The mechanical properties of electrode materials and solid-state electrolytes in solid-state batteries (SSBs) have an important influence on the mechanical stabilties of SSBs. Mechanical failures in SSBs on different scales and in different components will occur once the stress inside SSBs exceeds the materials’ strengths, which seriously deteriorates the electrochemical performances of SSBs. From the perspective of stabilizing the mechanical stabilities of SSBs, in this review we describe the influences of the mechanical properties of each component in SSBs on the mechanical stabilites of SSBs, and we analyze the factors that affect the mechanical properties of materials. In addition, we also discuss the mechanical failures of SSBs during cycle, including electrode materials’ or solid-state electrolytes’ fractures, electrode-electrolyte contact losses, and short-circuits due to lithium dendrites. Finally, we summarize some common strategies to mitigate the mechanical failures in SSBs, and look forward to the future research directions in this field. Overall, the mechanical failures in SSBs and their strategies discussed in this review will help researchers build SSBs with higher energy density, longer life and higher safety.
      Corresponding author: Fan Li-Zhen, fanlizhen@ustb.edu.cn
    [1]

    Ding Y, Cano Z P, Yu A, Lu J, Chen Z 2019 Electrochem. Energy Rev. 2 1Google Scholar

    [2]

    Choi J W, Aurbach D 2016 Nat. Rev. Mater. 1 16013Google Scholar

    [3]

    Li W, Erickson E M, Manthiram A 2020 Nat. Energy 5 26Google Scholar

    [4]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [5]

    Deng J, Bae C, Denlinger A, Miller T 2020 Joule 4 511Google Scholar

    [6]

    Li H 2019 Joule 3 911Google Scholar

    [7]

    Wu F, Maier J, Yu Y 2020 Chem. Soc. Rev. 49 1569Google Scholar

    [8]

    Manthiram A, Yu X, Wang S 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [9]

    Lopez J, Mackanic D G, Cui Y, Bao Z 2019 Nat. Rev. Mater. 4 312Google Scholar

    [10]

    Boaretto N, Meabe L, Martinez Ibañez M, Armand M, Zhang H 2020 J. Electrochem. Soc. 167 070524Google Scholar

    [11]

    Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L Z, Nan C W 2019 Joule 3 1190Google Scholar

    [12]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao Horn Y 2016 Chem. Rev. 116 140Google Scholar

    [13]

    Zhang Q, Cao D, Ma Y, Natan A, Aurora P, Zhu H 2019 Adv. Mater. 31 1901131Google Scholar

    [14]

    Hu Y S 2016 Nat. Energy 1 16042Google Scholar

    [15]

    Lu Y, Li L, Zhang Q, Niu Z, Chen J 2018 Joule 2 1747Google Scholar

    [16]

    Cao Y, Li M, Lu J, Liu J, Amine K 2019 Nat. Nanotechnol. 14 200Google Scholar

    [17]

    Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780Google Scholar

    [18]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [19]

    He Y, Lu C, Liu S, Zheng W, Luo J 2019 Adv. Energy Mater. 9 1901810Google Scholar

    [20]

    Chen H, Ling M, Hencz L, Ling H Y, Li G, Lin Z, Liu G, Zhang S 2018 Chem. Rev. 118 8936Google Scholar

    [21]

    Zhang F, Huang Q A, Tang Z, Li A, Shao Q, Zhang L, Li X, Zhang J 2020 Nano Energy 70 104545Google Scholar

    [22]

    Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P 2012 J. Electrochem. Soc. 159 222Google Scholar

    [23]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 396Google Scholar

    [24]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [25]

    Schnell J, Günther T, Knoche T, Vieider C, Köhler L, Just A, Keller M, Passerini S, Reinhart G 2018 J. Power Sources 382 160Google Scholar

    [26]

    Liang J, Luo J, Sun Q, Yang X, Li R, Sun X 2019 Energy Storage Mater. 21 308Google Scholar

    [27]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [28]

    Judez X, Eshetu G G, Li C, Rodriguez Martinez L M, Zhang H, Armand M 2018 Joule 2 2208Google Scholar

    [29]

    Cho Y H, Wolfenstine J, Rangasamy E, Kim H, Choe H, Sakamoto J 2012 J. Mater. Sci. 47 5970

    [30]

    Kim Y, Jo H, Allen J L, Choe H, Wolfenstine J, Sakamoto J 2016 J. Am. Ceram. Soc. 99 1367Google Scholar

    [31]

    Jackman S D, Cutler R A 2012 J. Power Sources 218 65

    [32]

    Yu S, Schmidt R D, Garcia Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J 2016 Chem. Mater. 28 197Google Scholar

    [33]

    McGrogan F P, Swamy T, Bishop S R, Eggleton E, Porz L, Chen X, Chiang Y M, Van Vliet K J 2017 Adv. Energy Mater. 7 1602011Google Scholar

    [34]

    Deng Z, Wang Z, Chu I H, Luo J, Ong S P 2015 J. Electrochem. Soc. 163 A67

    [35]

    Xie J, Duan R G, Han Y, Kerr J B 2004 Solid State Ionics 175 755Google Scholar

    [36]

    Ji J, Li B, Zhong W H 2010 J. Phys. Chem. B 114 13637Google Scholar

    [37]

    Chen Yang Y W, Chen H C, Lin F J, Chen C C 2002 Solid State Ionics 150 327Google Scholar

    [38]

    Chung N K, Kwon Y D, Kim D 2003 J. Power Sources 124 148Google Scholar

    [39]

    Mukhopadhyay A, Sheldon B W 2014 Prog. Mater Sci. 63 58Google Scholar

    [40]

    Xu R C, Xia X H, Li S H, Zhang S Z, Wang X L, Tu J P 2017 J. Mater. Chem. A 5 6310Google Scholar

    [41]

    Qi Y, Guo H, Hector L G, Timmons A 2010 J. Electrochem. Soc. 157 A558Google Scholar

    [42]

    Beaulieu L Y, Eberman K W, Turner R L, Krause L J, Dahn J R 2001 Electrochem. Solid-State Lett. 4 A137Google Scholar

    [43]

    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929Google Scholar

    [44]

    Kim J, Lee H, Cha H, Yoon M, Park M, Cho J 2018 Adv. Energy Mater. 8 1702028Google Scholar

    [45]

    Zhang W, Richter F H, Culver S P, Leichtweiss T, Lozano J G, Dietrich C, Bruce P G, Zeier W G, Janek J 2018 ACS Appl. Mater. Interfaces 10 22226Google Scholar

    [46]

    Park K H, Bai Q, Kim D H, Oh D Y, Zhu Y, Mo Y, Jung Y S 2018 Adv. Energy Mater. 8 1800035Google Scholar

    [47]

    Reimers J, Dahn J 1992 J. Electrochem. Soc. 139 2091Google Scholar

    [48]

    Su L, Jing Y, Zhou Z 2011 Nanoscale 3 3967Google Scholar

    [49]

    Yin S C, Rho Y H, Swainson I, Nazar L F 2006 Chem. Mater. 18 1901Google Scholar

    [50]

    Padhi A K 1997 J. Electrochem. Soc. 144 1188Google Scholar

    [51]

    Han F, Yue J, Fan X, Gao T, Luo C, Ma Z, Suo L, Wang C 2016 Nano Lett. 16 4521Google Scholar

    [52]

    Ohzuku T 1995 J. Electrochem. Soc. 142 1431Google Scholar

    [53]

    Nonemacher J F, Hüter C, Zheng H, Malzbender J, Krüger M, Spatschek R, Finsterbusch M 2018 Solid State Ionics 321 126Google Scholar

    [54]

    Sharafi A, Haslam C G, Kerns R D, Wolfenstine J, Sakamoto J 2017 J. Mater. Chem. A 5 21491Google Scholar

    [55]

    Li Y, Chen X, Dolocan A, Cui Z, Xin S, Xue L, Xu H, Park K, Goodenough J B 2018 J. Am. Chem. Soc. 140 6448Google Scholar

    [56]

    Dai J, Yang C, Wang C, Pastel G, Hu L 2018 Adv. Mater. 30 1802068Google Scholar

    [57]

    Sun H H, Ryu H H, Kim U H, Weeks J A, Heller A, Sun Y K, Mullins C B 2020 ACS Energy Lett. 5 1136Google Scholar

    [58]

    Park K J, Hwang J Y, Ryu H H, Maglia F, Kim S J, Lamp P, Yoon C S, Sun Y K 2019 ACS Energy Lett. 4 1394Google Scholar

    [59]

    Zhou H, Xin F, Pei B, Whittingham M S 2019 ACS Energy Lett. 4 1902Google Scholar

    [60]

    Park K J, Jung H G, Kuo L Y, Kaghazchi P, Yoon C S, Sun Y K 2018 Adv. Energy Mater. 8 1801202Google Scholar

    [61]

    Ryu H H, Park K J, Yoon D R, Aishova A, Yoon C S, Sun Y K 2019 Adv. Energy Mater. 9 1902698Google Scholar

    [62]

    Kim H, Lee E J, Sun Y K 2014 Mater. Today 17 285Google Scholar

    [63]

    Smith S, Thompson T, Sakamoto J, Allen J L, Baker D R, Wolfenstine J 2017 Solid State Ionics 300 38Google Scholar

    [64]

    Dixit M B, Zaman W, Bootwala Y, Zheng Y, Hatzell M C, Hatzell K B 2019 ACS Appl. Mater. Interfaces 11 45087Google Scholar

    [65]

    Troy S, Schreiber A, Reppert T, Gehrke H G, Finsterbusch M, Uhlenbruck S, Stenzel P 2016 Appl. Energy 169 757Google Scholar

    [66]

    Sakuda A, Hayashi A, Tatsumisago M 2013 Sci. Rep. 3 2261Google Scholar

    [67]

    Kato A, Yamamoto M, Sakuda A, Hayashi A, Tatsumisago M 2018 ACS Appl. Energy Mater. 1 1002Google Scholar

    [68]

    Aidoud D, Etiemble A, Guy Bouyssou D, Maire E, Le Bideau J, Guyomard D, Lestriez B 2016 J. Power Sources 330 92Google Scholar

    [69]

    Weston J E, Steele B C H 1982 Solid State Ionics 7 75Google Scholar

    [70]

    Arya A, Sharma A L 2020 J. Mater. Sci. 55 6242Google Scholar

    [71]

    Jiang G, Maeda S, Yang H, Saito Y, Tanase S, Sakai T 2005 J. Power Sources 141 143Google Scholar

    [72]

    Lee W, Lyon C K, Seo J H, Lopez-Hallman R, Leng Y, Wang C Y, Hickner M A, Randall C A, Gomez E D 2019 Adv. Funct. Mater. 29 1807872Google Scholar

    [73]

    Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H 2020 Adv. Sci. 7 1903088Google Scholar

    [74]

    Hu X, Yan G, Cheng X, Malzbender J, Qiang W, Huang B 2019 J. Am. Ceram. Soc. 102 1953

    [75]

    Hu X, Cheng X, Qin S, Yan G, Malzbender J, Qiang W, Huang B 2018 Ceram. Int. 44 1902Google Scholar

    [76]

    Ishidzu K, Oka Y, Nakamura T 2016 Solid State Ionics 288 176Google Scholar

    [77]

    Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou S X, Guo Z, Cho J 2017 Adv. Energy Mater. 7 1601507Google Scholar

    [78]

    Xu X, Huo H, Jian J, Wang L, Zhu H, Xu S, He X, Yin G, Du C, Sun X 2019 Adv. Energy Mater. 9 1803963Google Scholar

    [79]

    Zhang C, Xu S, Han B, Lin G, Huang Q, Ivey D G, Yang C, Wang P, Wei W 2019 J. Power Sources 431 40Google Scholar

    [80]

    Wu B, Wang S, Evans Iv W J, Deng D Z, Yang J, Xiao J 2016 J. Mater. Chem. A 4 15266Google Scholar

    [81]

    Li H, Liu A, Zhang N, Wang Y, Yin S, Wu H, Dahn J R 2019 Chem. Mater. 31 7574Google Scholar

    [82]

    Cheng X B, Zhang R, Zhao C Z, Wei F, Zhang J G, Zhang Q 2016 Adv. Sci. 3 1500213Google Scholar

    [83]

    Waetzig K, Rost A, Langklotz U, Matthey B, Schilm J 2016 J. Eur. Ceram. Soc. 36 1995Google Scholar

    [84]

    Bucci G, Swamy T, Chiang Y M, Carter W C 2017 J. Mater. Chem. A 5 19422Google Scholar

    [85]

    Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G, Janek J 2017 Chem. Mater. 29 5574Google Scholar

    [86]

    Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2019 Nat. Rev. Mater. 5 105

    [87]

    Kuang Y, Chen C, Kirsch D, Hu L 2019 Adv. Energy Mater. 9 1901457Google Scholar

    [88]

    Devaux D, Harry K J, Parkinson D Y, Yuan R, Hallinan D T, MacDowell A A, Balsara N P 2015 J. Electrochem. Soc. 162 A1301Google Scholar

    [89]

    Liu T, Zhang Y, Chen R, Zhao S X, Lin Y, Nan C W, Shen Y 2017 Electrochem. Commun. 79 1Google Scholar

    [90]

    Huang W, Zhao N, Bi Z, Shi C, Guo X, Fan L, Nan C 2020 Mater. Today Nano 10 100075Google Scholar

    [91]

    Dixit M B, Zaman W, Hortance N, Vujic S, Harkey B, Shen F, Tsai W Y, De Andrade V, Chen X C, Balke N, Hatzell K B 2020 Joule 4 207Google Scholar

    [92]

    Zhao N, Fang R, He M H, Chen C, Li Y Q, Bi Z J, Guo X X 2018 Rare Met. 37 473Google Scholar

    [93]

    Sakamoto J 2019 Nat. Energy 4 827Google Scholar

    [94]

    Kim S H, Kim K, Choi H, Im D, Heo S, Choi H S 2019 J. Mater. Chem. A 7 13650Google Scholar

    [95]

    Cheng X B, Zhang R, Zhao C Z, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar

    [96]

    Xia S, Wu X, Zhang Z, Cui Y, Liu W 2019 Chem. 5 753Google Scholar

    [97]

    Khurana R, Schaefer J L, Archer L A, Coates G W 2014 J. Am. Chem. Soc. 136 7395Google Scholar

    [98]

    Hatzell K B, Chen X C, Cobb C L, Dasgupta N P, Dixit M B, Marbella L E, McDowell M T, Mukherjee P P, Verma A, Viswanathan V, Westover A S, Zeier W G 2020 ACS Energy Lett. 5 922Google Scholar

    [99]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C, Kaskel S, Zhang Q 2020 ACS Energy Lett. 5 833Google Scholar

    [100]

    Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2014 J. Electrochem. Soc. 161 A668Google Scholar

    [101]

    Zhang X, Wang A, Liu X, Luo J 2019 Acc. Chem. Res. 52 3223Google Scholar

    [102]

    Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [103]

    Doux J M, Nguyen H, Tan D H S, Banerjee A, Wang X, Wu E A, Jo C, Yang H, Meng Y S 2019 Adv. Energy Mater. 10 1903253

    [104]

    Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J G 2018 Nat. Energy 3 600Google Scholar

    [105]

    Jung S H, Kim U H, Kim J H, Jun S, Yoon C S, Jung Y S, Sun Y K 2019 Adv. Energy Mater. 10 1903360

    [106]

    Liu Y, Harlow J, Dahn J 2020 J. Electrochem. Soc. 167 020512Google Scholar

    [107]

    Lee H, Oh P, Kim J, Cha H, Chae S, Lee S, Cho J 2019 Adv. Mater. 31 1900376Google Scholar

    [108]

    Zeng H, Ji X, Tsai F, Zhang Q, Jiang T, Li R K Y, Shi H, Luan S, Shi D 2018 Solid State Ionics 320 92Google Scholar

    [109]

    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486Google Scholar

    [110]

    Bi Z, Zhao N, Ma L, Fu Z, Xu F, Wang C, Guo X 2020 Chem. Eng. J. 387 124089Google Scholar

    [111]

    Bi Z, Zhao N, Ma L, Shi C, Fu Z, Xu F, Guo X 2020 J. Mater. Chem. A 8 4252Google Scholar

    [112]

    Zhang X D, Shi J L, Liang J Y, Wang L P, Yin Y X, Jiang K C, Guo Y G 2019 J. Power Sources 426 242Google Scholar

    [113]

    Yubuchi S, Ito Y, Matsuyama T, Hayashi A, Tatsumisago M 2016 Solid State Ionics 285 79Google Scholar

    [114]

    Ito Y, Otoyama M, Hayashi A, Ohtomo T, Tatsumisago M 2017 J. Power Sources 360 328Google Scholar

    [115]

    Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G, Janek J 2018 Energy Environ. Sci. 11 2142Google Scholar

    [116]

    Sakuda A, Hayashi A, Tatsumisago M 2013 Scientific Reports 3 2261

    [117]

    Shi T, Tu Q, Tian Y, Xiao Y, Miara L J, Kononova O, Ceder G 2019 Adv. Energy Mater. 10 1902881

    [118]

    Park K, Yu B C, Jung J W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 8051Google Scholar

    [119]

    Li Y, Wang Z, Li C, Cao Y, Guo X 2014 J. Power Sources 248 642Google Scholar

    [120]

    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar

    [121]

    Liu Y, Sun Q, Wang D, Adair K, Liang J, Sun X 2018 J. Power Sources 393 193Google Scholar

    [122]

    Guo J, Berbano S S, Guo H, Baker A L, Lanagan M T, Randall C A 2016 Adv. Funct. Mater. 26 7115Google Scholar

    [123]

    Sun C, Liu J, Gong Y, Wilkinson D P, Zhang J 2017 Nano Energy 33 363Google Scholar

    [124]

    Wang X, Zhang Y, Zhang X, Liu T, Lin Y H, Li L, Shen Y, Nan C W 2018 ACS Appl. Mater. Interfaces 10 24791Google Scholar

    [125]

    Pervez S A, Ganjeh Anzabi P, Farooq U, Trifkovic M, Roberts E P L, Thangadurai V 2019 Adv. Mater. Interfaces 6 1900186

    [126]

    Huo H, Sun J, chen C, Meng X, He M, Zhao N, Guo X 2018 J. Power Sources 383 150Google Scholar

    [127]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Power Sources 195 6847Google Scholar

    [128]

    Gai J, Ma F, Zhang Z, Sun D, Jin Y, Guo Y, Kim W 2019 ACS Sustainable Chem. Eng. 7 15896Google Scholar

    [129]

    Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar

    [130]

    Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X 2019 Adv. Energy Mater. 9 1804004Google Scholar

    [131]

    Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G 2019 Adv. Mater. 31 1807789Google Scholar

    [132]

    Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P 2012 J. Electrochem. Soc. 159 A222

    [133]

    Xu B, Li W, Duan H, Wang H, Guo Y, Li H, Liu H 2017 J. Power Sources 354 68Google Scholar

    [134]

    Choudhury S, Vu D, Warren A, Tikekar M D, Tu Z, Archer L A 2018 Proc. Natl. Acad. Sci. 115 6620Google Scholar

  • 图 1  材料典型的应力-应变曲线

    Figure 1.  A typical stress-strain curve of materials.

    图 2  NCA89和NCW90材料的 (a) ac轴晶格参数; (b)晶胞体积随着电池电压的变化图; (c) NCA89和(d) NCW90材料在充电到4.3 V下截面的明场STEM-mosaic图[61]

    Figure 2.  Changes in (a) a- and c-axis lattice parameters and (b) unit cell volumes for NCA89 and NCW90 as a function of the cell voltage; bright-filed STEM mosaic image of a cross-section of (c) NCA89 and (d) NCW90 at charged to 4.3 V[61].

    图 3  (100–y)(0.75 Li2S·0.25 P2S5) ·yLiI(mol%)(y=0, 5, 10, 20, 和30)玻璃的杨氏模量和LiI含量的关系[67]

    Figure 3.  Relationship between the Young’s moduli and LiI content of (100–y)(0.75 Li2S·0.25 P2S5) ·yLiI(mol%)(y=0, 5, 10, 20, and 30) glasses[67].

    图 4  LiCoO2在电池循环后破裂的SEM图[45]

    Figure 4.  SEM images of fracturing of LiCoO2 particles in cycled battery[45].

    图 5  NCM811/β-Li3PS4/In全固态电池首次循环不可逆容量损失的示意图[85]

    Figure 5.  Schematic diagram of the irreversible first cycle capacity loss of the NCM811/β-Li3PS4/In all-solid-state battery[85].

    图 6  堆叠压力对锂金属固态电池短路行为的影响示意图 (a) 在电池制备期间, 在对电池施加压力之前, 电解质和锂金属之间的接触不良; (b)在25 MPa的压力下, 锂金属和电解质的物理接触得到改善; (c)即使随后将压力降低到5 MPa, 也会使锂对称电池的阻抗大幅降低; (d)在5 MPa的堆叠压力下进行沉积/剥离测试, 未观察到Li在电解质颗粒内部蠕变的现象; (e)在25 MPa的压力下, Li在电解质的晶粒之间缓慢蠕变, 并且在这些枝晶上产生沉积过程, 最终在48 h后电池发生短路; (f)当电池的堆叠压力过高时, Li会通过蠕变在电解质中形成树枝状枝晶, 从而使电池机械短路[103]

    Figure 6.  Schematic of the effect of the stack pressure on the shorting behavior of Li metal solid-state batteries: (a) During cell fabrication, the contact between the electrolyte and Li metal is poor before pressing the Li metal on the electrolyte pellet; (b) Pressing the Li metal at 25 MPa allows for proper wetting of the electrolyte and (c) induces a large drop in the symmetric cell impedance, even when the pressure is later released to 5 MPa; (d) plating and stripping at a stack pressure of 5 MPa, no creeping of Li inside the SSE pellet is observed; (e) at a stack pressure of 25 MPa, Li slowly creeps between the grains of the SSE and plating occurs on these dendrites, eventually shorting the cell after 48 h; (f) when the stack pressure is too high, Li creeps through the electrolyte and forms dendrites that mechanically short the cell[103].

    图 7  全固态电池中NCA80和FCG75电极的不同微观结构和界面演化示意图[105]

    Figure 7.  Schematic diagram of the different microstructural and interfical evolutions in the NCA80 and FCG75 electrodes in all-solid-state batteries[105].

    图 8  PIC–5 μm, CIP–200 nm和多层“三明治”型复合固态电解质的示意图[130]

    Figure 8.  The schematic illustration of the PIC–5 µm, CIP–200 nm, and hierarchical sandwich-type composite electrolytes[130].

    表 1  固态电池材料的力学性能

    Table 1.  Mechanical properties of solid-state battery materials.

    电池材料杨氏模量/GPa剪切模量/GPa硬度/GPa泊松比(B/G)Kc/MPa·m1/2
    氧化物电解质Li0.33La0.57TiO3[29]200809.21.66~1
    Li7La3Zr2O12[30]15059.69.11.720.92–2.73
    Li1.3Al0.3Ti1.7(PO4)3[31]1157.11.10
    Li6.5La3Zr1.5Ta0.5O12[32]153.8 ± 2.761.2 ± 1.11.59
    硫化物电解质Li2S-P2S5[33]18.57.1 ± 0.31.90.23 ± 0.04
    Li7P3S11[34]
    Li10GeP2S12[34]21.77.93.44
    Li10SnP2S12[34]29.111.22.09
    Li5PS5Cl[34]22.18.13.57
    聚合物电解质PEO+LiTFSI[35]~10–6
    PEO+ LiClO4[36]14.5 × 10–3
    PAN+LiClO4[37]1.6 × 103
    PVDF+LiBF4[38]0.3 × 10–3
    电极材料LiCoO2[33]178—1918.30.94
    LiFePO4[39]125.948.92.02
    NCM[40]19811
    石墨[41]32122.34
    Si[42]11316.6
    Li[33]54.2510–3
    DownLoad: CSV

    表 2  电极材料在电池循环过程中的体积变化

    Table 2.  Volume variation of electrode materials during battery cycle.

    电极材料嵌锂/锂化产物体积变化/%
    正极LiCoO2Li0.5CoO22[47]
    LiNiO2Li0.5NiO22.8[48]
    LiMnO2Li0.5MnO25.6[48]
    LiNi1/3Co1/3
    Mn1/3O2
    Li0.04Ni1/3Co1/3
    Mn1/3O2
    7.2[49]
    LiFePO4FePO47[50]
    SLi2S76[51]
    负极SiLi15Si4310[42]
    石墨LiC613[41]
    Li4Ti5O12Li2[Li1/3Ti5/3]O40.2[52]
    DownLoad: CSV
  • [1]

    Ding Y, Cano Z P, Yu A, Lu J, Chen Z 2019 Electrochem. Energy Rev. 2 1Google Scholar

    [2]

    Choi J W, Aurbach D 2016 Nat. Rev. Mater. 1 16013Google Scholar

    [3]

    Li W, Erickson E M, Manthiram A 2020 Nat. Energy 5 26Google Scholar

    [4]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [5]

    Deng J, Bae C, Denlinger A, Miller T 2020 Joule 4 511Google Scholar

    [6]

    Li H 2019 Joule 3 911Google Scholar

    [7]

    Wu F, Maier J, Yu Y 2020 Chem. Soc. Rev. 49 1569Google Scholar

    [8]

    Manthiram A, Yu X, Wang S 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [9]

    Lopez J, Mackanic D G, Cui Y, Bao Z 2019 Nat. Rev. Mater. 4 312Google Scholar

    [10]

    Boaretto N, Meabe L, Martinez Ibañez M, Armand M, Zhang H 2020 J. Electrochem. Soc. 167 070524Google Scholar

    [11]

    Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L Z, Nan C W 2019 Joule 3 1190Google Scholar

    [12]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao Horn Y 2016 Chem. Rev. 116 140Google Scholar

    [13]

    Zhang Q, Cao D, Ma Y, Natan A, Aurora P, Zhu H 2019 Adv. Mater. 31 1901131Google Scholar

    [14]

    Hu Y S 2016 Nat. Energy 1 16042Google Scholar

    [15]

    Lu Y, Li L, Zhang Q, Niu Z, Chen J 2018 Joule 2 1747Google Scholar

    [16]

    Cao Y, Li M, Lu J, Liu J, Amine K 2019 Nat. Nanotechnol. 14 200Google Scholar

    [17]

    Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780Google Scholar

    [18]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [19]

    He Y, Lu C, Liu S, Zheng W, Luo J 2019 Adv. Energy Mater. 9 1901810Google Scholar

    [20]

    Chen H, Ling M, Hencz L, Ling H Y, Li G, Lin Z, Liu G, Zhang S 2018 Chem. Rev. 118 8936Google Scholar

    [21]

    Zhang F, Huang Q A, Tang Z, Li A, Shao Q, Zhang L, Li X, Zhang J 2020 Nano Energy 70 104545Google Scholar

    [22]

    Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P 2012 J. Electrochem. Soc. 159 222Google Scholar

    [23]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 396Google Scholar

    [24]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [25]

    Schnell J, Günther T, Knoche T, Vieider C, Köhler L, Just A, Keller M, Passerini S, Reinhart G 2018 J. Power Sources 382 160Google Scholar

    [26]

    Liang J, Luo J, Sun Q, Yang X, Li R, Sun X 2019 Energy Storage Mater. 21 308Google Scholar

    [27]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [28]

    Judez X, Eshetu G G, Li C, Rodriguez Martinez L M, Zhang H, Armand M 2018 Joule 2 2208Google Scholar

    [29]

    Cho Y H, Wolfenstine J, Rangasamy E, Kim H, Choe H, Sakamoto J 2012 J. Mater. Sci. 47 5970

    [30]

    Kim Y, Jo H, Allen J L, Choe H, Wolfenstine J, Sakamoto J 2016 J. Am. Ceram. Soc. 99 1367Google Scholar

    [31]

    Jackman S D, Cutler R A 2012 J. Power Sources 218 65

    [32]

    Yu S, Schmidt R D, Garcia Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J 2016 Chem. Mater. 28 197Google Scholar

    [33]

    McGrogan F P, Swamy T, Bishop S R, Eggleton E, Porz L, Chen X, Chiang Y M, Van Vliet K J 2017 Adv. Energy Mater. 7 1602011Google Scholar

    [34]

    Deng Z, Wang Z, Chu I H, Luo J, Ong S P 2015 J. Electrochem. Soc. 163 A67

    [35]

    Xie J, Duan R G, Han Y, Kerr J B 2004 Solid State Ionics 175 755Google Scholar

    [36]

    Ji J, Li B, Zhong W H 2010 J. Phys. Chem. B 114 13637Google Scholar

    [37]

    Chen Yang Y W, Chen H C, Lin F J, Chen C C 2002 Solid State Ionics 150 327Google Scholar

    [38]

    Chung N K, Kwon Y D, Kim D 2003 J. Power Sources 124 148Google Scholar

    [39]

    Mukhopadhyay A, Sheldon B W 2014 Prog. Mater Sci. 63 58Google Scholar

    [40]

    Xu R C, Xia X H, Li S H, Zhang S Z, Wang X L, Tu J P 2017 J. Mater. Chem. A 5 6310Google Scholar

    [41]

    Qi Y, Guo H, Hector L G, Timmons A 2010 J. Electrochem. Soc. 157 A558Google Scholar

    [42]

    Beaulieu L Y, Eberman K W, Turner R L, Krause L J, Dahn J R 2001 Electrochem. Solid-State Lett. 4 A137Google Scholar

    [43]

    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929Google Scholar

    [44]

    Kim J, Lee H, Cha H, Yoon M, Park M, Cho J 2018 Adv. Energy Mater. 8 1702028Google Scholar

    [45]

    Zhang W, Richter F H, Culver S P, Leichtweiss T, Lozano J G, Dietrich C, Bruce P G, Zeier W G, Janek J 2018 ACS Appl. Mater. Interfaces 10 22226Google Scholar

    [46]

    Park K H, Bai Q, Kim D H, Oh D Y, Zhu Y, Mo Y, Jung Y S 2018 Adv. Energy Mater. 8 1800035Google Scholar

    [47]

    Reimers J, Dahn J 1992 J. Electrochem. Soc. 139 2091Google Scholar

    [48]

    Su L, Jing Y, Zhou Z 2011 Nanoscale 3 3967Google Scholar

    [49]

    Yin S C, Rho Y H, Swainson I, Nazar L F 2006 Chem. Mater. 18 1901Google Scholar

    [50]

    Padhi A K 1997 J. Electrochem. Soc. 144 1188Google Scholar

    [51]

    Han F, Yue J, Fan X, Gao T, Luo C, Ma Z, Suo L, Wang C 2016 Nano Lett. 16 4521Google Scholar

    [52]

    Ohzuku T 1995 J. Electrochem. Soc. 142 1431Google Scholar

    [53]

    Nonemacher J F, Hüter C, Zheng H, Malzbender J, Krüger M, Spatschek R, Finsterbusch M 2018 Solid State Ionics 321 126Google Scholar

    [54]

    Sharafi A, Haslam C G, Kerns R D, Wolfenstine J, Sakamoto J 2017 J. Mater. Chem. A 5 21491Google Scholar

    [55]

    Li Y, Chen X, Dolocan A, Cui Z, Xin S, Xue L, Xu H, Park K, Goodenough J B 2018 J. Am. Chem. Soc. 140 6448Google Scholar

    [56]

    Dai J, Yang C, Wang C, Pastel G, Hu L 2018 Adv. Mater. 30 1802068Google Scholar

    [57]

    Sun H H, Ryu H H, Kim U H, Weeks J A, Heller A, Sun Y K, Mullins C B 2020 ACS Energy Lett. 5 1136Google Scholar

    [58]

    Park K J, Hwang J Y, Ryu H H, Maglia F, Kim S J, Lamp P, Yoon C S, Sun Y K 2019 ACS Energy Lett. 4 1394Google Scholar

    [59]

    Zhou H, Xin F, Pei B, Whittingham M S 2019 ACS Energy Lett. 4 1902Google Scholar

    [60]

    Park K J, Jung H G, Kuo L Y, Kaghazchi P, Yoon C S, Sun Y K 2018 Adv. Energy Mater. 8 1801202Google Scholar

    [61]

    Ryu H H, Park K J, Yoon D R, Aishova A, Yoon C S, Sun Y K 2019 Adv. Energy Mater. 9 1902698Google Scholar

    [62]

    Kim H, Lee E J, Sun Y K 2014 Mater. Today 17 285Google Scholar

    [63]

    Smith S, Thompson T, Sakamoto J, Allen J L, Baker D R, Wolfenstine J 2017 Solid State Ionics 300 38Google Scholar

    [64]

    Dixit M B, Zaman W, Bootwala Y, Zheng Y, Hatzell M C, Hatzell K B 2019 ACS Appl. Mater. Interfaces 11 45087Google Scholar

    [65]

    Troy S, Schreiber A, Reppert T, Gehrke H G, Finsterbusch M, Uhlenbruck S, Stenzel P 2016 Appl. Energy 169 757Google Scholar

    [66]

    Sakuda A, Hayashi A, Tatsumisago M 2013 Sci. Rep. 3 2261Google Scholar

    [67]

    Kato A, Yamamoto M, Sakuda A, Hayashi A, Tatsumisago M 2018 ACS Appl. Energy Mater. 1 1002Google Scholar

    [68]

    Aidoud D, Etiemble A, Guy Bouyssou D, Maire E, Le Bideau J, Guyomard D, Lestriez B 2016 J. Power Sources 330 92Google Scholar

    [69]

    Weston J E, Steele B C H 1982 Solid State Ionics 7 75Google Scholar

    [70]

    Arya A, Sharma A L 2020 J. Mater. Sci. 55 6242Google Scholar

    [71]

    Jiang G, Maeda S, Yang H, Saito Y, Tanase S, Sakai T 2005 J. Power Sources 141 143Google Scholar

    [72]

    Lee W, Lyon C K, Seo J H, Lopez-Hallman R, Leng Y, Wang C Y, Hickner M A, Randall C A, Gomez E D 2019 Adv. Funct. Mater. 29 1807872Google Scholar

    [73]

    Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H 2020 Adv. Sci. 7 1903088Google Scholar

    [74]

    Hu X, Yan G, Cheng X, Malzbender J, Qiang W, Huang B 2019 J. Am. Ceram. Soc. 102 1953

    [75]

    Hu X, Cheng X, Qin S, Yan G, Malzbender J, Qiang W, Huang B 2018 Ceram. Int. 44 1902Google Scholar

    [76]

    Ishidzu K, Oka Y, Nakamura T 2016 Solid State Ionics 288 176Google Scholar

    [77]

    Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou S X, Guo Z, Cho J 2017 Adv. Energy Mater. 7 1601507Google Scholar

    [78]

    Xu X, Huo H, Jian J, Wang L, Zhu H, Xu S, He X, Yin G, Du C, Sun X 2019 Adv. Energy Mater. 9 1803963Google Scholar

    [79]

    Zhang C, Xu S, Han B, Lin G, Huang Q, Ivey D G, Yang C, Wang P, Wei W 2019 J. Power Sources 431 40Google Scholar

    [80]

    Wu B, Wang S, Evans Iv W J, Deng D Z, Yang J, Xiao J 2016 J. Mater. Chem. A 4 15266Google Scholar

    [81]

    Li H, Liu A, Zhang N, Wang Y, Yin S, Wu H, Dahn J R 2019 Chem. Mater. 31 7574Google Scholar

    [82]

    Cheng X B, Zhang R, Zhao C Z, Wei F, Zhang J G, Zhang Q 2016 Adv. Sci. 3 1500213Google Scholar

    [83]

    Waetzig K, Rost A, Langklotz U, Matthey B, Schilm J 2016 J. Eur. Ceram. Soc. 36 1995Google Scholar

    [84]

    Bucci G, Swamy T, Chiang Y M, Carter W C 2017 J. Mater. Chem. A 5 19422Google Scholar

    [85]

    Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G, Janek J 2017 Chem. Mater. 29 5574Google Scholar

    [86]

    Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2019 Nat. Rev. Mater. 5 105

    [87]

    Kuang Y, Chen C, Kirsch D, Hu L 2019 Adv. Energy Mater. 9 1901457Google Scholar

    [88]

    Devaux D, Harry K J, Parkinson D Y, Yuan R, Hallinan D T, MacDowell A A, Balsara N P 2015 J. Electrochem. Soc. 162 A1301Google Scholar

    [89]

    Liu T, Zhang Y, Chen R, Zhao S X, Lin Y, Nan C W, Shen Y 2017 Electrochem. Commun. 79 1Google Scholar

    [90]

    Huang W, Zhao N, Bi Z, Shi C, Guo X, Fan L, Nan C 2020 Mater. Today Nano 10 100075Google Scholar

    [91]

    Dixit M B, Zaman W, Hortance N, Vujic S, Harkey B, Shen F, Tsai W Y, De Andrade V, Chen X C, Balke N, Hatzell K B 2020 Joule 4 207Google Scholar

    [92]

    Zhao N, Fang R, He M H, Chen C, Li Y Q, Bi Z J, Guo X X 2018 Rare Met. 37 473Google Scholar

    [93]

    Sakamoto J 2019 Nat. Energy 4 827Google Scholar

    [94]

    Kim S H, Kim K, Choi H, Im D, Heo S, Choi H S 2019 J. Mater. Chem. A 7 13650Google Scholar

    [95]

    Cheng X B, Zhang R, Zhao C Z, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar

    [96]

    Xia S, Wu X, Zhang Z, Cui Y, Liu W 2019 Chem. 5 753Google Scholar

    [97]

    Khurana R, Schaefer J L, Archer L A, Coates G W 2014 J. Am. Chem. Soc. 136 7395Google Scholar

    [98]

    Hatzell K B, Chen X C, Cobb C L, Dasgupta N P, Dixit M B, Marbella L E, McDowell M T, Mukherjee P P, Verma A, Viswanathan V, Westover A S, Zeier W G 2020 ACS Energy Lett. 5 922Google Scholar

    [99]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C, Kaskel S, Zhang Q 2020 ACS Energy Lett. 5 833Google Scholar

    [100]

    Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2014 J. Electrochem. Soc. 161 A668Google Scholar

    [101]

    Zhang X, Wang A, Liu X, Luo J 2019 Acc. Chem. Res. 52 3223Google Scholar

    [102]

    Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [103]

    Doux J M, Nguyen H, Tan D H S, Banerjee A, Wang X, Wu E A, Jo C, Yang H, Meng Y S 2019 Adv. Energy Mater. 10 1903253

    [104]

    Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J G 2018 Nat. Energy 3 600Google Scholar

    [105]

    Jung S H, Kim U H, Kim J H, Jun S, Yoon C S, Jung Y S, Sun Y K 2019 Adv. Energy Mater. 10 1903360

    [106]

    Liu Y, Harlow J, Dahn J 2020 J. Electrochem. Soc. 167 020512Google Scholar

    [107]

    Lee H, Oh P, Kim J, Cha H, Chae S, Lee S, Cho J 2019 Adv. Mater. 31 1900376Google Scholar

    [108]

    Zeng H, Ji X, Tsai F, Zhang Q, Jiang T, Li R K Y, Shi H, Luan S, Shi D 2018 Solid State Ionics 320 92Google Scholar

    [109]

    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486Google Scholar

    [110]

    Bi Z, Zhao N, Ma L, Fu Z, Xu F, Wang C, Guo X 2020 Chem. Eng. J. 387 124089Google Scholar

    [111]

    Bi Z, Zhao N, Ma L, Shi C, Fu Z, Xu F, Guo X 2020 J. Mater. Chem. A 8 4252Google Scholar

    [112]

    Zhang X D, Shi J L, Liang J Y, Wang L P, Yin Y X, Jiang K C, Guo Y G 2019 J. Power Sources 426 242Google Scholar

    [113]

    Yubuchi S, Ito Y, Matsuyama T, Hayashi A, Tatsumisago M 2016 Solid State Ionics 285 79Google Scholar

    [114]

    Ito Y, Otoyama M, Hayashi A, Ohtomo T, Tatsumisago M 2017 J. Power Sources 360 328Google Scholar

    [115]

    Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov A O, Kolling S, Brezesinski T, Hartmann P, Zeier W G, Janek J 2018 Energy Environ. Sci. 11 2142Google Scholar

    [116]

    Sakuda A, Hayashi A, Tatsumisago M 2013 Scientific Reports 3 2261

    [117]

    Shi T, Tu Q, Tian Y, Xiao Y, Miara L J, Kononova O, Ceder G 2019 Adv. Energy Mater. 10 1902881

    [118]

    Park K, Yu B C, Jung J W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 8051Google Scholar

    [119]

    Li Y, Wang Z, Li C, Cao Y, Guo X 2014 J. Power Sources 248 642Google Scholar

    [120]

    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar

    [121]

    Liu Y, Sun Q, Wang D, Adair K, Liang J, Sun X 2018 J. Power Sources 393 193Google Scholar

    [122]

    Guo J, Berbano S S, Guo H, Baker A L, Lanagan M T, Randall C A 2016 Adv. Funct. Mater. 26 7115Google Scholar

    [123]

    Sun C, Liu J, Gong Y, Wilkinson D P, Zhang J 2017 Nano Energy 33 363Google Scholar

    [124]

    Wang X, Zhang Y, Zhang X, Liu T, Lin Y H, Li L, Shen Y, Nan C W 2018 ACS Appl. Mater. Interfaces 10 24791Google Scholar

    [125]

    Pervez S A, Ganjeh Anzabi P, Farooq U, Trifkovic M, Roberts E P L, Thangadurai V 2019 Adv. Mater. Interfaces 6 1900186

    [126]

    Huo H, Sun J, chen C, Meng X, He M, Zhao N, Guo X 2018 J. Power Sources 383 150Google Scholar

    [127]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Power Sources 195 6847Google Scholar

    [128]

    Gai J, Ma F, Zhang Z, Sun D, Jin Y, Guo Y, Kim W 2019 ACS Sustainable Chem. Eng. 7 15896Google Scholar

    [129]

    Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar

    [130]

    Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X 2019 Adv. Energy Mater. 9 1804004Google Scholar

    [131]

    Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G 2019 Adv. Mater. 31 1807789Google Scholar

    [132]

    Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P 2012 J. Electrochem. Soc. 159 A222

    [133]

    Xu B, Li W, Duan H, Wang H, Guo Y, Li H, Liu H 2017 J. Power Sources 354 68Google Scholar

    [134]

    Choudhury S, Vu D, Warren A, Tikekar M D, Tu Z, Archer L A 2018 Proc. Natl. Acad. Sci. 115 6620Google Scholar

  • [1] Han Tong-Wei, Li Xuan-Zheng, Zhao Ze-Ruo, Gu Ye-Tong, Ma Chuan, Zhang Xiao-Yan. Mechanical properties and deformation mechanisms of two-dimensional borophene under different loadings. Acta Physica Sinica, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] Xu Ji-Yuan, Zhang Jia-Teng, Meng Rui-Yang, Chen Hong-Sheng, Fang Yi-Kun, Dong Sheng-Zhi, Li Wei. Study on temperature stability and mechanical properties of sintered Nd25.5Dy6.5Co13(Fe, M)balB0.98 magnet. Acta Physica Sinica, 2023, 72(7): 077502. doi: 10.7498/aps.72.20222045
    [3] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [4] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] Deng Shi-Jie, Zhao Yu-Hong, Hou Hua, Wen Zhi-Qin, Han Pei-De. Structural, mechanical and thermodynamic properties of Ti2AlX (X= C, N) at high pressure. Acta Physica Sinica, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [8] Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming. Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound. Acta Physica Sinica, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [9] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [10] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [11] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [12] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [13] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [14] Li Lan-Kai, Wang Hou-Sheng, Ni Zhi-Peng, Cheng Jun-Sheng, Wang Qiu-Liang. Mechanical stress in superconducting coils during winding process. Acta Physica Sinica, 2013, 62(5): 058403. doi: 10.7498/aps.62.058403
    [15] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [16] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [17] Yu Wei-Yang, Tang Bi-Yu, Peng Li-Ming, Ding Wen-Jiang. Electronic structure and mechanical properties of α-Mg3Sb2. Acta Physica Sinica, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [18] Wang Li-Qun, Wang Ming-Xia, Li De-Jun, Yang Jin, Yu Da-Shu, Su Jie. Effect of N2 partial pressure on the defect properties and mechanical behaviors of nanoscale ZrN/WN multilayers. Acta Physica Sinica, 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [19] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
Metrics
  • Abstract views:  14611
  • PDF Downloads:  795
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2020
  • Accepted Date:  31 August 2020
  • Available Online:  09 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回