-
Annealing is a commonly used fabrication technology of graphene-assembled materials, which serves as an efficient method to control material properties. In graphene-assembled materials, the multilayer folded configuration of graphene has been widely observed due to the two dimensional characteristic of graphene. However, the manipulation on the mechanical properties of graphene-assembled materials by annealing has not been fully understood yet, especially considering the effect of folded microstructures. In this paper, we focus on the effect of annealing temperature on the mechanical properties of multilayer folded graphene. The dependences of elastic modulus, tensile strength, ultimate strain and fracture toughness on the annealing temperature have been systematically studied by molecular dynamics simulations. Moreover, the mechanisms behind the manipulations by annealing temperature have been revealed combining the structural evolutions obtained from the simulations. Our results indicate that the multilayer folded graphene after annealing under higher temperature exhibits significant reinforcement on its elastic modulus and tensile strength, while its ultimate strain drops instead. The fracture toughness is enhanced only within a certain range of annealing temperature. The controllable mechanical properties are attributed to the formation of interlayer covalent bonds between carbon atoms belonging to adjacent layers during the annealing processing. With the annealing temperature increases, more interlayer crosslinks are observed from simulations, which greatly strengthens the interlayer interaction. For the cases with lower annealing temperature, the folded graphene can be unfolded easily then finally flattened under tensile stretch, and the structural failure originates from the interlayer slippage in the folded area. However, for the cases with higher annealing temperature, the unfolding deformation is prevented since the folded graphene is blocked by much denser interlayer crosslinks, and the origins of structural failure transforms to the intralayer fracture in graphene plane. Considering the intralayer covalent bond interaction is far more powerful than the interlayer van der Waals interaction, the higher annealing temperature will bring higher elastic modulus and tensile strength due to the change on the structural failure mode, but it will sacrifice the ductility at the same time due to the blocked unfolding process of folded area. It is confirmed in our study that the annealing is an effective approach for the synthetic modulation on the stiffness, strength, ductility and toughness of multilayer folded graphene.
-
Keywords:
- multilayer folded graphene /
- annealing temperature /
- mechanical property /
- molecular dynamics simulation
[1] Wei Y J, Yang R G 2019 Natl. Sci. Rev. 6 324Google Scholar
[2] L ee, C, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[3] Cao K, Feng S Z, Han Y, Gao L B, Ly T H, Xu Z P, Lu Y 2020 Nat. Commun. 11 284Google Scholar
[4] Shim J, Yun J M, Yun T, Kim P, Lee K E, Lee W J, R R, Pine D J, Yi G R, Kim S O 2014 Nano Lett. 14 1388Google Scholar
[5] Li P, Yang M C, Liu Y J, Qin H S, Liu J R, Xu Z, Liu Y L, Meng F X, Lin J H, Wang F, Gao C 2020 Nat. Commun. 11 2645Google Scholar
[6] Xiao P, Gu J C, Wan C J, Wang S, He J, Zhang J W, Huang Y J, Kuo S W, Chen T 2016 Chem. Mater. 28 7125Google Scholar
[7] Xu Z, Gao C 2015 Mater. Today 18 480Google Scholar
[8] Zhang X, Zhong L, Mateos A, Kudo A, Vyatskikh A, Gao H J, Greer J R, Li X Y 2019 Nat. Nanotechnol. 14 762Google Scholar
[9] Zhong L, Gao H J, Li X Y 2020 Extreme Mech. Lett. 37 100699Google Scholar
[10] Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C 2017 Adv. Mater. 29 1700589Google Scholar
[11] Zhang J, Xiao J L, Meng X H, Monroe C, Huang Y G, Zuo J M 2010 Phys. Rev. Lett. 104 166805Google Scholar
[12] 邓剑锋, 李慧琴, 于帆, 梁齐 2020 物理学报 69 076802Google Scholar
Deng J F, Li H Q, Yu F, Liang Q 2020 Acta Phys. Sin. 69 076802Google Scholar
[13] Jia X Z, Liu Z, Gao E L 2020 npj Comput. Mater. 6 13Google Scholar
[14] Ahn Y, Kim J, Ganorkar S, Kim Y H, Kim S I 2016 Mater. Express 6 69Google Scholar
[15] Grimm S, Schweiger M, Eigler S, Zaumseil J 2016 J. Phys. Chem. C 120 3036Google Scholar
[16] Liu Y J, Liang C, Wei A R, Jiang Y Q, Tian Q S, Wu Y, Xu Z, Li Y F, Guo F, Yang Q Y, Gao W W, Wang H T, Gao C 2018 Mater. Today Nano 3 1Google Scholar
[17] Ruiz L, Xia W J, Meng Z X, Keten S 2015 Carbon 82 103Google Scholar
[18] Shen Y K, Wu H A 2012 Appl. Phys. Lett. 100 101909Google Scholar
[19] Liu F, Song S Y, Xue D F, Zhang H J 2012 Adv. Mater. 24 1089Google Scholar
[20] Ugeda M M, Fernández-Torre D, Brihuega I, Pou P, Martínez-Galera A J, Pérez R, Gómez-Rodríguez J M 2011 Phys. Rev. Lett. 107 116803Google Scholar
[21] Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar
[22] 何欣, 白清顺, 白锦轩 2016 物理学报 65 116101Google Scholar
He X, Bai Q S, Bai J X 2016 Acta Phys. Sin. 65 116101Google Scholar
[23] Plimpton S J 1995 J. Comput. Phys. 117 1Google Scholar
[24] He Z Z, Zhu Y B, Xia J, Wu H A 2019 J. Mech. Phys. Solid 133 103706Google Scholar
[25] Wu K J, Song Z Q, He L H, Ni Y 2018 Nanoscale 10 556Google Scholar
[26] Zhang T, Li X Y, Gao H J 2014 Extreme Mech. Lett. 1 3Google Scholar
[27] Zhang P, Ma L L, Fan F F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y J, Zhang J N, Zhang X X, Ajayan P M, Zhu T 2014 Nat. Commun. 5 3782Google Scholar
[28] Wang G R, Dai Z H, Wang Y L, Tan P H, Liu L Q, Xu Z P, Wei Y G, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101Google Scholar
-
图 5 (a), (b) 不同退火温度处理下平整带缺陷多层石墨烯弹性模量与拉伸强度的变化; (c), (d) 不同退火温度处理下折叠无缺陷多层石墨烯弹性模量与拉伸强度的变化
Figure 5. (a), (b) Dependence of elastic modulus and tensile strength on the annealing temperature, respectively, for the flat multilayer graphene with vacancy defects; (c), (d) dependence of elastic modulus and tensile strength on the annealing temperature, respectively, for the folded multilayer graphene without defects.
-
[1] Wei Y J, Yang R G 2019 Natl. Sci. Rev. 6 324Google Scholar
[2] L ee, C, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[3] Cao K, Feng S Z, Han Y, Gao L B, Ly T H, Xu Z P, Lu Y 2020 Nat. Commun. 11 284Google Scholar
[4] Shim J, Yun J M, Yun T, Kim P, Lee K E, Lee W J, R R, Pine D J, Yi G R, Kim S O 2014 Nano Lett. 14 1388Google Scholar
[5] Li P, Yang M C, Liu Y J, Qin H S, Liu J R, Xu Z, Liu Y L, Meng F X, Lin J H, Wang F, Gao C 2020 Nat. Commun. 11 2645Google Scholar
[6] Xiao P, Gu J C, Wan C J, Wang S, He J, Zhang J W, Huang Y J, Kuo S W, Chen T 2016 Chem. Mater. 28 7125Google Scholar
[7] Xu Z, Gao C 2015 Mater. Today 18 480Google Scholar
[8] Zhang X, Zhong L, Mateos A, Kudo A, Vyatskikh A, Gao H J, Greer J R, Li X Y 2019 Nat. Nanotechnol. 14 762Google Scholar
[9] Zhong L, Gao H J, Li X Y 2020 Extreme Mech. Lett. 37 100699Google Scholar
[10] Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C 2017 Adv. Mater. 29 1700589Google Scholar
[11] Zhang J, Xiao J L, Meng X H, Monroe C, Huang Y G, Zuo J M 2010 Phys. Rev. Lett. 104 166805Google Scholar
[12] 邓剑锋, 李慧琴, 于帆, 梁齐 2020 物理学报 69 076802Google Scholar
Deng J F, Li H Q, Yu F, Liang Q 2020 Acta Phys. Sin. 69 076802Google Scholar
[13] Jia X Z, Liu Z, Gao E L 2020 npj Comput. Mater. 6 13Google Scholar
[14] Ahn Y, Kim J, Ganorkar S, Kim Y H, Kim S I 2016 Mater. Express 6 69Google Scholar
[15] Grimm S, Schweiger M, Eigler S, Zaumseil J 2016 J. Phys. Chem. C 120 3036Google Scholar
[16] Liu Y J, Liang C, Wei A R, Jiang Y Q, Tian Q S, Wu Y, Xu Z, Li Y F, Guo F, Yang Q Y, Gao W W, Wang H T, Gao C 2018 Mater. Today Nano 3 1Google Scholar
[17] Ruiz L, Xia W J, Meng Z X, Keten S 2015 Carbon 82 103Google Scholar
[18] Shen Y K, Wu H A 2012 Appl. Phys. Lett. 100 101909Google Scholar
[19] Liu F, Song S Y, Xue D F, Zhang H J 2012 Adv. Mater. 24 1089Google Scholar
[20] Ugeda M M, Fernández-Torre D, Brihuega I, Pou P, Martínez-Galera A J, Pérez R, Gómez-Rodríguez J M 2011 Phys. Rev. Lett. 107 116803Google Scholar
[21] Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar
[22] 何欣, 白清顺, 白锦轩 2016 物理学报 65 116101Google Scholar
He X, Bai Q S, Bai J X 2016 Acta Phys. Sin. 65 116101Google Scholar
[23] Plimpton S J 1995 J. Comput. Phys. 117 1Google Scholar
[24] He Z Z, Zhu Y B, Xia J, Wu H A 2019 J. Mech. Phys. Solid 133 103706Google Scholar
[25] Wu K J, Song Z Q, He L H, Ni Y 2018 Nanoscale 10 556Google Scholar
[26] Zhang T, Li X Y, Gao H J 2014 Extreme Mech. Lett. 1 3Google Scholar
[27] Zhang P, Ma L L, Fan F F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y J, Zhang J N, Zhang X X, Ajayan P M, Zhu T 2014 Nat. Commun. 5 3782Google Scholar
[28] Wang G R, Dai Z H, Wang Y L, Tan P H, Liu L Q, Xu Z P, Wei Y G, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101Google Scholar
Catalog
Metrics
- Abstract views: 9171
- PDF Downloads: 160
- Cited By: 0