Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of low-energy ammonia ion/group diffusion on electrical properties of indium tin oxide film

Zhao Shi-Ping Zhang Xin Liu Zhi-Hui Wang Quan Wang Hua-Lin Jiang Wei-Wei Liu Chao-Qian Wang Nan Liu Shi-Min Cui Yun-Xian Ma Yan-Ping Ding Wan-Yu Ju Dong-Ying

Citation:

Influence of low-energy ammonia ion/group diffusion on electrical properties of indium tin oxide film

Zhao Shi-Ping, Zhang Xin, Liu Zhi-Hui, Wang Quan, Wang Hua-Lin, Jiang Wei-Wei, Liu Chao-Qian, Wang Nan, Liu Shi-Min, Cui Yun-Xian, Ma Yan-Ping, Ding Wan-Yu, Ju Dong-Ying
PDF
HTML
Get Citation
  • In the case of methylammonium lead halide (MAPbH3) perovskite solar cells, the indium tin oxide (ITO) film has been widely used as the transparent electrode. In the preparation process and service process of MAPbH3 perovskite solar cells, the MAPbH3 perovskite layer can decompose into the methyl, amino, methylammonium, halide ion/group, etc. Thus, the diffusion of ammonia ion/group into ITO film is inevitable, which can seriously deteriorate the electrical property of ITO transparent electrode. In this study, the ITO films with and without (100) preferred orientation are bombarded by a low-energy ammonia (NHx) ion beam. After the bombardment, the electrical properties of ITO film without preferred orientation are deteriorated seriously, especially for carrier concentration, which is deteriorated down to an extent of about 5–6 orders of magnitude. The bombardment of low-energy NHx ion/group has little influence on the electrical properties of ITO film with (100) preferred orientation. Such phenomena can be explained by the following reasons. Based on XPS measurement results, the low-energy NHx ion/group diffuses into the ITO film surface after the bombardment. In the diffusion process, the low-energy NHx ion/group is mainly bonded with O in ITO lattice, which results in the formation of In/Sn—O—N bond. Based on the crystal structure of ITO, the (100) lattice of ITO consists of In/Sn, and the calculated value of surface energy $ {\gamma }_{\left\{100\right\}/\left\{010\right\}/\left\{001\right\}} $ = 1.76 J/m2. While the (110) and (111) lattices of ITO consist of In/Sn/O, in which the O atom percent on (110) and (111) lattices are 56 at.% and 25 at.% respectively. Besides, the calculated values of surface energy $ {\gamma }_{\left\{110\right\}/\left\{101\right\}/\left\{011\right\}} $ and $ {\gamma }_{\left\{111\right\}} $ are 1.07 and 0.89 J/m2, respectively. Combining the XPS measurement results and crystal structure of ITO, it can be understood that in the diffusion process of low-energy NHx ion/group into ITO film without preferred orientation, lots of In/Sn—O—N bonds are formed in the ITO lattices, which are rich in O and have lower surface energy $ \gamma $. Then, after the low-energy NHx ion/group bombardment, the electrical properties of ITO film without preferred orientation are deteriorated seriously. On the contrary, because of the absence of O and the highest surface energy $ \gamma $, it is hard for the low-energy NHx ion/group to diffuse into ITO (100) lattice. Then, after the low-energy NHx ion/group bombardment, the electrical properties of ITO film with (100) preferred orientation have little change. With all results, the ITO film with (100) preferred orientation can be an ideal candidate for transparent electrode in MAPbH3 perovskite solar cells.
      Corresponding author: Ding Wan-Yu, dwysd@djtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772038, 52072056, 51761010), the Joint Research Fund of the Liaoning-Shenyang National Laboratory for Materials Science, China (Grant Nos. 2019JH3, 30100027), the Open Fund Project of the Hainan Province Key Laboratory of Special Glass of China, the Projects Funded by Liaoning Province Education Department, China (Grant Nos. JDL2019020, JDL2017002, JDL2017005), and the Guiding Projects of the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2019-ZD-0091, 2019-ZD-0096, 2019-ZD-0097, 2019-ZD-0114)
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Nature 567 511Google Scholar

    [4]

    National Renewable Energy Laboratory (NREL), Best research cell efficiencies, https://www.nrel.gov/pv [2020-04-25]

    [5]

    Tan H R, Jain A, Voznyy O, Lan X Z, Arquer de F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [6]

    王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东 2019 物理学报 68 158401Google Scholar

    Wang Y B, Cui D Y, Zhang C Y, Han L Y, Yang X D 2019 Acta Phys. Sin. 68 158401Google Scholar

    [7]

    Ono L K, Juarez-Perez E J, Qi Y B 2017 ACS Appl. Mater. Interfaces 9 30197Google Scholar

    [8]

    Asghar M I, Zhang J, Wang H, Lund P D 2017 Renewable Sustainable Energy Rev. 77 131Google Scholar

    [9]

    张钰, 周欢萍 2019 物理学报 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [10]

    Zhao S, Lü Z, Guo X, Liu C, Wang H, Jiang W, Liu S, Wang N, Cui Y, Ding W, Han B, Ju D 2018 Materials 11 01991Google Scholar

    [11]

    Shen L H, Liu J, Lü W, Wu L J, Qi D L, Zhou Y W, Lei W W 2019 Appl. Surf. Sci. 476 418Google Scholar

    [12]

    Liu H Y, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H 2010 Superlattices Microstruct. 48 458Google Scholar

    [13]

    Lü Z X, Liu J D, Wang D Y, Tao H L, Chen W C, Sun H T, He Y F, Zhang X, Qu Z Y, Han Z C, Guo X L, Zhao S P, Cui Y X, Wang H L, Liu S M, Liu C Q, Wang N, Jiang W W, Chai W P, Ding W D 2018 Mater. Chem. Phys. 209 38Google Scholar

    [14]

    Chen W C, Sun H T, Jiang W W, Wang H L, Liu S M, Liu C Q, Wang N, Cui Y X, Chai W P, Ding W Y, Han B 2018 Mater. Lett. 220 8Google Scholar

    [15]

    Beamson G, Briggs D 1992 High Resolution XPS of Organic Polymers: the Scienta ESCA3000 database (New York: Wiley) pp53−277

    [16]

    Moulder J F, Stickle W F, Sobol P E, Bomben K D 1995 Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie: Physical Electronics Inc.) pp29−198

    [17]

    Barquinha P, Martins R, Pereira L, Fortunato E 2012 Transparent Oxide Electronics: From Materials to Devices (West Sussex: John Wiley & Sons, Ltd.) p12

    [18]

    Levy D, Castellón E 2018 Transparent Conductive Materials: From Materials via Synthesis and Characterization to Applications (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p57

    [19]

    Lee H C, Park O O 2004 Vacuum 75 275Google Scholar

    [20]

    Mei F, Yuan T, Li R, Qin K, Huang J 2018 J. Mater. Sci.- Mater. Electron. 29 14620Google Scholar

    [21]

    Lüth H 2015 Solid Surfaces, Interfaces and Thin Films (6th Ed.) (New York: Springer-Verlag) pp271−315

    [22]

    吴自勤, 王兵, 孙霞 2017 薄膜生长(第二版) (北京: 科学出版社) 第105−124页

    Wu Z Q, Wang B, Sun X 2017 The Film Growth (2nd Ed.) (Beijing: Science Press) pp105−124 (in Chinese)

    [23]

    Villars P 1997 Pearson’s Handbook Desk Edition: Crystallographic Data for Intermetallic Phases (Ohio: ASM International) p2195

    [24]

    Zhang S, Dong D D, Wang Z J, Dong C, Häussler P 2018 Sci. China Mater. 61 409Google Scholar

    [25]

    蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏 2018 物理学报 67 180201Google Scholar

    Cai X Y, Wang X W, Zhang Y P, Wang D K, Fang X, Fang D, Wang X H, Wei Z P 2018 Acta Phys. Sin. 67 180201Google Scholar

    [26]

    Liu H, Zhang Y, Zhang X, Wang Q, Wang H L, Zhang S, Ma Y P, Cui Y X, Ding W Y, Dong C 2020 J. Alloys Compd. 836 155514Google Scholar

    [27]

    Kittel C 2005 Introduction to Solid State Physics (8th Ed.) (Hoboken: John Wiley & Sons, Inc.) p374

    [28]

    Hofmann P 2015 Solid State Physics: An Introduction (2nd Ed.) (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p285

    [29]

    Zhang K H L, Walsh A, Catlow C R A, Lazarov V K, Egdell R G 2010 Nano Lett. 10 3740Google Scholar

    [30]

    蒋行, 周玉荣, 刘丰珍, 周玉琴 2018 物理学报 67 177802Google Scholar

    Jiang H, Zhou Y R, Liu F Z, Zhou Y Q 2018 Acta Phys. Sin. 67 177802Google Scholar

    [31]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (2nd Ed.) (Hoboken: Wiley-Interscience) pp107−215

    [32]

    汤玉寅, 王浪平 2012 等离子体浸泡式离子注入与沉积技术 (北京: 国防工业出版社) 第21−54页

    Tang Y Y, Wang L P 2012 Plasma Immersion Ion Implantation and Deposition Technique, (Beijing: National Defense Industry Press) pp21−54 (in Chinese)

  • 图 1  原始ITO薄膜XRD谱线

    Figure 1.  XRD patterns of original ITO films.

    图 2  与低能NHx离子/基团相互作用前后ITO薄膜的电学性质 (a) 电阻率; (b) 载流子浓度; (c) 载流子迁移率

    Figure 2.  The electronic property of ITO films before and after low-energy NHx ion/group bombardment: (a) Resistivity; (b) carrier concentration; (c) carrier mobility.

    图 3  高分辨XPS谱 (a) ITO薄膜1与低能NHx离子/基团相互作用前的N 1s峰; (b) ITO薄膜1—4与低能NHx离子/基团相互作用后的N 1s峰; (c) ITO薄膜1与低能NHx离子/基团相互作用前的O 1s峰; (d) ITO薄膜1—4与低能NHx离子/基团相互作用后的O 1s峰

    Figure 3.  High-resolution XPS spectrum: (a) N 1s for ITO film a before low-energy NHx ion/group bombardment; (b) O 1s for ITO film a before low-energy NHx ion/group bombardment; (c) N 1s for ITO films 1 to 4 bombarded by low-energy NHx ion/group; (d) O 1s for ITO films 1 to 4 bombarded by low-energy NHx ion/group.

    图 4  ITO薄膜1与低能NHx离子/基团相互作用后O 1s高分辨XPS谱Gaussian拟合结果

    Figure 4.  Gaussian peak fitting procedure applied to O 1s high-resolution XPS spectrum of ITO film 1 bombarded by low-energy NHx ion/group.

    图 5  N元素原子百分比, M—O—N化学键占N 总化学键和O总化学键的百分比

    Figure 5.  Atomic percentage of N, as well as percentage of M—O—N bond from all N bonds and O bonds, respectively.

    图 6  In2O3晶体结构示意图 (a) In2O3原胞; (b) In2O3 (100)/(010)/(001)晶面; (c) In2O3 (110) (101)/(011)晶面; (d) In2O3 (111)晶面

    Figure 6.  Schematic illustration of In2O3 unit cell: (a) Primitive unit cell of In2O3; (b) schematic illustration of side view (100) surface; (c) schematic illustration of side view (110) surface; (d) schematic illustration of side view (111) surface.

    表 1  ITO薄膜1—4的制备参数

    Table 1.  The detailed deposition parameters for ITO film 1—4.

    沉积参数数值
    Base pressure/Pa1.0 × 10–3
    Flow rate of Ar/sccm20
    Distance between target and substrate/cm12
    Pulse frequency/kHz100
    Reverse time/μs1
    Sputtering power density/W·cm–22 (Film 1)
    4 (Film 2)
    6 (Film 3)
    8 (Film 4)
    Working pressure/Pa0.6
    DownLoad: CSV

    表 2  ITO薄膜1—4的(222)x系数、(100)x系数和(100)取向比重系数

    Table 2.  The coefficient of (222)x, (100)x, and (100) lattice plane proportion of ITO film 1–4.

    (222)x系数(100)x系数(100)取向比重系数
    ITO film 11.001.001.00
    ITO film 20.672.784.15
    ITO film 30.413.127.61
    ITO film 40.183.0817.11
    DownLoad: CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Nature 567 511Google Scholar

    [4]

    National Renewable Energy Laboratory (NREL), Best research cell efficiencies, https://www.nrel.gov/pv [2020-04-25]

    [5]

    Tan H R, Jain A, Voznyy O, Lan X Z, Arquer de F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [6]

    王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东 2019 物理学报 68 158401Google Scholar

    Wang Y B, Cui D Y, Zhang C Y, Han L Y, Yang X D 2019 Acta Phys. Sin. 68 158401Google Scholar

    [7]

    Ono L K, Juarez-Perez E J, Qi Y B 2017 ACS Appl. Mater. Interfaces 9 30197Google Scholar

    [8]

    Asghar M I, Zhang J, Wang H, Lund P D 2017 Renewable Sustainable Energy Rev. 77 131Google Scholar

    [9]

    张钰, 周欢萍 2019 物理学报 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [10]

    Zhao S, Lü Z, Guo X, Liu C, Wang H, Jiang W, Liu S, Wang N, Cui Y, Ding W, Han B, Ju D 2018 Materials 11 01991Google Scholar

    [11]

    Shen L H, Liu J, Lü W, Wu L J, Qi D L, Zhou Y W, Lei W W 2019 Appl. Surf. Sci. 476 418Google Scholar

    [12]

    Liu H Y, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H 2010 Superlattices Microstruct. 48 458Google Scholar

    [13]

    Lü Z X, Liu J D, Wang D Y, Tao H L, Chen W C, Sun H T, He Y F, Zhang X, Qu Z Y, Han Z C, Guo X L, Zhao S P, Cui Y X, Wang H L, Liu S M, Liu C Q, Wang N, Jiang W W, Chai W P, Ding W D 2018 Mater. Chem. Phys. 209 38Google Scholar

    [14]

    Chen W C, Sun H T, Jiang W W, Wang H L, Liu S M, Liu C Q, Wang N, Cui Y X, Chai W P, Ding W Y, Han B 2018 Mater. Lett. 220 8Google Scholar

    [15]

    Beamson G, Briggs D 1992 High Resolution XPS of Organic Polymers: the Scienta ESCA3000 database (New York: Wiley) pp53−277

    [16]

    Moulder J F, Stickle W F, Sobol P E, Bomben K D 1995 Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie: Physical Electronics Inc.) pp29−198

    [17]

    Barquinha P, Martins R, Pereira L, Fortunato E 2012 Transparent Oxide Electronics: From Materials to Devices (West Sussex: John Wiley & Sons, Ltd.) p12

    [18]

    Levy D, Castellón E 2018 Transparent Conductive Materials: From Materials via Synthesis and Characterization to Applications (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p57

    [19]

    Lee H C, Park O O 2004 Vacuum 75 275Google Scholar

    [20]

    Mei F, Yuan T, Li R, Qin K, Huang J 2018 J. Mater. Sci.- Mater. Electron. 29 14620Google Scholar

    [21]

    Lüth H 2015 Solid Surfaces, Interfaces and Thin Films (6th Ed.) (New York: Springer-Verlag) pp271−315

    [22]

    吴自勤, 王兵, 孙霞 2017 薄膜生长(第二版) (北京: 科学出版社) 第105−124页

    Wu Z Q, Wang B, Sun X 2017 The Film Growth (2nd Ed.) (Beijing: Science Press) pp105−124 (in Chinese)

    [23]

    Villars P 1997 Pearson’s Handbook Desk Edition: Crystallographic Data for Intermetallic Phases (Ohio: ASM International) p2195

    [24]

    Zhang S, Dong D D, Wang Z J, Dong C, Häussler P 2018 Sci. China Mater. 61 409Google Scholar

    [25]

    蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏 2018 物理学报 67 180201Google Scholar

    Cai X Y, Wang X W, Zhang Y P, Wang D K, Fang X, Fang D, Wang X H, Wei Z P 2018 Acta Phys. Sin. 67 180201Google Scholar

    [26]

    Liu H, Zhang Y, Zhang X, Wang Q, Wang H L, Zhang S, Ma Y P, Cui Y X, Ding W Y, Dong C 2020 J. Alloys Compd. 836 155514Google Scholar

    [27]

    Kittel C 2005 Introduction to Solid State Physics (8th Ed.) (Hoboken: John Wiley & Sons, Inc.) p374

    [28]

    Hofmann P 2015 Solid State Physics: An Introduction (2nd Ed.) (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p285

    [29]

    Zhang K H L, Walsh A, Catlow C R A, Lazarov V K, Egdell R G 2010 Nano Lett. 10 3740Google Scholar

    [30]

    蒋行, 周玉荣, 刘丰珍, 周玉琴 2018 物理学报 67 177802Google Scholar

    Jiang H, Zhou Y R, Liu F Z, Zhou Y Q 2018 Acta Phys. Sin. 67 177802Google Scholar

    [31]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (2nd Ed.) (Hoboken: Wiley-Interscience) pp107−215

    [32]

    汤玉寅, 王浪平 2012 等离子体浸泡式离子注入与沉积技术 (北京: 国防工业出版社) 第21−54页

    Tang Y Y, Wang L P 2012 Plasma Immersion Ion Implantation and Deposition Technique, (Beijing: National Defense Industry Press) pp21−54 (in Chinese)

  • [1] Jiang Hang, Zhou Yu-Rong, Liu Feng-Zhen, Zhou Yu-Qin. Effect of annealing treatment on characteristics of surface plasmon resonance for indium tin oxide. Acta Physica Sinica, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [2] Cai Xin-Yang, Wang Xin-Wei, Zhang Yu-Ping, Wang Deng-Kui, Fang Xuan, Fang Dan, Wang Xiao-Hua, Wei Zhi-Peng. Reduction of surface plasma loss of indium tin oxide thin films by regulating substrate temperature. Acta Physica Sinica, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [3] Wang Xiao-Yuan, Zhao Feng-Peng, Wang Jie, Yan Ya-Bin. First-principle studies of mechanical, electronic properties and strain engineering of metal-organic framework. Acta Physica Sinica, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [4] Zhang Yong, Liu Yan, Lü Bin, Tang Nai-Yun, Wang Ji-Qing, Zhang Hong-Ying. Influence of barrier height of the front contact on the amorphous silicon and microcrystalline silicon heterojunction solar cells. Acta Physica Sinica, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [5] Yin Yi, Fu Xing-Hai, Zhang Lei, Ye Hui. Study of structure and properties of Ba0.7Sr0.3TiO3 thin film with prefer-orientated MgO buffer layer on the silicon substrate. Acta Physica Sinica, 2009, 58(7): 5013-5021. doi: 10.7498/aps.58.5013
    [6] Fu Xing-Hai, Yin Yi, Zhang Lei, Ye Hui. Fabrication and properties of (100) oriented MgO by DC sputtering on Si substrate. Acta Physica Sinica, 2009, 58(7): 5007-5012. doi: 10.7498/aps.58.5007
    [7] Li Yue-Fu, Ye Hui, Fu Xing-Hai. RF magnetron sputtering deposition growth of highly orientated strontium barium niobate thin films. Acta Physica Sinica, 2008, 57(2): 1229-1235. doi: 10.7498/aps.57.1229
    [8] Fu Xiu-Li, Tang Wei-Hua, Peng Zhi-Jian. Influence of doping level on electrical properties of ZnO-based composite varistor. Acta Physica Sinica, 2008, 57(9): 5844-5852. doi: 10.7498/aps.57.5844
    [9] Tang Li-Bin, Ji Rong-Bin, Song Li-Yuan, Chen Xue-Mei, Li Yong-Liang, Rong Bai-Lian, Song Bing-Wen. Study on doping and electrical properties of organic infrared semiconductor phthalocyanine erbium(Ⅲ). Acta Physica Sinica, 2008, 57(11): 7244-7251. doi: 10.7498/aps.57.7244
    [10] Li Wei, Ao Jian-Ping, He Qing, Liu Fang-Fang, Li Feng-Yan, Li Chang-Jian, Sun Yun. The influence of substrate on texture of Cu(In,Ga)Se2 film. Acta Physica Sinica, 2007, 56(8): 5009-5012. doi: 10.7498/aps.56.5009
    [11] Shao Shou-Fu, Zheng Peng, Zhang Jia-Liang, Niu Xiao-Kun, Wang Chun-Lei, Zhong Wei-Lie. Microstructures and electrical properties of CaCu3Ti4O12 ceramics. Acta Physica Sinica, 2006, 55(12): 6661-6666. doi: 10.7498/aps.55.6661
    [12] Wu Zhen-Yu, Yang Yin-Tang, Wang Jia-You. Study of fluorinated amorphous carbon films prepared by electron cyclotron resonance chemical vapor deposition. Acta Physica Sinica, 2006, 55(5): 2572-2577. doi: 10.7498/aps.55.2572
    [13] Zheng Fen-Gang, Chen Jian-Ping, Li Xin-Wan. Improved dielectric and ferroelectric characteristics of highly (111)-oriented Pb(Zr0.52Ti0.48)O3 films produced by sol-gel method. Acta Physica Sinica, 2006, 55(6): 3067-3072. doi: 10.7498/aps.55.3067
    [14] Xu Xiao-Ming, Wang Juan, Zhao Yang, Zhang Qing-Yu. Effect of interface and preferred orientation on the hardness of TiN/ZrN multilayers. Acta Physica Sinica, 2006, 55(10): 5380-5385. doi: 10.7498/aps.55.5380
    [15] Li Jian-Kang, Yao Xi. Preparation and study on epitaxial Pb(Zr0.52Ti0.48)O3 ferroelectric films on different substrates. Acta Physica Sinica, 2005, 54(6): 2938-2944. doi: 10.7498/aps.54.2938
    [16] Pan Meng-Xiao, Cao Xing-Zhong, Li Yang-Xian, Wang Bao-Yi, Xue De-Sheng, Ma Chuang-Xin, Zhou Chun-Lan, Wei Long. Microstructural features of DC sputtered vanadium oxide thin films. Acta Physica Sinica, 2004, 53(6): 1956-1960. doi: 10.7498/aps.53.1956
    [17] Cao Xiao-Yan, Ye Hui, Deng Nian-Hui, Guo Bing, Gu Pei-Fu. Growth of highly c-axis oriented K:SBN thin films on Si(100) by the sol-gel method. Acta Physica Sinica, 2004, 53(7): 2363-2367. doi: 10.7498/aps.53.2363
    [18] Li Ming-De, Wang Zhong-Bing, Yang Hong-Shun, Ruan Ke-Qing, Cao Lie-Zhao, Chen Zu-Yao. Sr2(Gd,Ce)2Cu2RuO10 synthesized by a new -type solid-state reaction in the presence of oxygen-water vapor mixed atmosphere and its electric properti es. Acta Physica Sinica, 2003, 52(10): 2596-2600. doi: 10.7498/aps.52.2596
    [19] HU SHEN-YANG, ZHE XIAO-LI, LI YU-LAN. THE OPTIMAL ORIENTATION OF MARTENSITIC NUCLEATION UNDER DIFFERENT STRESSES. Acta Physica Sinica, 1996, 45(2): 339-344. doi: 10.7498/aps.45.339
    [20] GUO CHANG-LIN, WU YU-QIN. AN X-RAY METHOD OF DETERMINING THE DEGREE OF PREFERRED ORIENTATION OF FERROELECTRIC MATERIAL WITH LAYER TYPE STRUCTURE AFTER HOT-PRESSING. Acta Physica Sinica, 1980, 29(12): 1640-1644. doi: 10.7498/aps.29.1640
Metrics
  • Abstract views:  6267
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  07 June 2020
  • Accepted Date:  06 August 2020
  • Available Online:  19 November 2020
  • Published Online:  05 December 2020

/

返回文章
返回