Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and thermal stability of CrAlON based spectrally selective absorbing coatings

Wang Xiao-Bo Li Ke-Wei Gao Li-Juan Cheng Xu-Dong Jiang Rong

Citation:

Preparation and thermal stability of CrAlON based spectrally selective absorbing coatings

Wang Xiao-Bo, Li Ke-Wei, Gao Li-Juan, Cheng Xu-Dong, Jiang Rong
PDF
HTML
Get Citation
  • Spectrally selective absorbing coating is the core component of the utilization of solar energy. The spectral properties of selectively absorbing coating directly determine the conversion efficiency of constructing solar power plants. To enhance the selective absorbability and thermal stability, we propose an idea that these metal particles are replaced with transition-metal nitrides, and then coated with periodic nanocrystalline-amorphous heterogeneous structures. Double-absorbing layer Cr/CrAlN/CrAlON/CrAlN/CrAlON/CrAlO solar selective absorbing coatings with a high solar absorptance of 0.90 and a relatively low emittance of 0.15 are obtained by the cathodic arc ion plating technique. After the coating is aged at 500 °C in air for 220 h, its absorptance increases to 0.94 and the emittance decreases to 0.10. More importantly, the coating exhibits an outstanding thermal stability with a selectivity of 0.94/0.11 even after being aged at 500 °C for 1000 h in air. The microstructure analysis indicates that the multilayer coating consists of aperiodic CrAlN and CrAlON layers in addition to the Cr and CrAlO layers. Through the long-term aging, a small number of AlN, CrN and Cr2N nanocrystallites are observed to be homogeneously embedded in the CrAlN and CrAlON amorphous matrices. The nanoparticles in the CrAlN and CrAlON layers can effectively scatter the incident light into a broadband wavelength range, increasing the optical path length in the absorbing layers, and thus resulting in a pronounced enhancement in the absorptivity. A handful of Cr2O3 and Al2O3 nanograins are observed to be embedded in the amorphous CrAlO antireflection layer, which can effectively reflect the solar infrared radiation and the thermal emittance from the substrate, and thus resulting in pretty low infrared emissivity. The good thermal stability is attributed to the excellent thermal stability of the dielectric amorphous matrices and the sluggish atomic diffusion in the nanoparticles, which could effectively slow down the inward diffusion of oxygen and avoid agglomerating the nanoparticles. These results are of great importance for enhancing the overall performance of cermet spectrally selective absorption coating and also for improving the conversion efficiency of solar energy photo-thermal utilization.
      Corresponding author: Li Ke-Wei, likewei@tyut.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 52002159) and the National High Technology Research and Development Program of China (Grant No. 2009AA05Z440)
    [1]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评 (第1版) (北京: 清华大学出版社) 第44−65页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evaluation of Solar Spectrum Selective absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp44−65 (in Chinese)

    [2]

    Cao F, McEnaney K, Chen G, Ren Z F 2014 Energy Environ. Sci. 7 1615Google Scholar

    [3]

    Cao F, Kraemer D, Sun T Y, Lan Y C, Chen G, Ren Z F 2015 Adv. Energy Mater. 5 1401042Google Scholar

    [4]

    Wang X Y, Gao J H, Hu H B, Zhang H L, Liang L Y, Javaid K, Zhuge F, Cao H T, Wang L 2017 Nano Energy 37 232Google Scholar

    [5]

    Xue Y F, Wang C, Wang W W, Liu Y, Wu Y X, Ning Y P, Sun Y 2013 Sol. Energy 96 113Google Scholar

    [6]

    Cheng J S, Wang C, Wang W W, Du X K, Liu Y, Xue Y F, Wang T M, Chen B L 2013 Sol. Energy Mater. Sol. Cells 109 204Google Scholar

    [7]

    田广科, 苗树翻, 马天国, 范多旺 2015 太阳能 3 50Google Scholar

    Tian G K, Mi ao, Ma T G, Fan D W 2015 Sol. Energy 3 50Google Scholar

    [8]

    Ge J P, Zhang Q, Zhang T R, Yin Y D 2008 Angew. Chem. Int. Edit. 47 8924Google Scholar

    [9]

    Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P, Somorjai G A 2008 Nat. Mater. 8 126Google Scholar

    [10]

    Gao T, Jelle B P, Gustavsen A J 2013 Nanopart. Res. 15 1370Google Scholar

    [11]

    Cao A, Veser G 2009 Nat. Mater. 9 75Google Scholar

    [12]

    Kim T K, VanSaders B, Caldwell E, Shin S, Liu Z, Jin S, Chen R 2016 Sol. Energy 132 257Google Scholar

    [13]

    Liu H D, Wan Q, Xu Y R, luo C, Chen Y M, Fu D J, Ren F, Luo G, Cheng X D, Hu X J, Yang B 2015 Sol. Energy Mater. Sol. Cells 134 261Google Scholar

    [14]

    Wu L, Gao J H, Liu Z M, Liang L Y, Xia F, Cao H T 2013 Sol. Energy Mater. Sol. Cells 114 186Google Scholar

    [15]

    Du M, Hao L, Mi J, Lü F, Liu X P, Jiang L J, Wang S M 2011 Sol. Energy Mater. Sol. Cells 95 1193Google Scholar

    [16]

    Barshilia H C 2014 Sol. Energy Mater. Sol. Cells 130 322Google Scholar

    [17]

    Barshilia H C, Selvakumar N, Rajam K S, Biswas A 2008 Sol. Energy Mater. Sol. Cells 92 1425Google Scholar

    [18]

    Barshilia H C, Selvakumar N, Rajam K S 2007 J. Vac. Sci. Technol., A 25 383Google Scholar

    [19]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评 (第1版) (北京: 清华大学出版社) 第67−147页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evaluation of Solar Spectrum Selective absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp67−147(in Chinese)

    [20]

    Zou C W, Xie W, Shao L X 2016 Sol. Energy Mater. Sol. Cells 153 9Google Scholar

    [21]

    Liu H D, Fu T R, Duan M H, Wan Q, luo C, Chen Y M, Fu D J, Ren F, Li Q Y, Cheng X D, Yang B, Hu X J 2016 Sol. Energy Mater. Sol. Cells 157 108Google Scholar

    [22]

    Gong D Q, Liu H D, Luo G, Zhang P, Cheng X D, Yang B, Wang Y B, Min J, Wang W X, Chen S P, Cui Z Q, Li K W, Hu L F 2015 Sol. Energy Mater. Sol. Cells 136 167Google Scholar

    [23]

    Gammer C, Mangler C, Rentenberger C, Karnthaler H P 2010 Scr. Mater. 63 312Google Scholar

    [24]

    Gao X H, Guo Z M, Geng Q F, Ma P J, Wang A Q, Liu G 2016 Sol. Energy 140 199Google Scholar

    [25]

    van den Oetelaar L C A, Nooij O W, Oerlemans S, Denier van der Gon A W, Brongersma H H, Lefferts L, Roosenbrand A G, van Veen J A R 1998 J. Phys. Chem. B 102 3445Google Scholar

    [26]

    Malis O, Radu M, Mott D, Wanjala B, Luo J, Zhong C J 2009 Nanotechnology 20 245708Google Scholar

    [27]

    Liao H, Fisher A, Xu Z J 2015 Small 11 3221Google Scholar

    [28]

    Dean J A 1990 Mater. Manuf. Processes 5 687Google Scholar

    [29]

    Clark B G, Hattar K, Marshall M T, Chookajorn T, Boyce B L, Schuh C A 2016 JOM 68 1625Google Scholar

    [30]

    Han L L, Meng Q P, Wang D L, Zhu Y M, Wang J, Du X W, Stach E A, Xin H L 2016 Nat. Commun. 7 13335Google Scholar

    [31]

    Huolin L X, Selim A, Runzhe T, Arda G, Chong-Min W, Libor K, Eric A S, Lin-Wang W, Miquel S, Gabor A S, Haimei Z 2014 Nano Lett. 14 3203Google Scholar

    [32]

    Wang C M, Genc A, Cheng H, Pullan L, Baer D R, Bruemmer S M 2014 Sci. Rep. 4 3683Google Scholar

  • 图 1  多吸收层CrAlON基光谱选择性吸收涂层的结构示意图

    Figure 1.  Schematic diagram of the multi-absorbing layer CrAlON-based solar selective absorbing coating.

    图 2  500 °C高温时效处理过程中多吸收层CrAlON基光谱选择性吸收涂层的反射光谱曲线

    Figure 2.  Reflectance spectra of the multi-absorbing layer CrAlON-based solar selective absorbing coatings during the high temperature ageing treatment at 500 °C.

    图 3  大气条件下、500 ℃多吸收层CrAlON基光谱选择性吸收涂层不同时效时间后的GIXRD图谱

    Figure 3.  GIXRD patterns of the multi-absorbing layer CrAlON-based solar selective absorbing coatings aged at 500 °C for different times in air.

    图 4  大气条件下、500 ℃时效220 h后多吸收层CrAlON基光谱选择性吸收涂层的TEM图 (a) 明场像; (b) 选区电子衍射图谱

    Figure 4.  TEM images of the multi-absorbing layer CrAlON-based solar selective absorbing coating aged at 500 °C for 220 h in air: (a) Bright-field TEM image; (b) the corresponding selected area electron diffraction (SAED) pattern of the area denoted in Fig. (a)

    图 5  大气条件下、500 ℃时效220 h后多吸收层CrAlON基光谱选择性吸收涂层截面中Al, Cr, N和O元素的成分分布图和EDS线扫描图

    Figure 5.  EDS maps and line scans of the distribution of Al, Cr, N, and O in the multi-absorbing layer CrAlON-based solar selective absorbing coating aged at 500 °C for 220 h in air.

    图 6  大气条件下、500 ℃时效220 h后多吸收层CrAlON基光谱选择性吸收涂层的TEM图 (a) 明场像; (b) CrAlO; (c) 外层CrAlON; (d) 外层CrAlN; (e) 内层CrAlON; (f) 内层CrAlN

    Figure 6.  TEM images of the multi-absorbing layer CrAlON-based solar selective absorbing coating aged at 500 °C for 220 h in air: (a) The bright-field TEM image; (b) the CrAlO layer; (c) the outer CrAlON layer; (d) the outer CrAlN layer; (e) the inner CrAlON layer; (f) the inner CrAlN layer.

    图 7  大气条件下500 ℃时效220 h后多吸收层CrAlON基光谱选择性吸收涂层的HRTEM图 (a) CrAlO减反射层; (b) CrAlON层; (c) CrAlN层

    Figure 7.  HRTEM images of the multi-absorbing layer CrAlON-based solar selective absorbing coating aged at 500 °C for 220 h in air: (a) CrAlO layer; (b) CrAlON layer; (c) CrAlN layer.

    图 8  大气条件下、500 ℃时效220和1000 h后多吸收层CrAlON基光谱选择性吸收涂层的表面形貌 (a), (b) 220 h; (c), (d) 1000 h

    Figure 8.  Morphologies of the multi-absorbing layer CrAlON-based solar selective absorbing coatings aged at 500 °C for 220 and 1000 h in air: (a), (b) Surface morphologies of the coating aged for 220 h; (c), (d) surface morphologies of the coating aged for 1000 h.

    图 9  大气条件下、500 ℃时效220 h后多吸收层CrAlON基光谱选择性吸收涂层的AFM形貌

    Figure 9.  AFM morphology of the multi-absorbing layer CrAlON-based solar selective absorbing coating after aged at 500 °C for 220 h in air.

    表 1  CrAlON基光谱选择性吸收涂层的制备工艺参数

    Table 1.  Deposition parameters of the CrAlON-based selective absorbing coatings.

    ParametersCurrent/AAr/sccmO2/sccmN2/sccmTime/ s
    Cr901300015 × 60
    CrAlN (Inner)6010003060
    CrAlON (Inner)60120103060
    CrAlN (Outer)6010003060
    CrAlON (Outer)60120103060
    CrAlO6001300120
    DownLoad: CSV

    表 2  500 ℃下时效不同时间后, 多吸收层CrAlON基光谱选择性吸收涂层的吸收率、发射率、选择吸收性α/ε和PC值

    Table 2.  Absorptance α, emittance ε, selectivity α/ε and PC values of the multi-absorbing layer CrAlON-based solar selective absorbing coatings aged at 500 °C.

    Aging parametersαεα/εPC
    As-deposited0.900.156
    Aged for 220 h0.940.109.4–0.06
    Aged for 1000 h0.940.109.4–0.07
    DownLoad: CSV

    表 3  高温时效处理220 h多吸收层CrAlON基光谱选择性吸收涂层表面大颗粒的EDS成分(单位: 原子百分比, %)

    Table 3.  EDS compositions of the macro droplets of CrAlON after aging at 500 °C for 220 h in air (in atomic percent, %).

    PositionAlCrON
    Site 127.2254.4615.742.58
    Site 217.4656.1920.755.61
    Site 325.3349.5421.363.78
    Average23.3453.3919.283.99
    DownLoad: CSV
  • [1]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评 (第1版) (北京: 清华大学出版社) 第44−65页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evaluation of Solar Spectrum Selective absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp44−65 (in Chinese)

    [2]

    Cao F, McEnaney K, Chen G, Ren Z F 2014 Energy Environ. Sci. 7 1615Google Scholar

    [3]

    Cao F, Kraemer D, Sun T Y, Lan Y C, Chen G, Ren Z F 2015 Adv. Energy Mater. 5 1401042Google Scholar

    [4]

    Wang X Y, Gao J H, Hu H B, Zhang H L, Liang L Y, Javaid K, Zhuge F, Cao H T, Wang L 2017 Nano Energy 37 232Google Scholar

    [5]

    Xue Y F, Wang C, Wang W W, Liu Y, Wu Y X, Ning Y P, Sun Y 2013 Sol. Energy 96 113Google Scholar

    [6]

    Cheng J S, Wang C, Wang W W, Du X K, Liu Y, Xue Y F, Wang T M, Chen B L 2013 Sol. Energy Mater. Sol. Cells 109 204Google Scholar

    [7]

    田广科, 苗树翻, 马天国, 范多旺 2015 太阳能 3 50Google Scholar

    Tian G K, Mi ao, Ma T G, Fan D W 2015 Sol. Energy 3 50Google Scholar

    [8]

    Ge J P, Zhang Q, Zhang T R, Yin Y D 2008 Angew. Chem. Int. Edit. 47 8924Google Scholar

    [9]

    Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P, Somorjai G A 2008 Nat. Mater. 8 126Google Scholar

    [10]

    Gao T, Jelle B P, Gustavsen A J 2013 Nanopart. Res. 15 1370Google Scholar

    [11]

    Cao A, Veser G 2009 Nat. Mater. 9 75Google Scholar

    [12]

    Kim T K, VanSaders B, Caldwell E, Shin S, Liu Z, Jin S, Chen R 2016 Sol. Energy 132 257Google Scholar

    [13]

    Liu H D, Wan Q, Xu Y R, luo C, Chen Y M, Fu D J, Ren F, Luo G, Cheng X D, Hu X J, Yang B 2015 Sol. Energy Mater. Sol. Cells 134 261Google Scholar

    [14]

    Wu L, Gao J H, Liu Z M, Liang L Y, Xia F, Cao H T 2013 Sol. Energy Mater. Sol. Cells 114 186Google Scholar

    [15]

    Du M, Hao L, Mi J, Lü F, Liu X P, Jiang L J, Wang S M 2011 Sol. Energy Mater. Sol. Cells 95 1193Google Scholar

    [16]

    Barshilia H C 2014 Sol. Energy Mater. Sol. Cells 130 322Google Scholar

    [17]

    Barshilia H C, Selvakumar N, Rajam K S, Biswas A 2008 Sol. Energy Mater. Sol. Cells 92 1425Google Scholar

    [18]

    Barshilia H C, Selvakumar N, Rajam K S 2007 J. Vac. Sci. Technol., A 25 383Google Scholar

    [19]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评 (第1版) (北京: 清华大学出版社) 第67−147页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evaluation of Solar Spectrum Selective absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp67−147(in Chinese)

    [20]

    Zou C W, Xie W, Shao L X 2016 Sol. Energy Mater. Sol. Cells 153 9Google Scholar

    [21]

    Liu H D, Fu T R, Duan M H, Wan Q, luo C, Chen Y M, Fu D J, Ren F, Li Q Y, Cheng X D, Yang B, Hu X J 2016 Sol. Energy Mater. Sol. Cells 157 108Google Scholar

    [22]

    Gong D Q, Liu H D, Luo G, Zhang P, Cheng X D, Yang B, Wang Y B, Min J, Wang W X, Chen S P, Cui Z Q, Li K W, Hu L F 2015 Sol. Energy Mater. Sol. Cells 136 167Google Scholar

    [23]

    Gammer C, Mangler C, Rentenberger C, Karnthaler H P 2010 Scr. Mater. 63 312Google Scholar

    [24]

    Gao X H, Guo Z M, Geng Q F, Ma P J, Wang A Q, Liu G 2016 Sol. Energy 140 199Google Scholar

    [25]

    van den Oetelaar L C A, Nooij O W, Oerlemans S, Denier van der Gon A W, Brongersma H H, Lefferts L, Roosenbrand A G, van Veen J A R 1998 J. Phys. Chem. B 102 3445Google Scholar

    [26]

    Malis O, Radu M, Mott D, Wanjala B, Luo J, Zhong C J 2009 Nanotechnology 20 245708Google Scholar

    [27]

    Liao H, Fisher A, Xu Z J 2015 Small 11 3221Google Scholar

    [28]

    Dean J A 1990 Mater. Manuf. Processes 5 687Google Scholar

    [29]

    Clark B G, Hattar K, Marshall M T, Chookajorn T, Boyce B L, Schuh C A 2016 JOM 68 1625Google Scholar

    [30]

    Han L L, Meng Q P, Wang D L, Zhu Y M, Wang J, Du X W, Stach E A, Xin H L 2016 Nat. Commun. 7 13335Google Scholar

    [31]

    Huolin L X, Selim A, Runzhe T, Arda G, Chong-Min W, Libor K, Eric A S, Lin-Wang W, Miquel S, Gabor A S, Haimei Z 2014 Nano Lett. 14 3203Google Scholar

    [32]

    Wang C M, Genc A, Cheng H, Pullan L, Baer D R, Bruemmer S M 2014 Sci. Rep. 4 3683Google Scholar

  • [1] Liu Jun-Hang, Zhu Zhao-Zhao, Bi Lin-zhu, Wang Peng-Ju, Cai Jian-Wang. Magnetic properties and thermal stability of ultrathin TbFeCo films encapsulated by heavy metals Pt and W. Acta Physica Sinica, 2023, 72(7): 077501. doi: 10.7498/aps.72.20222239
    [2] Kang Ya-Bin, Yuan Xiao-Peng, Wang Xiao-Bo, Li Ke-Wei, Gong Dian-Qing, Cheng Xu-Dong. Microstructure building and thermal stability of cermet-based photothermal conversion coatings with layered structures. Acta Physica Sinica, 2023, 72(5): 057103. doi: 10.7498/aps.72.20221693
    [3] Liu Na, Wang Yi, Li Wen-Bo, Zhang Li-Yan, He Shi-Kun, Zhao Jian-Kun, Zhao Ji-Jun. Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering. Acta Physica Sinica, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [4] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [5] Lu Shun-Shun, Zhang Jin-Min, Guo Xiao-Tian, Gao Ting-Hong, Tian Ze-An, He Fan, He Xiao-Jin, Wu Hong-Xian, Xie Quan. Thermal stability of compound stucture of silicon nanowire encapsulated in carbon nanotubes. Acta Physica Sinica, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [6] Liu Jun-Chi, Li Hong-Wen, Wang Jian-Li, Liu Xin-Yue, Ma Xin-Xue. A temperature and emissivity separation algorithm based on maximum entropy estimation of alpha spectrum's scaling and translation. Acta Physica Sinica, 2015, 64(17): 175205. doi: 10.7498/aps.64.175205
    [7] Lu Dong, Jin Dong-Yue, Zhang Wan-Rong, Zhang Yu-Jie, Fu Qiang, Hu Rui-Xin, Gao Dong, Zhang Qing-Yuan, Huo Wen-Juan, Zhou Meng-Long, Shao Xiang-Peng. Novel microwave power sige heterojunction bipolar transistor with high thermal stability over a wide temperature range. Acta Physica Sinica, 2013, 62(10): 104401. doi: 10.7498/aps.62.104401
    [8] Zhou Guang-Hong, Pan Xuan, Zhu Yu-Fu. Exchange bias in BiFeO3/Ni81Fe19 magnetic films and its thermal stability. Acta Physica Sinica, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [9] Zhang Zhang, Xiong Xian-Zhong, Yi Jiao-Jiao, Li Jin-Fu. Crystallization behavior and thermal stability of Al-Ni-RE metallic glasses. Acta Physica Sinica, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [10] Jin Ming, Bai Ming, Miao Jun-Gang. Emissivity study of the array shaped blackbody in the microwave band. Acta Physica Sinica, 2012, 61(16): 164211. doi: 10.7498/aps.61.164211
    [11] Zhang Ying, He Zhi-Bing, Li Ping, Yan Jian-Cheng. Thermal stability of Si-doped glow discharge polymer films. Acta Physica Sinica, 2011, 60(12): 126501. doi: 10.7498/aps.60.126501
    [12] Su Fa-Gang, Liang Jing-Qiu, Liang Zhong-Zhu, Zhu Wan-Bin. Study on the surface morphology and absorptivity of light-absorbing materials. Acta Physica Sinica, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [13] Yan Jian-Cheng, He Zhi-Bing, Yang Zhi-Lin, Chen Zhi-Mei, Tang Yong-Jian, Wei Jian-Jun. Thermal stability of glow discharge polymer coatings on glass microspheres. Acta Physica Sinica, 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [14] Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Tang Yi, Zhong Jian-Xin. Structure and thermal stability of gold nanowire encapsulated in carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [15] Zhang Xu-Dong, Xu Tie-Feng, Nie Qiu-Hua, Dai Shi-Xun, Shen Xiang, Lu Long-Jun, Zhang Xiang-Hua. Investigation of spectral properties and thermal stability of Er3+/Yb3+ co-doped TeO2-B2O3-SiO2 glasses. Acta Physica Sinica, 2007, 56(3): 1758-1764. doi: 10.7498/aps.56.1758
    [16] Shen Xiang, Nie Qiu-Hua, Xu Tie-Feng, Gao Yuan. Investigation of spectral properties and thermal stability of Er3+/Yb3+ co-doped tungsten-tellurite glasses. Acta Physica Sinica, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [17] Zhang Duan-Ming, Li Li, Li Zhi-Hua, Guan Li, Hou Si-Pu, Tan Xin-Yu. Variation of the target absorptance and target temperature distribution before melting in the pulsed laser ablation process. Acta Physica Sinica, 2005, 54(3): 1283-1289. doi: 10.7498/aps.54.1283
    [18] Teng Jiao, Cai Jian-Wang, Xiong Xiao-Tao, Lai Wu-Yan, Zhu Feng-Wu. The establishment and thermal stability of exchange bias in NiFe/FeMn bilayers. Acta Physica Sinica, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [19] Yang Shen-Dong, Ning Zhao-Yuan, Huang Feng, Cheng Shan-Hua, Ye Chao. . Acta Physica Sinica, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
    [20] LIN XIU-CHUAN, SHAO TIAN-MIN. LUMPED METHOD FOR THE MEASUREMENT OF LASER ABSORPTANCE OF MATERIALS . Acta Physica Sinica, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
Metrics
  • Abstract views:  7298
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  04 June 2020
  • Accepted Date:  31 August 2020
  • Available Online:  03 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回