Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Radiation properties of radiative shock in xenon

Zhao Duo Li Shou-Xian An Jian-Zhu Wu Yong Wu Ze-Qing Li Qiong Wang Fang Meng Guang-Wei

Citation:

Radiation properties of radiative shock in xenon

Zhao Duo, Li Shou-Xian, An Jian-Zhu, Wu Yong, Wu Ze-Qing, Li Qiong, Wang Fang, Meng Guang-Wei
PDF
HTML
Get Citation
  • Radiative shock is an important phenomenon both in astrophysics and in inertial confinement fusion. In this paper, the radiation properties of X-ray heated radiatve shock in xenon is studied with the simulation method. The radiative shock is described by a one-dimensional, multi-group radiation hydrodynamics model proposed by Zinn [Zinn J 1973 J. Comput. Phys. 13 569]. To conduct computation, the opacity and equation-of-state data of xenon are calculated and put into the model. The reliabilities of the model and the physical parameters of xenon are verified by comparing the temperature and velocity of the radiative shock calculated by the model with those measured experimentally. The evolution of the radiative shock involves abundant physical processes. The core of the xenon can be heated up to 100 eV, resulting in a thermal wave and forming an expanding high-temperature-core. Shortly, the hydrodynamic disturbances reach the thermal wave front, generating a shock. As the thermal wave slows down, the shock gradually exceeds the high-temperature-core, forming a double-step distribution in the temperature profile. The time evolution of the effective temperature of the radiative shock shows two maximum values and one minimum value, and the radiation spectra often deviate from blackbody spectrum. By analyzing the radiation and absorption properties at different positions of the shock, it can be found that the optical property of the shock is highly dynamic and can generate the above-mentioned radiation characteristics. When the radiative shock is just formed, the radiation comes from the shock surface and the shock precursor has a significant absorption of the radiation. As the shock temperature falls during expansion, the shock precursor disappears and the radiation inside the shock can come out owing to absorption coefficient decreases. When the shock becomes transparent, the radiation surface reaches the outside edge of the high-temperature-core. Then, the temperature of the high-temperature-core decreases further, making this region also optically thin, and the radiation from the inner region can come out. Finally, the radiation strength falls because of temperature decreasing.
      Corresponding author: An Jian-Zhu, An_jianzhu@iapcm.ac.cn
    [1]

    Ensman L, Burrows A 1992 Astrophys. J. 393 742Google Scholar

    [2]

    DE Young D S 1991 Science 252 389Google Scholar

    [3]

    Chakrabarti S K, Titarchuk L G 1995 Astrophys. J. 455 623Google Scholar

    [4]

    Pak A, Divol L, Gregori G, Weber S, Atherton J, Bennedetti R, Bradley D K, Callahan D, Casey D T, Dewald E, Döppner T, Edwards M J, Frenje J A, Glenn S, Grim G P, Hicks D, Hsing W W, Izumi N, Jones O S, Johnson M G, Khan S F, Kilkenny J D, Kline J L, Kyrala G A, Lindl J, Landen O L, Le Pape S, Ma T, MacPhee A, MacGowan B J, MacKinnon A J, Masse L, Meezan N B, Moody J D, Olson R E, Ralph J E, Robey H F, Park H S, Remington B A, Ross J S, Tommasini R, Town R P J, Smalyuk V, Glenzer S H, Moses E I 2013 Phys. Plasmas 20 056315Google Scholar

    [5]

    江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚 2004 物理学报 53 3424

    Jiang S E, Li W H, Sun K X, Jiang X H, Liu Y G, Gui Y L, Chen J S, Ding Y K, Zheng Z J 2004 Acta Phys. Sin. 53 3424

    [6]

    Kuranz C C, Park H S, Remington B A, Drake R P, Miles A R, Robey H F, Kilkenny J D, Keane C J, Kalantar D H, Huntington C M, Krauland C M, Harding E C, Grosskopf M J, Marion D C, Doss F W, Myra E, Maddox B, Young B, Kline J L, Kyrala G, Plewa T, Wheeler J C, Arnett W D, Wallace R J, Giraldez E, Nikroo A 2011 Astrophys. Space Sci. 336 207Google Scholar

    [7]

    Tubman E R, Scott R H H, Doyle H W, Meinecke J, Ahmed H, Alraddadi R A B, Bolis R, Cross J E, Crowston R, Doria D, Lamb D, Reville B, Robinson A P L, Tzeferacos P, Borghesi M, Gregori G, Woolsey N C 2017 Phys. Plasmas 24 103124Google Scholar

    [8]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755Google Scholar

    [9]

    Edens A D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L 2004 Phys. Plasmas 11 4968Google Scholar

    [10]

    Reighard A B, Drake R P, Dannenberg K K, Kremer D J, Grosskopf M, Harding E C, Leibrandt D R, Glendinning S G, Perry T S, Remington B A, Greenough J, Knauer J, Boehly T, Bouquet S, Boireau L, Koenig M, Vinci T 2006 Phys. Plasmas 13 082901Google Scholar

    [11]

    Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Hüller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2410Google Scholar

    [12]

    Hansen J F, Edwards M J, Froula D H, Edens A D, Gregori G, Ditmire T 2007 Astrophys. Space Sci. 307 219Google Scholar

    [13]

    Bouquet S, Stéhlé C, Koenig M, Chiéze J P, Benuzzi-Mounaix A, Batani D, Leygnac S, Fleury X, Merdji H, Michaut C, Thais F, Grandjouan N, Hall T, Henry E, Malka V, Lafon J P J 2004 Phys. Rev. Lett. 92 225001Google Scholar

    [14]

    Morioka T, Sakurai N, Maeno K, Honma H 2000 J. Visulaization. 3 51Google Scholar

    [15]

    Bykovaa N G, Zabelinskiia I E, Ibragimovaa L B, Kozlova P V, Stovbunb S V, Terezab A M, Shatalova O P 2018 Russ. J. Phys. Chem. B 12 108Google Scholar

    [16]

    Hall T A, Benuzzi A, Batani D, Beretta D, Bossi S, Faral B, Koenig M, Krishnan J, Löwer T, Mahdieh M 1997 Phys. Rev. E 55 6

    [17]

    Vinci T, Koenig M, Benuzzi-Mounaix A, Michaut C, Boireau L, Leygnac S, Bouquet S, Peyrusse O, Batani D 2006 Phys. Plasmas 13 010702Google Scholar

    [18]

    Koenig M, Vinci T, Benuzzi-Mounaix A, Ozaki N, Ravasio A, Rabec le Glohaec M, Boireau L, Michaut C, Bouquet S, Atzeni S, Schiavi A, Peyrusse O, Batani D 2006 Phys. Plasmas 13 056504Google Scholar

    [19]

    Kuramitsu Y, Ohnishi N, Sakawa Y, Morita T, Tanji H, Ide T, Nishio K, Gregory C D, Waugh J N, Booth N, Heathcote R, Murphy C, Gregori G, Smallcombe J, Barton C, Dizière A, Koenig M, Woolsey N, Matsumoto Y, Mizuta A, Sugiyama T, Matsukiyo S, Moritaka T, Sano T, Takabe H 2016 Phys. Plasmas 23 032126Google Scholar

    [20]

    Benuzzi-Mounaix A, Koenig M, Ravasio A, Vinci T, Ozaki N, Rabec le Gloahec M, Loupias B, Huser G, Henry E, Bouquet S, Michaut C, Hicks D, MacKinnon A, Patel P, Park H S, Le Pape S, Boehly T, Borghesi M, Cecchetti C, Notley M, Clark R, Bandyopadhyay S, Atzeni S, Schiavi A, Aglitskiy Y, Faenov A, Pikuz T, Batani D, Dezulian R, Tanaka K 2006 Plasma Phys. Controlled Fusion 48 B347Google Scholar

    [21]

    Zheng J, Gu Y J, Chen Z Y, Chen Q F 2010 Phys. Rev. E 82 026401Google Scholar

    [22]

    王瑞荣, 王伟, 方智恒, 安红海, 贾果, 谢志勇, 孟祥富 2013 物理学报 62 125202

    Wang R R, Wang W, Fang Z H, An H H, Jia G, Xie Z Y, Meng X F 2013 Acta Phys. Sin. 62 125202

    [23]

    Sen H K, Guess A W 1957 Phys. Rev. 108 560Google Scholar

    [24]

    泽尔道维奇, 莱伊捷尔 著 (张树材 译) 2016 激波和高温流体动力学现象物理学 (北京: 科学出版社)

    Zel’dovich Y B, Raizer, Y P (translated by Zhang S C) 2016 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Beijing: Science Press) (in Chinese)

    [25]

    Drake R P 2007 Phys. Plasmas 14 043301Google Scholar

    [26]

    McClarren R G, Drake R P, Morel J E, Holloway J P 2010 Phys. Plasmas 17 093301Google Scholar

    [27]

    Mabey P, Michel T, Albertazzi B, Falize E, Koenig M 2020 Phys. Plasmas 27 083302Google Scholar

    [28]

    Zinn J 1973 J. Comput. Phys. 13 569Google Scholar

    [29]

    Yan J, Wu Z Q 2002 Phys. Rev. E 65 066401Google Scholar

    [30]

    Bauche-Arnoult C, Bauche J, Klapisch M 1979 Phys. Rev. A 20 2424Google Scholar

    [31]

    Bar-Shalom A, Oreg J, Goldstein W H 1995 Phys. Rev. E 51 4882

    [32]

    Jin F, Zeng J, Yuan J, Han G X, Wu Z Q, Yan J, Wang M S, Peng Y L 2005 JQSRT 95 241Google Scholar

    [33]

    Li Q, Liu H F, Zhang G M, Zhao Y H, Lu G, Tian M F, Song H F 2016 Phys. Plasmas 23 112709Google Scholar

    [34]

    尼基弗洛夫, 诺维科夫, 乌瓦洛夫 著 (李国政 译) 2004 高温等离子体辐射不透明度和状态方程的计算 (北京: 国防工业出版社)

    Никифоров А Ф, Новиков В Г, Уваров В Б (Переводчик Li G Z) 2004 Квантово-Статистические Модели Высокотемпературной Плазмы И Методы Расчета Росселандовых Пробегов И Уравнений Состояния (Пекин: Издательство Оборонной Промышленности) Глава IV и глава VI, раздел III (Перевод На Китайский Язык)

    [35]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2020 https://physics.nist.gov/asd

    [36]

    Schmalz R F, Meyer-ter-Vehn J, Ramis R 1986 Phys. Rev. A 34 2177Google Scholar

  • 图 1  不同气体密度时氙气的辐射不透明度随光子能量的变化 (a) ρ = 5.33 × 10–7 g/cm3; (b) ρ = 5.33 × 10–3 g/cm3. 不同曲线类型表示不同的温度 (1 eV = 11610 K)

    Figure 1.  Opacity data of xenon at the density of 5.33 × 10–7 g/cm3 (a) and 5.33 × 10–3 g/cm3 (b), lines with different style represent different temperature.

    图 2  氙气的状态方程数据 (a)温度(T, 单位为eV)与比内能(E, 单位为erg/g (1 erg/g = 10–7 J/g))之比随E的变化; (b)压强(P, 单位dyn/cm2 (1 dyn/ cm2 = 10–5 N/ cm2))与E和密度($ \rho $, 单位g/cm3)乘积之比随E的变化. 参数使用比值形式是为方便程序计算

    Figure 2.  Equation-of-state data of xenon: (a) Variation of the ratio between temperature (T, in eV) and specific inertial energy (E, in erg/g) with E; (b) variation of ratio between pressure (P, in dyn/cm2) and the multiplication of E and density ($ \rho $, in g/cm3) with E. The parameters are shown by ratios for computation convenience.

    图 3  不同时刻氙气中的密度(a)和温度(b)的位置分布

    Figure 3.  Variation of density (a) and temperature (b) with position at different times in xenon.

    图 4  氙气中辐射激波等效温度($ {T}_{\rm{eff}} $, eV)的时间演化曲线

    Figure 4.  Time evolution of the effective temperature ($ {T}_{\rm{eff}} $, in eV) of radiative shock in xenon.

    图 5  辐射激波不同波段辐射能流的时间演化, 图像亮度代表辐射能流大小

    Figure 5.  Time evolution of radiation flux at different wavelength of the radiative shock, and the radiation flux are represented by the brightness of the figure.

    图 6  不同时刻氙气的对外辐射光谱与相同等效温度下的黑体辐射光谱的比较 (a) 1 μs; (b) 6 μs

    Figure 6.  Spectrums radiated from radiative shock in xenon and spectrums of blackbody radiation at the same effective temperature at different time: (a) 1 μs; (b) 6 μs.

    图 7  高温区表面(虚线)、激波表面(点线)的黑体辐射光谱与氙气对外辐射光谱(实线)的比较. (a)−(i)代表不同时刻的计算结果, 辐射能流统一投影到激波表面以避免球几何发散带来的影响

    Figure 7.  Comparison among the blackbody spectrums at the surface of high-temperature-core (dash line), at the surface of the shock (dotted line), and the radiation spectrum outward-emitted by the radiative shock (solid line). (a)−(i) represent the result at different time, and all the radiation fluxes are projected on the shock surfaces to eliminate the spherical spreading effect.

    图 8  380−460 nm波段的辐射吸收系数随位置的分布, 虚线为由外向内累积光学厚度为1的位置. (a)−(i)代表不同时刻, 时间与图7相同

    Figure 8.  Variation of absorption coefficient at 380−460 nm with position, the dash line mark the position where the optical depth equal to 1 from outside-in. Panel (a)−(i) are the same time as in Fig. 7.

  • [1]

    Ensman L, Burrows A 1992 Astrophys. J. 393 742Google Scholar

    [2]

    DE Young D S 1991 Science 252 389Google Scholar

    [3]

    Chakrabarti S K, Titarchuk L G 1995 Astrophys. J. 455 623Google Scholar

    [4]

    Pak A, Divol L, Gregori G, Weber S, Atherton J, Bennedetti R, Bradley D K, Callahan D, Casey D T, Dewald E, Döppner T, Edwards M J, Frenje J A, Glenn S, Grim G P, Hicks D, Hsing W W, Izumi N, Jones O S, Johnson M G, Khan S F, Kilkenny J D, Kline J L, Kyrala G A, Lindl J, Landen O L, Le Pape S, Ma T, MacPhee A, MacGowan B J, MacKinnon A J, Masse L, Meezan N B, Moody J D, Olson R E, Ralph J E, Robey H F, Park H S, Remington B A, Ross J S, Tommasini R, Town R P J, Smalyuk V, Glenzer S H, Moses E I 2013 Phys. Plasmas 20 056315Google Scholar

    [5]

    江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚 2004 物理学报 53 3424

    Jiang S E, Li W H, Sun K X, Jiang X H, Liu Y G, Gui Y L, Chen J S, Ding Y K, Zheng Z J 2004 Acta Phys. Sin. 53 3424

    [6]

    Kuranz C C, Park H S, Remington B A, Drake R P, Miles A R, Robey H F, Kilkenny J D, Keane C J, Kalantar D H, Huntington C M, Krauland C M, Harding E C, Grosskopf M J, Marion D C, Doss F W, Myra E, Maddox B, Young B, Kline J L, Kyrala G, Plewa T, Wheeler J C, Arnett W D, Wallace R J, Giraldez E, Nikroo A 2011 Astrophys. Space Sci. 336 207Google Scholar

    [7]

    Tubman E R, Scott R H H, Doyle H W, Meinecke J, Ahmed H, Alraddadi R A B, Bolis R, Cross J E, Crowston R, Doria D, Lamb D, Reville B, Robinson A P L, Tzeferacos P, Borghesi M, Gregori G, Woolsey N C 2017 Phys. Plasmas 24 103124Google Scholar

    [8]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755Google Scholar

    [9]

    Edens A D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L 2004 Phys. Plasmas 11 4968Google Scholar

    [10]

    Reighard A B, Drake R P, Dannenberg K K, Kremer D J, Grosskopf M, Harding E C, Leibrandt D R, Glendinning S G, Perry T S, Remington B A, Greenough J, Knauer J, Boehly T, Bouquet S, Boireau L, Koenig M, Vinci T 2006 Phys. Plasmas 13 082901Google Scholar

    [11]

    Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Hüller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2410Google Scholar

    [12]

    Hansen J F, Edwards M J, Froula D H, Edens A D, Gregori G, Ditmire T 2007 Astrophys. Space Sci. 307 219Google Scholar

    [13]

    Bouquet S, Stéhlé C, Koenig M, Chiéze J P, Benuzzi-Mounaix A, Batani D, Leygnac S, Fleury X, Merdji H, Michaut C, Thais F, Grandjouan N, Hall T, Henry E, Malka V, Lafon J P J 2004 Phys. Rev. Lett. 92 225001Google Scholar

    [14]

    Morioka T, Sakurai N, Maeno K, Honma H 2000 J. Visulaization. 3 51Google Scholar

    [15]

    Bykovaa N G, Zabelinskiia I E, Ibragimovaa L B, Kozlova P V, Stovbunb S V, Terezab A M, Shatalova O P 2018 Russ. J. Phys. Chem. B 12 108Google Scholar

    [16]

    Hall T A, Benuzzi A, Batani D, Beretta D, Bossi S, Faral B, Koenig M, Krishnan J, Löwer T, Mahdieh M 1997 Phys. Rev. E 55 6

    [17]

    Vinci T, Koenig M, Benuzzi-Mounaix A, Michaut C, Boireau L, Leygnac S, Bouquet S, Peyrusse O, Batani D 2006 Phys. Plasmas 13 010702Google Scholar

    [18]

    Koenig M, Vinci T, Benuzzi-Mounaix A, Ozaki N, Ravasio A, Rabec le Glohaec M, Boireau L, Michaut C, Bouquet S, Atzeni S, Schiavi A, Peyrusse O, Batani D 2006 Phys. Plasmas 13 056504Google Scholar

    [19]

    Kuramitsu Y, Ohnishi N, Sakawa Y, Morita T, Tanji H, Ide T, Nishio K, Gregory C D, Waugh J N, Booth N, Heathcote R, Murphy C, Gregori G, Smallcombe J, Barton C, Dizière A, Koenig M, Woolsey N, Matsumoto Y, Mizuta A, Sugiyama T, Matsukiyo S, Moritaka T, Sano T, Takabe H 2016 Phys. Plasmas 23 032126Google Scholar

    [20]

    Benuzzi-Mounaix A, Koenig M, Ravasio A, Vinci T, Ozaki N, Rabec le Gloahec M, Loupias B, Huser G, Henry E, Bouquet S, Michaut C, Hicks D, MacKinnon A, Patel P, Park H S, Le Pape S, Boehly T, Borghesi M, Cecchetti C, Notley M, Clark R, Bandyopadhyay S, Atzeni S, Schiavi A, Aglitskiy Y, Faenov A, Pikuz T, Batani D, Dezulian R, Tanaka K 2006 Plasma Phys. Controlled Fusion 48 B347Google Scholar

    [21]

    Zheng J, Gu Y J, Chen Z Y, Chen Q F 2010 Phys. Rev. E 82 026401Google Scholar

    [22]

    王瑞荣, 王伟, 方智恒, 安红海, 贾果, 谢志勇, 孟祥富 2013 物理学报 62 125202

    Wang R R, Wang W, Fang Z H, An H H, Jia G, Xie Z Y, Meng X F 2013 Acta Phys. Sin. 62 125202

    [23]

    Sen H K, Guess A W 1957 Phys. Rev. 108 560Google Scholar

    [24]

    泽尔道维奇, 莱伊捷尔 著 (张树材 译) 2016 激波和高温流体动力学现象物理学 (北京: 科学出版社)

    Zel’dovich Y B, Raizer, Y P (translated by Zhang S C) 2016 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Beijing: Science Press) (in Chinese)

    [25]

    Drake R P 2007 Phys. Plasmas 14 043301Google Scholar

    [26]

    McClarren R G, Drake R P, Morel J E, Holloway J P 2010 Phys. Plasmas 17 093301Google Scholar

    [27]

    Mabey P, Michel T, Albertazzi B, Falize E, Koenig M 2020 Phys. Plasmas 27 083302Google Scholar

    [28]

    Zinn J 1973 J. Comput. Phys. 13 569Google Scholar

    [29]

    Yan J, Wu Z Q 2002 Phys. Rev. E 65 066401Google Scholar

    [30]

    Bauche-Arnoult C, Bauche J, Klapisch M 1979 Phys. Rev. A 20 2424Google Scholar

    [31]

    Bar-Shalom A, Oreg J, Goldstein W H 1995 Phys. Rev. E 51 4882

    [32]

    Jin F, Zeng J, Yuan J, Han G X, Wu Z Q, Yan J, Wang M S, Peng Y L 2005 JQSRT 95 241Google Scholar

    [33]

    Li Q, Liu H F, Zhang G M, Zhao Y H, Lu G, Tian M F, Song H F 2016 Phys. Plasmas 23 112709Google Scholar

    [34]

    尼基弗洛夫, 诺维科夫, 乌瓦洛夫 著 (李国政 译) 2004 高温等离子体辐射不透明度和状态方程的计算 (北京: 国防工业出版社)

    Никифоров А Ф, Новиков В Г, Уваров В Б (Переводчик Li G Z) 2004 Квантово-Статистические Модели Высокотемпературной Плазмы И Методы Расчета Росселандовых Пробегов И Уравнений Состояния (Пекин: Издательство Оборонной Промышленности) Глава IV и глава VI, раздел III (Перевод На Китайский Язык)

    [35]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2020 https://physics.nist.gov/asd

    [36]

    Schmalz R F, Meyer-ter-Vehn J, Ramis R 1986 Phys. Rev. A 34 2177Google Scholar

  • [1] Yang Meng-Qi, Wu Fu-Yuan, Chen Zhi-Bo, Zhang Yi-Xiang, Chen Yi, Zhang Jin-Chuan, Chen Zhi-Zhen, Fang Zhi-Fan, Rafael Ramis, Zhang Jie. Two-dimensional radiation hydrodynamic simulations of high-speed head-on collisions between high-density plasma jets. Acta Physica Sinica, 2022, 71(22): 225202. doi: 10.7498/aps.71.20220948
    [2] Wu Yong-Gang, Liu Jia-Xing, Liu Hong-Ling, Xu Mei, Linghu Rong-Feng. Spectrum and dissociation properties of fluoro trichloro methane molecule in radiational field. Acta Physica Sinica, 2019, 68(6): 063102. doi: 10.7498/aps.68.20182121
    [3] Liu Hua-Bing, Yuan Li, Li Qiu-Mei, Chen Xiao-Hong, Du Quan, Jin Rong, Chen Xue-Lian, Wang Lin. Theoretical study of the spectra and radiative transition properties of 6Li32S. Acta Physica Sinica, 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [4] Xie An-Dong, Xie Jing, Zhou Ling-Ling, Wu Dong-Lan, Ruan Wen, Luo Wen-Lang. Spectrum of UN2 under inner radiation fields. Acta Physica Sinica, 2015, 64(6): 063301. doi: 10.7498/aps.64.063301
    [5] Mao Xiao-Li, Xiao Shao-Rong, Liu Qing-Quan, Li Min, Zhang Jia-Hong. Fluid dynamic analysis on solar heating error of radiosonde humidity measurement. Acta Physica Sinica, 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [6] Song Tian-Ming, Yang Jia-Min. One-dimensional simulation of radiation transport in three-dimensional cylinder. Acta Physica Sinica, 2013, 62(1): 015210. doi: 10.7498/aps.62.015210
    [7] Guo Kai-Min, Gao Xun, Hao Zuo-Qiang, Lu Yi, Sun Chang-Kai, Lin Jing-Quan. The fluorescence feature of plasma induced by femtosecond laser pulses in air. Acta Physica Sinica, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [8] Ma Jing, Che Chi, Yu Si-Yuan, Tan Li-Ying, Zhou Yan-Ping, Wang Jian. -radiation damage of fiber Bragg grating and its effects on reflected spectrum characteristics. Acta Physica Sinica, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [9] Xie An-Dong, Zhou Ling-Ling, Ruan Wen, Wu Dong-Lan, Luo Wen-Lang. Spectrum of PuO under inner radiation fields. Acta Physica Sinica, 2012, 61(4): 043302. doi: 10.7498/aps.61.043302
    [10] Pu Yu-Dong, Yang Jia-Min, Jin Feng-Tao, Zhang Lu, Ding Yong-Kun. Characteristics of emission spectroscopyof radiatively heated Al plasma. Acta Physica Sinica, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [11] Zhong Wu-Lü, Duan Xu-Ru, Yu De-Liang, Han Xiao-Yu, Yang Li-Mei. Simulation of the neutral beam emission spectroscopy on the HL-2A tokamak. Acta Physica Sinica, 2010, 59(5): 3336-3343. doi: 10.7498/aps.59.3336
    [12] Zhang Lin, Zhang Chun-Min, Jian Xiao-Hua. Passive detection of upper atmospheric wind field based on the Lorentzian line shape profile. Acta Physica Sinica, 2010, 59(2): 899-906. doi: 10.7498/aps.59.899
    [13] Yuan Xiao-Hui, Li Yu-Tong, Xu Miao-Hua, Yu Quan-Zhi, Wang Shou-Jun, Zhang Jie, Zhao Wei, Wang Guang-Chang, Wen Xian-Lun, Jiao Chun-Ye, He Ying-Ling, Zhang Shuang-Gen, Wang Xiang-Xian, Huang Wen-Zhong, Gu Yu-Qiu. Observation of the rear-side coherent transition radiation generated by hot electrons. Acta Physica Sinica, 2006, 55(10): 5362-5367. doi: 10.7498/aps.55.5362
    [14] Wang Wei, Zhang Jie, Zhao Gang. Simulation of the effects of X-ray emission from accretion disks on the interstellar materials. Acta Physica Sinica, 2006, 55(1): 287-293. doi: 10.7498/aps.55.287
    [15] Wang Wei, Zhang Jie, Dong Quan-Li, V.K.Senecha. Effects of target thickness on spectral characteristics of x-ray flux from the laser-produced plasmas. Acta Physica Sinica, 2004, 53(3): 967-972. doi: 10.7498/aps.53.967
    [16] . Acta Physica Sinica, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [17] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
    [18] ZHANG JIE, WANG WEI. NUMERICAL SIMULATION STUDY OF LASER-DRIVEN SHOCKWAVE PROPAGATION IN PLANAR Al FOIL TARGETS. Acta Physica Sinica, 2001, 50(4): 741-747. doi: 10.7498/aps.50.741
    [19] ZHAO LI-ZENG, LEI ZI-MING, ZHANG XIU-LAN, JIANG DE-YI, SHEN LI-KANG, LU ZHEN-ZHONG, NIE YU-XIN, ZHANG JING-YUAN, GAO REN-HE, JIN SHU-HENG, LI QIONG-RU. SPECTRAL CHARACTERISTICS OF UV COHERENT RADIATION GENERATED BY FOUR-WAVE PARAMETRIC PROCESS IN SODIUM VAPOUR. Acta Physica Sinica, 1985, 34(9): 1208-1211. doi: 10.7498/aps.34.1208
    [20] . Acta Physica Sinica, 1966, 22(9): 1098-1102. doi: 10.7498/aps.22.1098
Metrics
  • Abstract views:  5116
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2020
  • Accepted Date:  05 January 2021
  • Available Online:  21 March 2021
  • Published Online:  05 April 2021

/

返回文章
返回