Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study of effect of plasma rotation and feedback control on resistive wall mode in ITER

Cao Qi-Qi Liu Yue Wang Shuo

Citation:

Numerical study of effect of plasma rotation and feedback control on resistive wall mode in ITER

Cao Qi-Qi, Liu Yue, Wang Shuo
PDF
HTML
Get Citation
  • In tokamak plasmas, the resistive wall mode is a very important magnetohydrodynamic instability, and its time scale is on the order of millisecond. For the advanced tokamaks with long-pulse and steady-state operation, the resistive wall mode limits the operating parameter space (the discharge time and the radio of the plasma pressure to the magnetic pressure) of the fusion devices so that it affects the economic benefits. Therefore, it is very important to study the stability of the resistive wall modes in tokamaks. In this work, the influences of the plasma rotations and the feedback controls on the resistive wall modes are studied numerically using MARS code for an ITER 9 MA equilibrium designed for the advanced steady-state scenario. In the equilibrium, the profile of the safety factor has a weak negative magnetic shear in the core region. The safety factor is ${q_0}= 2.44$ on the magnetic axis and ${q_a}= 7.13$ on the plasma boundary. And, the minimum safety factor ${q_{\min }}$ is 1.60. The structure of this kind of weakly negative magnetic shear can generate higher radio of the plasma pressure to the magnetic pressure and it is the important feature of the advanced steady-state scenario. Using MARS code, for two cases: without wall and with ideal wall, the results of growth rates of the external kink modes for different values of ${\beta _{\rm N}}$ are obtained. The limit value of $\beta _{\rm N}^\text{no-wall}$ is 2.49 for the case without wall, and the limit value of $\beta _{\rm N}^\text{ideal-wall}$ is 3.48 for the case with ideal wall. Then, a parameter ${C_\beta } = \left( {{\beta _{\rm{N}}} - \beta _{\rm{N}}^{{\text{no-wall}}}} \right)/\left( {\beta _{\rm{N}}^{{\text{ideal-wall }}} - \beta _{\rm{N}}^{{\text{no-wall }}}} \right)$ is defined. The research results in this work show that with the plasma pressure scaling factor ${C_\beta } = 0.7$ and plasma rotation frequency ${\Omega _{0}} = 1.1\% {\Omega _A}$, the resistive wall modes can be completely stabilized without feedback control. And, with the plasma pressure scaling factor ${C_\beta } = 0.7$ and the feedback gain $\left| G \right| = 0.6$, only plasma rotation with the frequency ${\Omega _{0}} = 0.2\% {\Omega _A}$ can stabilize the resistive wall modes. Therefore, a faster plasma rotation is required to stabilize the resistive wall modes by the plasma flow alone. The synergetic effects of the feedback and the toroidal plasma flow on the stability of the RWM can reduce plasma rotation threshold, which satisfies the requirements for the operation of the advanced tokamaks. The conclusion of this work has a certain reference for the engineering design and the operation of CFETR.
      Corresponding author: Liu Yue, liuyue@dlut.edu.cn ; Wang Shuo, wangs@swip.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875098, 11805054) and the National Magnetic Confinement Fusion Energy Research and Development Program of China (Grant No. 2017YFE0300501)
    [1]

    Haney S W, Freidberg J P 1989 Phys. Plasmas 1 1637

    [2]

    Matsunaga G, Takechi M, Kurita G, Ozeki T, Kamada Y, Team t J T 2007 Plasma Phys. Controlled Fusion 49 95Google Scholar

    [3]

    Gimblett C G 1986 Nucl. Fusion 26 617Google Scholar

    [4]

    Pfirsch D, Tasso H 1971 Nucl. Fusion 11 259Google Scholar

    [5]

    Liu Y, Bondeson A, Gribov Y, Polevoi A 2004 Nucl. Fusion 44 232Google Scholar

    [6]

    Xia G, Liu Y, Liu Y 2014 Plasma Phys. Controlled Fusion 56 095009Google Scholar

    [7]

    Xia G, Liu Y, Liu Y, Hao G Z, Li L 2015 Nucl. Fusion 55 093007Google Scholar

    [8]

    Liu C, Liu Y, Liu Y, Hao G, Li L, Wang Z 2015 Nucl. Fusion 55 063022Google Scholar

    [9]

    Hao G Z, Wang A K, Liu Y Q, Qiu X M 2011 Phys. Rev. Lett. 107 015001Google Scholar

    [10]

    Hao G Z, Liu Y Q, Wang A K, Jiang H B, Lu G M, He H D, Qiu X M 2011 Phys. Plasmas 18 032513Google Scholar

    [11]

    Hao G Z, Liu Y Q, Wang A K, Chen H T, Miao Y T, Wang S, Zhang N, Dong G Q, Xu M 2020 Plasma Phys. Controlled Fusion 62 075007Google Scholar

    [12]

    Wang S, Liu Y Q, Zheng G Y, Song X M, Hao G Z, Xia G L, Li L, Li B, Zhang N, Dong G Q, Bai X 2019 Nucl. Fusion 59 096021Google Scholar

    [13]

    Chu M S, Greene J M, Jensen T H, Miller R L, Bondeson A, Johnson R W, Mauel M E 1995 Phys. Plasmas 2 2236Google Scholar

    [14]

    Ward D J, Bondeson A 1995 Phys. Plasmas 2 1570Google Scholar

    [15]

    Garofalo A M, Jackson G L, La Haye R J, Okabayashi M, Reimerdes H, Strait E J, Ferron J R, Groebner R J, In Y, Lanctot M J, Matsunaga G, Navratil G A, Solomon W M, Takahashi H, Takechi M, Turnbull A D, Team D D 2007 Nucl. Fusion 47 1121Google Scholar

    [16]

    Liu Y Q, Bondeson A, Fransson C M, Lennartson B, Breitholtz C 2000 Phys. Plasmas 7 3681Google Scholar

    [17]

    Liu Y, Chu M S, Chapman I T, Hender T C 2008 Phys. Plasmas 15 112503Google Scholar

    [18]

    Wang Z R, Guo S C, Liu Y Q, Chu M S 2012 Nucl. Fusion 52 063001Google Scholar

    [19]

    Chu M S, Greene J M, Jensen T H, Miller R L, Bondeson A, Johnson R W, Mauel M E 1995 Physics Plasmas 2 2236

    [20]

    Li L, Liu Y, Liu Y Q 2012 Phys. Plasmas 19 012502Google Scholar

  • 图 1  ITER装置极向截面及反馈控制示意图

    Figure 1.  Geometry of poloidal cross section and feedback control in ITER.

    图 2  ITER装置9 MA先进运行平衡 (a)安全因子剖面; (b)等离子体压强剖面, 由${B_0}^2/{\mu _0}$归一化; (c)质量密度剖面, 磁轴处归一化为1; (d)环向电流密度剖面, 由${B_{0}}/\left( {{\mu _0}{R_0}} \right)$归一化, $s = \sqrt \psi $, $\psi $是归一化的极向通量

    Figure 2.  Radial profiles of (a)safety factor; (b)equilibrium pressure normalized by factor ${B_0}^2/{\mu _0}$; (c)plasma density normalized to unity at the magnetic axis; (d)toroidal current density normalized by factor ${B_{0}}/\left( {{\mu _0}{R_0}} \right)$ and $s = \sqrt \psi $, $\psi $ is the normalized poloidal flux for ITER target plasma designed for 9 MA steady state scenario.

    图 3  在无壁和有理想壁时, 不同比压下的外扭曲模增长率

    Figure 3.  Growth rate of external kink versus ${\beta _{\rm{N}}}$ with and without an ideal wall.

    图 4  等离子体比压参量为${C_\beta } = 0.7$、平行黏滞$\kappa _{/\!/}$分别取0.5, 1和1.5时, 不同等离子体旋转频率下的电阻壁模增长率

    Figure 4.  Growth rate of resistive wall mode versus plasma flow with equilibrium pressure scaling factor ${C_\beta } = 0.7$, parallel viscous coefficient ${\kappa _{/\!/} }$ = 0.5, 1, 1.5.

    图 5  平行黏滞${\kappa _{/\!/} }$取1.5时, 不同等离子体比压参数和不同等离子体旋转频率下的电阻壁模增长率

    Figure 5.  With parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode versus plasma flow for different equilibrium pressure scaling factor ${C_\beta }$.

    图 6  没有等离子体旋转频率, ${C_\beta }$ =0.7时, 计算得到的主动线圈产生的磁场分布

    Figure 6.  Without plasma flow and equilibrium pressure scaling factor ${C_\beta } = 0.7$, the calculated magnetic field distribution of active coil.

    图 7  线圈增益幅值为$|G|$ = 0.5时, 上下两组线圈不同相位下电阻壁模的增长率

    Figure 7.  Growth rate of resistive wall mode with varying phase of feedback gains for upper and lower sets of active coils, feedback gain amplitude $|G|$ = 0.5.

    图 8  在没有等离子体旋转频率、平行黏滞${\kappa _{/\!/} } =1.5$时, 不同的等离子体比压参量, 不同中间线圈的增益下电阻壁模的增长率变化

    Figure 8.  Without plasma flow and with parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for middle sets of active coils.

    图 9  在没有等离子体旋转频率、平行黏滞${\kappa _{/\!/}} =1.5$时, 不同的等离子体比压参量, 不同上下两组线圈的增益下电阻壁模的增长率变化

    Figure 9.  Without plasma flow and with parallel viscous coefficient ${\kappa _{/\!/}}=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for upper and lower sets of active coils.

    图 10  在没有等离子体旋转频率、平行黏滞${\kappa _{/\!/} } =1.5$时, 不同的等离子体比压参量, 不同上中下三组线圈的增益下电阻壁模的增长率变化

    Figure 10.  Without plasma flow and with parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for all three sets of active coils.

    图 11  在等离子体旋转频率${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002、平行黏滞${\kappa _{/\!/} }=1.5$时, 不同的等离子体比压参量, 加上旋转后中间线圈的增益和增长率的变化

    Figure 11.  With plasma flow ${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002 and parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for middle sets of active coils.

    图 12  在等离子体旋转频率${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002、平行黏滞${\kappa _{/\!/} }=1.5$时, 不同的等离子体比压参量, 加上旋转后上下两组线圈的增益和增长率的变化

    Figure 12.  With plasma flow ${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002 and parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for upper and lower sets of active coils.

    图 13  在等离子体旋转频率${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002、平行黏滞${\kappa _{/\!/}}=1.5$时, 不同的等离子体比压参量, 加上旋转后上中下三组线圈的增益和增长率的变化

    Figure 13.  With plasma flow ${\varOmega _{0}}/{\varOmega _{\rm{A}}}$ = 0.002 and parallel viscous coefficient ${\kappa _{/\!/} }=1.5$, growth rate of resistive wall mode with varying equilibrium pressure scaling factor versus feedback gains for all three sets of active coils.

  • [1]

    Haney S W, Freidberg J P 1989 Phys. Plasmas 1 1637

    [2]

    Matsunaga G, Takechi M, Kurita G, Ozeki T, Kamada Y, Team t J T 2007 Plasma Phys. Controlled Fusion 49 95Google Scholar

    [3]

    Gimblett C G 1986 Nucl. Fusion 26 617Google Scholar

    [4]

    Pfirsch D, Tasso H 1971 Nucl. Fusion 11 259Google Scholar

    [5]

    Liu Y, Bondeson A, Gribov Y, Polevoi A 2004 Nucl. Fusion 44 232Google Scholar

    [6]

    Xia G, Liu Y, Liu Y 2014 Plasma Phys. Controlled Fusion 56 095009Google Scholar

    [7]

    Xia G, Liu Y, Liu Y, Hao G Z, Li L 2015 Nucl. Fusion 55 093007Google Scholar

    [8]

    Liu C, Liu Y, Liu Y, Hao G, Li L, Wang Z 2015 Nucl. Fusion 55 063022Google Scholar

    [9]

    Hao G Z, Wang A K, Liu Y Q, Qiu X M 2011 Phys. Rev. Lett. 107 015001Google Scholar

    [10]

    Hao G Z, Liu Y Q, Wang A K, Jiang H B, Lu G M, He H D, Qiu X M 2011 Phys. Plasmas 18 032513Google Scholar

    [11]

    Hao G Z, Liu Y Q, Wang A K, Chen H T, Miao Y T, Wang S, Zhang N, Dong G Q, Xu M 2020 Plasma Phys. Controlled Fusion 62 075007Google Scholar

    [12]

    Wang S, Liu Y Q, Zheng G Y, Song X M, Hao G Z, Xia G L, Li L, Li B, Zhang N, Dong G Q, Bai X 2019 Nucl. Fusion 59 096021Google Scholar

    [13]

    Chu M S, Greene J M, Jensen T H, Miller R L, Bondeson A, Johnson R W, Mauel M E 1995 Phys. Plasmas 2 2236Google Scholar

    [14]

    Ward D J, Bondeson A 1995 Phys. Plasmas 2 1570Google Scholar

    [15]

    Garofalo A M, Jackson G L, La Haye R J, Okabayashi M, Reimerdes H, Strait E J, Ferron J R, Groebner R J, In Y, Lanctot M J, Matsunaga G, Navratil G A, Solomon W M, Takahashi H, Takechi M, Turnbull A D, Team D D 2007 Nucl. Fusion 47 1121Google Scholar

    [16]

    Liu Y Q, Bondeson A, Fransson C M, Lennartson B, Breitholtz C 2000 Phys. Plasmas 7 3681Google Scholar

    [17]

    Liu Y, Chu M S, Chapman I T, Hender T C 2008 Phys. Plasmas 15 112503Google Scholar

    [18]

    Wang Z R, Guo S C, Liu Y Q, Chu M S 2012 Nucl. Fusion 52 063001Google Scholar

    [19]

    Chu M S, Greene J M, Jensen T H, Miller R L, Bondeson A, Johnson R W, Mauel M E 1995 Physics Plasmas 2 2236

    [20]

    Li L, Liu Y, Liu Y Q 2012 Phys. Plasmas 19 012502Google Scholar

  • [1] Yang Jin, Chen Jun, Wang Fu-Di, Li Ying-Ying, Lyu Bo, Xiang Dong, Yin Xiang-Hui, Zhang Hong-Ming, Fu Jia, Liu Hai-Qing, Zang Qing, Chu Yu-Qi, Liu Jian-Wen, Wang Xun-Yu, Bin Bin, He Liang, Wan Shun-Kuan, Gong Xue-Yu, Ye Min-You. Experimental investigation of lower hybrid current drive induced plasma rotation on the experimental advanced superconducting tokamak. Acta Physica Sinica, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [2] Chang Jun-Wei, Zhu Rui-Han, Zhang Lan-Zhi, Xi Ting-Ting, Hao Zuo-Qiang. Control of supercontinuum generation from filamentation of shaped femtosecond laser pulses. Acta Physica Sinica, 2020, 69(3): 034206. doi: 10.7498/aps.69.20191438
    [3] Chen Bin, Long Jin-Bao, Xie Hong-Tai, Chen Luo-Kan, Chen Shuai. A mobile three-dimensional active vibration isolator and its application to cold atom interferometry. Acta Physica Sinica, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [4] Fan Li-Ming, Lü Ming-Tao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Investigation on the directed transport efficiency of feedback-control ratchet. Acta Physica Sinica, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [5] Qin Tian-Qi, Wang Fei, Yang Bo, Luo Mao-Kang. Transport properties of fractional coupled Brownian motors in ratchet potential with feedback. Acta Physica Sinica, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [6] Liu Xian, Ma Bai-Wang, Liu Hui-Jun. Performance of closed-loop control of epileptiform spikes in neural mass models. Acta Physica Sinica, 2013, 62(2): 020202. doi: 10.7498/aps.62.020202
    [7] Zeng Zhe-Zhao. Feedback compensation control on chaotic system with uncertainty based on radial basis function neural network. Acta Physica Sinica, 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [8] Ge Hong-Xia, Cheng Rong-Jun, Li Zhi-Peng. Considering two-velocity difference effect for coupled map car-following model. Acta Physica Sinica, 2011, 60(8): 080508. doi: 10.7498/aps.60.080508
    [9] Huang Li-Lian, Xin Fang, Wang Lin-Yu. Circuit implementation and control of a new fractional-order hyperchaotic system. Acta Physica Sinica, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [10] Shi Zheng-Ping. Simple chaotic oscillator’s chaos behavior and its feedback control circuit design. Acta Physica Sinica, 2010, 59(9): 5940-5948. doi: 10.7498/aps.59.5940
    [11] Li Gang, Li Yi-Ming, Xu Yan-Ji, Zhang Yi, Li Han-Ming, Nie Chao-Qun, Zhu Jun-Qiang. Experimental study of near wall region flow control by dielectric barrier discharge plasma. Acta Physica Sinica, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [12] Xiao Han, Tang Jia-Shi, Liang Cui-Xiang. Saddle-node bifurcation control of a spring pendulum with single-frequency excitation. Acta Physica Sinica, 2009, 58(5): 2989-2995. doi: 10.7498/aps.58.2989
    [13] Yin Xiao-Zhou, Liu Yong. Suppression of spiral wave in the excitable media by using intermittent feedback scheme. Acta Physica Sinica, 2008, 57(11): 6844-6851. doi: 10.7498/aps.57.6844
    [14] Lin Min, Huang Yong-Mei, Fang Li-Min. The feedback control of stochastic resonance in bistable system. Acta Physica Sinica, 2008, 57(4): 2041-2047. doi: 10.7498/aps.57.2041
    [15] Du Lin, Xu Wei, Jia Fei-Lei, Li Shuang. Control of gyro system based on lowpass filter function feedback. Acta Physica Sinica, 2007, 56(7): 3813-3819. doi: 10.7498/aps.56.3813
    [16] Chen Xuan, Gao Zi-You, Zhao Xiao-Mei, Jia Bin. Study on the two-lane feedback controled car-following model. Acta Physica Sinica, 2007, 56(4): 2024-2029. doi: 10.7498/aps.56.2024
    [17] Liu Su-Hua, Tang Jia-Shi. Linear feedback control of Hopf bifurcation in Langford system. Acta Physica Sinica, 2007, 56(6): 3145-3151. doi: 10.7498/aps.56.3145
    [18] Tang Jia-Shi, Xiao Han. Amplitude control of limit cycle of coupled van der Pol oscillator. Acta Physica Sinica, 2007, 56(1): 101-105. doi: 10.7498/aps.56.101
    [19] Yu Jin-Jiang, Zhang Ming-Xuan, Xu Hai-Bo. Nonlinear dynamics and control of symmetric chaotic systems*. Acta Physica Sinica, 2004, 53(11): 3701-3705. doi: 10.7498/aps.53.3701
    [20] YUE LI-JUAN, CHEN YAN-YAN, PENG JIAN-HUA. A CIRCUIT EXPERIMENT FOR CONTROLLING HYPERCHAOS BY MEANS OF PROPORTIONAL PERIODIC PULSE PERTURBATION TO THE SYSTEM VARIABLES. Acta Physica Sinica, 2001, 50(11): 2097-2102. doi: 10.7498/aps.50.2097
Metrics
  • Abstract views:  4737
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2020
  • Accepted Date:  02 October 2020
  • Available Online:  04 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回