Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles study of electrical and magnetic properties of two-dimensional ferromagnetic semiconductors CrI3 adsorbed by atoms

Qin Wen-Jing Xu Bo Sun Bao-Zhen Liu Gang

Citation:

First principles study of electrical and magnetic properties of two-dimensional ferromagnetic semiconductors CrI3 adsorbed by atoms

Qin Wen-Jing, Xu Bo, Sun Bao-Zhen, Liu Gang
PDF
HTML
Get Citation
  • Recent experimental discovery of intrinsic ferromagnetism (FM) in chromium triiodide (CrI3) monolayer opens a new way to low-dimensional spintronics. Two-dimensional (2D) CrI3 monolayer is of great significance for its magnetic and electronic properties. Generally, surface atomic adsorption is an effective way to modify the physical properties of layered magnetic materials. Here in this work, we use the first-principles method based on density functional theory (DFT) to systematically study the electronic structure and magnetic properties of 2D CrI3 monolayers that have adsorbed other metal atoms (specifically, alkali (alkaline earth) metal (Li, K and Mg), transition metal (Ti, V, Mn, Fe, Co and Ni) and non-metal (N, P, O and S) atoms). Our results show that the metal atoms tend to be adsorbed in the center of the ring formed by the six I atoms and stay at the same height as Cr atoms, while the positions of the optimized non-metal atoms are in the ring formed by the six I atoms and depend on the type of the atoms. The adsorption of atoms (except for Ti and Mn atoms) does not change the intrinsic ferromagnetic semiconducting properties of CrI3 monolayer. The CrI3 monolayers with Ti or Mn adsorption are antiferromagnetic semiconductors. Moreover, we find that the adsorption of different atoms regulates the local magnetic moments of Cr atoms. The adsorption of metal atoms increases the local magnetic moments of Cr atoms, but not exceeding 4μB. However, the adsorption of non-metallic atoms makes the local magnetic moments of Cr atoms diversified. The adsorption of O and N atoms retain the local magnetic moment of Cr atoms, while the adsorption of P and S atoms increase the local magnetic moment. By combining the projected density of states, we analyze in detail the local magnetic moments of Cr atoms. The increase of the local magnetic moments of Cr atoms is directly related to the charges transferring. Our results provide new ideas for regulating the performance of the magnetism of 2D intrinsic ferromagnetic semiconductor CrI3, which will have potential applications in the spintronics in the future.
      Corresponding author: Xu Bo, bxu4@mail.ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12064015) and the Open Foundation of 21C Innovation Laboratory, Contemporary Amperex Technology Ltd, China (Grant No. 21C-OP-202005)
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Chen Q, Ouyang Y, Yuan S, Li R, Wang J 2014 ACS Appl. Mater. Inter. 6 16835Google Scholar

    [6]

    Dong L, Kumar H, Anasori B, Gogotsi Y, Shenoy V B 2017 J. Phys. Chem. Lett. 8 422Google Scholar

    [7]

    Ma X C, Wu X, Wang H D, Wang Y C 2018 J. Mater. Chem. A 6 2295Google Scholar

    [8]

    Kadantsev E S, Hawrylak P 2012 Solid State Commun. 152 909Google Scholar

    [9]

    Li F, Wei W, Zhao P, Huang B, Dai Y 2017 J. Phys. Chem. Lett. 8 5959Google Scholar

    [10]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [11]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [12]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [13]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [14]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [15]

    Ghorbani-Asl M, Kuc A, Miro P, Heine T 2016 Adv. Mater. 28 853Google Scholar

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [17]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227Google Scholar

    [18]

    Ma L, Dai J, Zeng X C 2017 Adv. Energy Mater. 7Google Scholar

    [19]

    Jing Y, Zhou Z, Cabrera C R, Chen Z 2014 J. Mater. Chem. A 2Google Scholar

    [20]

    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501Google Scholar

    [21]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [22]

    Zhang W B, Qu Q, Zhu P, Lam C H 2015 J. Mater. Chem. C 3 12457Google Scholar

    [23]

    Fu Y K, Sun Y, Luo X 2019 J. Appl. Phys. 125 053901Google Scholar

    [24]

    Wang H B, Fan F R, Zhu S S, Wu H 2016 Europhys. Lett. 114 47001Google Scholar

    [25]

    McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 612Google Scholar

    [26]

    Webster L, Liang L, Yan J A 2018 Phys. Chem. Chem. Phys. 20 23546Google Scholar

    [27]

    Larson D T, Kaxiras E 2018 Phys. Rev. B 98 085406Google Scholar

    [28]

    Shcherbakov D, Stepanov P, Weber D, Wang Y, Hu J, Zhu Y, Watanabe K, Taniguchi T, Mao Z, Windl W, Goldberger J, Bockrath M, Lau C N 2018 Nano Lett. 18 4214Google Scholar

    [29]

    Chen L B, Chung J H, Gao B, Chen T, Stone M B, Kolesnikov A I, Huang Q Z, Dai P C 2018 Phys. Rev. X 8 041028Google Scholar

    [30]

    Zeng Y, Wang L, Li S, He C, Zhong D, Yao D X 2019 J. Phys. Codens. Mat. 31 395502Google Scholar

    [31]

    Zhou Y G, Wang Z G, Yang P, Zu X T, Yang L, Sun X, Gao F 2012 ACS Nano 6 9727Google Scholar

    [32]

    Zhu S Z, Li T 2016 Phys. Rev. B 93 115401Google Scholar

    [33]

    吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102Google Scholar

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102Google Scholar

    [34]

    Rai H M, Saxena S K, Mishra V, Late R, Kumar R, Sagdeo P R, Jaiswal N K, Srivastava P 2016 RSC Adv. 6 11014Google Scholar

    [35]

    Osada M, Yoguchi S, Itose M, Li B W, Ebina Y, Fukuda K, Kotani Y, Ono K, Ueda S, Sasaki T 2014 Nanoscale 6 14227Google Scholar

    [36]

    Guan J, Yu G, Ding X, Chen W, Shi Z, Huang X, Sun C 2013 Chemphyschem. 14 2841Google Scholar

    [37]

    Du A J, Chen Y, Zhu Z H, Amal R, Lu G Q, Smith S C 2009 J. Am. Chem. Soc. 131 17354Google Scholar

    [38]

    黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 物理学报 68 246301Google Scholar

    Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar

    [39]

    Kan E, Li M, Hu S, Xiao C, Xiang H, Deng K 2013 J. Phys. Chem. Lett. 4 1120Google Scholar

    [40]

    Barone V, Peralta J E 2008 Nano Lett. 8 2210Google Scholar

    [41]

    Allen M J, Tung V C, Kaner R B 2010 J. Am. Chem. Soc. 110 132Google Scholar

    [42]

    Lee K W, Lee C E 2012 Adv. Mater. 24 2019Google Scholar

    [43]

    栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡 2019 物理学报 68 026802Google Scholar

    Luan X W, Sun J P, Wang F S, Wei H L, Hu Y F 2019 Acta Phys. Sin. 68 026802Google Scholar

    [44]

    杨光敏, 梁志聪, 黄海华 2017 物理学报 66 057301Google Scholar

    Yang G M, Liang Z C, Huang H H 2017 Acta Phys. Sin. 66 057301Google Scholar

    [45]

    Zheng F W, Zhao J Z, Liu Z, Li M L, Zhou M, Zhang S B, Zhang P 2018 Nanoscale 10 14298Google Scholar

    [46]

    Gao Y, Wang J, Li Z P, Yang J J, Xia M R, Hao X F, Xu Y H, Gao F M 2019 Phys. Status. Solidi-R. 13 1800410Google Scholar

    [47]

    Qin W J, Xu B, Liao S S, Liu G, Sun B Z, Wu M S 2020 Solid State Commun. 321 114037Google Scholar

    [48]

    Liu J, Shi M C, Lu J W, Anantram M P 2018 Phys. Rev. B 97 054416Google Scholar

    [49]

    Guo Y L, Yuan S J, Wang B, Shi L, Wang J L 2018 J. Mater. Chem. C 6 5716Google Scholar

    [50]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [51]

    Kresse G, Hafner J 1994 Phys. Rev. B: Condens. Matter 49 14251Google Scholar

    [52]

    Kresse G, Furthmiiller J 1996 Science 6 15

    [53]

    Blochl P E 1994 Phys. Rev. B: Condens. Matter 50 17953Google Scholar

    [54]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [55]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [56]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [57]

    Liechtenstein A I, Anisimov V V, Zaanen J 1995 Phys. Rev. B: Condens. Matter 52 R5467Google Scholar

    [58]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [59]

    Goodenough J B 1958 J. Phys. Chem. Solids 6 287Google Scholar

    [60]

    Anderson P W 1959 Phys. Rev. 115 2Google Scholar

  • 图 1  (a) CrI3单层的原子结构俯视图(3个不同的吸附位用黑色的虚线圆圈表示); (b) CrI3单层的原子结构侧视图(上图中红色球为3个不同的吸附位, 下图中红色球为原子在吸附位3处吸附后的原子优化位置); (c) 四种不同的磁构型结构

    Figure 1.  (a) Top view of atomic structure diagram of CrI3 monolayer (three different adsorption sites are represented by black dashed circle); (b) side view of atomic structure diagram of CrI3 monolayer (three different adsorption sites are shown with red balls in the top picture, and the optimized site of adsorption atom is shown with red ball in the bottom picture); (c) four different magnetic configurations.

    图 2  完美CrI3单层的 (a) 能态密度(红色实线表示Cr-d轨道的分波态密度, 蓝色实线表示I-p轨道的分波态密度)和 (b) 能带结构(红色实线表示上自旋电子的能带, 蓝色虚线表示下自旋电子的能带)

    Figure 2.  (a) Energy density of states (red solid line for Cr-d projected density of states, blue solid line for I-p projected density of states) and (b) band structure (red solid line for spin up, blue dashed line for spin down) of perfect CrI3 monolayer.

    图 3  碱(土)金属原子吸附的CrI3单层的能带结构(红色实线表示上自旋电子的能带, 蓝色虚线表示下自旋电子的能带)

    Figure 3.  Band structure of the CrI3 monolayer adsorbed by alkali (alkali earth) metal atoms (red solid line for spin up, blue dashed line for spin down).

    图 4  碱(土)金属原子吸附的CrI3单层中Cr原子的分波态密度

    Figure 4.  Projected density of states (PDOS) of Cr atoms in CrI3 monolayer adsorbed by alkali (alkali earth) metal atoms.

    图 5  过渡金属原子吸附的CrI3单层的能带结构(红色实线表示上自旋电子的能带, 蓝色虚线表示下自旋电子的能带)

    Figure 5.  Band structure of the CrI3 monolayer adsorbed by alkali (alkali earth) metal atoms (red solid line for spin up, blue dashed line for spin down).

    图 6  过渡金属原子吸附的CrI3单层中Cr原子的分波态密度

    Figure 6.  Projected density of states (PDOS) of Cr atoms in CrI3 monolayer adsorbed by transition metal atoms.

    图 7  非金属原子吸附的CrI3单层的能带结构(红色实线表示上自旋电子的能带, 蓝色虚线表示下自旋电子的能带)

    Figure 7.  Band structure of the CrI3 monolayer adsorbed by non-metal atoms (red solid line for spin up, blue dashed line for spin down).

    图 8  非金属原子吸附的CrI3单层中Cr原子的分波态密度

    Figure 8.  Projected density of states (PDOS) of Cr atoms in CrI3 monolayer adsorbed by non-metal atoms.

    表 1  各种原子位于不同吸附位的CrI3单层优化后的体系能量(E )

    Table 1.  Energies (E ) of the optimized CrI3 monolayer with various atoms adsorbed at different sites.

    原子E位置1/eVE位置2/eVE位置3/eV
    Li–32.147–31.308–32.152
    K–31.411–30.634–31.430
    Mg–32.156–31.267–32.173
    Ti–35.245–35.472
    V–35.293–34.067–36.513
    Mn–36.923–35.369–36.937
    Fe–31.450–33.560–34.959
    Co–30.225–31.895–33.242
    Ni–29.182–30.606–31.603
    N–31.274–32.801–33.337
    P–31.362–31.664–31.798
    O–32.233–33.183–33.240
    S–30.657–30.155–30.887
    DownLoad: CSV

    表 2  碱(土)金属原子吸附后的CrI3单层的能量(E )和Cr原子的局域磁矩(MCr)

    Table 2.  Energy (E ) and local magnetic moments (MCr) of CrI3 monolayer adsorbed by alkali (alkaline earth) metal atoms.

    原子E/meVMCr/μB
    铁磁反铁磁
    Li059(4, 3)
    K052(4, 3)
    Mg06(4, 4)
    DownLoad: CSV

    表 3  过渡金属原子吸附后的CrI3单层的能量(E )和Cr原子的局域磁矩(MCr)

    Table 3.  Energy (E ) and local magnetic moments (MCr) of CrI3 monolayer adsorbed by transition metal atoms.

    原子E/meVMCr/μB
    Type ⅠType ⅡType ⅢType Ⅳ
    Ti5700120(4, –4)
    V0223022(4, 4)
    Mn370380(4, –4)
    Fe4014014(4, 4)
    Co4140035(4, 4)
    Ni6738038(4, 4)
    DownLoad: CSV

    表 4  非金属原子吸附后的CrI3单层的能量(E )和Cr原子的局域磁矩(MCr)

    Table 4.  Energy (E ) and local magnetic moments (MCr) of CrI3 monolayer adsorbed by non-metal atoms.

    原子E/meVMCr/μB
    Type ⅠType ⅡType ⅢType Ⅳ
    N0633763(3, 3)
    P029(4.5, 4.5)
    O089(3, 3)
    S21071071(4, 4)
    DownLoad: CSV
  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Chen Q, Ouyang Y, Yuan S, Li R, Wang J 2014 ACS Appl. Mater. Inter. 6 16835Google Scholar

    [6]

    Dong L, Kumar H, Anasori B, Gogotsi Y, Shenoy V B 2017 J. Phys. Chem. Lett. 8 422Google Scholar

    [7]

    Ma X C, Wu X, Wang H D, Wang Y C 2018 J. Mater. Chem. A 6 2295Google Scholar

    [8]

    Kadantsev E S, Hawrylak P 2012 Solid State Commun. 152 909Google Scholar

    [9]

    Li F, Wei W, Zhao P, Huang B, Dai Y 2017 J. Phys. Chem. Lett. 8 5959Google Scholar

    [10]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [11]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [12]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [13]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [14]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [15]

    Ghorbani-Asl M, Kuc A, Miro P, Heine T 2016 Adv. Mater. 28 853Google Scholar

    [16]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [17]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227Google Scholar

    [18]

    Ma L, Dai J, Zeng X C 2017 Adv. Energy Mater. 7Google Scholar

    [19]

    Jing Y, Zhou Z, Cabrera C R, Chen Z 2014 J. Mater. Chem. A 2Google Scholar

    [20]

    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501Google Scholar

    [21]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [22]

    Zhang W B, Qu Q, Zhu P, Lam C H 2015 J. Mater. Chem. C 3 12457Google Scholar

    [23]

    Fu Y K, Sun Y, Luo X 2019 J. Appl. Phys. 125 053901Google Scholar

    [24]

    Wang H B, Fan F R, Zhu S S, Wu H 2016 Europhys. Lett. 114 47001Google Scholar

    [25]

    McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 612Google Scholar

    [26]

    Webster L, Liang L, Yan J A 2018 Phys. Chem. Chem. Phys. 20 23546Google Scholar

    [27]

    Larson D T, Kaxiras E 2018 Phys. Rev. B 98 085406Google Scholar

    [28]

    Shcherbakov D, Stepanov P, Weber D, Wang Y, Hu J, Zhu Y, Watanabe K, Taniguchi T, Mao Z, Windl W, Goldberger J, Bockrath M, Lau C N 2018 Nano Lett. 18 4214Google Scholar

    [29]

    Chen L B, Chung J H, Gao B, Chen T, Stone M B, Kolesnikov A I, Huang Q Z, Dai P C 2018 Phys. Rev. X 8 041028Google Scholar

    [30]

    Zeng Y, Wang L, Li S, He C, Zhong D, Yao D X 2019 J. Phys. Codens. Mat. 31 395502Google Scholar

    [31]

    Zhou Y G, Wang Z G, Yang P, Zu X T, Yang L, Sun X, Gao F 2012 ACS Nano 6 9727Google Scholar

    [32]

    Zhu S Z, Li T 2016 Phys. Rev. B 93 115401Google Scholar

    [33]

    吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102Google Scholar

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102Google Scholar

    [34]

    Rai H M, Saxena S K, Mishra V, Late R, Kumar R, Sagdeo P R, Jaiswal N K, Srivastava P 2016 RSC Adv. 6 11014Google Scholar

    [35]

    Osada M, Yoguchi S, Itose M, Li B W, Ebina Y, Fukuda K, Kotani Y, Ono K, Ueda S, Sasaki T 2014 Nanoscale 6 14227Google Scholar

    [36]

    Guan J, Yu G, Ding X, Chen W, Shi Z, Huang X, Sun C 2013 Chemphyschem. 14 2841Google Scholar

    [37]

    Du A J, Chen Y, Zhu Z H, Amal R, Lu G Q, Smith S C 2009 J. Am. Chem. Soc. 131 17354Google Scholar

    [38]

    黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 物理学报 68 246301Google Scholar

    Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar

    [39]

    Kan E, Li M, Hu S, Xiao C, Xiang H, Deng K 2013 J. Phys. Chem. Lett. 4 1120Google Scholar

    [40]

    Barone V, Peralta J E 2008 Nano Lett. 8 2210Google Scholar

    [41]

    Allen M J, Tung V C, Kaner R B 2010 J. Am. Chem. Soc. 110 132Google Scholar

    [42]

    Lee K W, Lee C E 2012 Adv. Mater. 24 2019Google Scholar

    [43]

    栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡 2019 物理学报 68 026802Google Scholar

    Luan X W, Sun J P, Wang F S, Wei H L, Hu Y F 2019 Acta Phys. Sin. 68 026802Google Scholar

    [44]

    杨光敏, 梁志聪, 黄海华 2017 物理学报 66 057301Google Scholar

    Yang G M, Liang Z C, Huang H H 2017 Acta Phys. Sin. 66 057301Google Scholar

    [45]

    Zheng F W, Zhao J Z, Liu Z, Li M L, Zhou M, Zhang S B, Zhang P 2018 Nanoscale 10 14298Google Scholar

    [46]

    Gao Y, Wang J, Li Z P, Yang J J, Xia M R, Hao X F, Xu Y H, Gao F M 2019 Phys. Status. Solidi-R. 13 1800410Google Scholar

    [47]

    Qin W J, Xu B, Liao S S, Liu G, Sun B Z, Wu M S 2020 Solid State Commun. 321 114037Google Scholar

    [48]

    Liu J, Shi M C, Lu J W, Anantram M P 2018 Phys. Rev. B 97 054416Google Scholar

    [49]

    Guo Y L, Yuan S J, Wang B, Shi L, Wang J L 2018 J. Mater. Chem. C 6 5716Google Scholar

    [50]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [51]

    Kresse G, Hafner J 1994 Phys. Rev. B: Condens. Matter 49 14251Google Scholar

    [52]

    Kresse G, Furthmiiller J 1996 Science 6 15

    [53]

    Blochl P E 1994 Phys. Rev. B: Condens. Matter 50 17953Google Scholar

    [54]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [55]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [56]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [57]

    Liechtenstein A I, Anisimov V V, Zaanen J 1995 Phys. Rev. B: Condens. Matter 52 R5467Google Scholar

    [58]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [59]

    Goodenough J B 1958 J. Phys. Chem. Solids 6 287Google Scholar

    [60]

    Anderson P W 1959 Phys. Rev. 115 2Google Scholar

  • [1] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [5] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [6] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [7] Huang Ao, Lu Zhi-Peng, Zhou Meng, Zhou Xiao-Yun, Tao Ying-Qi, Sun Peng, Zhang Jun-Tao, Zhang Ting-Bo. Effects of the doping of Al and O interstitial atoms on thermodynamic properties of -Al2O3:first-principles calculations. Acta Physica Sinica, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [8] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [9] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [10] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [11] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [12] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [13] Li Guo-Qi, Zhang Xiao-Chao, Ding Guang-Yue, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Study on the atomic and electronic structures of BiOCl{001} surface using first principles. Acta Physica Sinica, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [14] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [15] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [16] Lu Jin-Lian, Cao Jue-Xian. A first-principles study of capacity and mechanism of a single titanium atom storing hydrogen. Acta Physica Sinica, 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [17] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [18] Fang Li-Min. First principles study of interactions between Au and N atoms on SrTiO3(001) surface. Acta Physica Sinica, 2011, 60(5): 056801. doi: 10.7498/aps.60.056801
    [19] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [20] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
Metrics
  • Abstract views:  6305
  • PDF Downloads:  177
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2021
  • Accepted Date:  14 February 2021
  • Available Online:  28 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回