Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reaction of titanium-modulated nickel with germanium-tin under microwave and rapid thermal annealing

Liu Wei Ping Yun-Xia Yang Jun Xue Zhong-Ying Wei Xing Wu Ai-Min Yu Wen-Jie Zhang Bo

Citation:

Reaction of titanium-modulated nickel with germanium-tin under microwave and rapid thermal annealing

Liu Wei, Ping Yun-Xia, Yang Jun, Xue Zhong-Ying, Wei Xing, Wu Ai-Min, Yu Wen-Jie, Zhang Bo
PDF
HTML
Get Citation
  • As the complementary metal-oxide semiconductor (CMOS) compatible with group IV materials, germanium tin (GeSn) alloys have potential applications in photonics and microelectronics. With the increase of tin (Sn) content, GeSn alloys can change from indirect bandgap semiconductor to direct bandgap semiconductor. On the other hand, GeSn alloys have a higher hole mobility than Ge and can be used as channel materials in metal-oxide-semiconductor-field-effect transistors (MOSFETs). Therefore, the properties of GeSn alloys are studied extensively. In this work, the solid-phase reaction between Ni and GeSn is investigated under microwave annealing (MWA) and rapid thermal annealing (RTA) conditions. We use the four-point probe method to measure the sheet resistance, the atomic force microscopy (AFM) to examine the surface morphology of the sample, the cross-section transmission electron microscopy (XTEM) to analyze the microstructures of the metal stanogermanides, and energy dispersive X-ray spectrometer (EDX) to observe the elements’ distribution of different samples. It is shown that the flat Nickel stanogermanide (NiGeSn) films are obtained at 300 ℃ for MWA and at 350 ℃ for RTA. By analyzing the distributions of sample elements, we find that Sn atoms continue to diffuse into the NiGeSn layer and are segregate mainly at the interface between NiGeSn and GeSn. However, the Ti atoms move from interlayer to the surface after being annealed. We propose that this method is a promising way of developing GeSn devices in the future.
      Corresponding author: Ping Yun-Xia, xyping@sues.edu.cn ; Zhang Bo, bozhang@mail.sim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61604094)
    [1]

    Wang P P 1978 IEEE Trans. Electron. Devices 25 779Google Scholar

    [2]

    Wang H J, Liu Y, Liu M S, Zhang Q F, Zhang C F, Ma X H, Zhang J C, Hao Y, Han G Q 2015 Superlattices Microstruct. 83 401Google Scholar

    [3]

    Liu Q, Cai J H, He J Z, Wang Y Z, Zhang D L, Liu C, Ren W, Yu W J, Liu X K, Zhao Q T 2017 J. Infrared Millimeter Waves 36 543Google Scholar

    [4]

    Zhang L, Wang Y S, Chen N L, Lin G Y, Li C, Huang W, Chen S Y, Xu J F, Wang J Y 2016 J. Non-Cryst. Solids 448 74Google Scholar

    [5]

    Onufrijevs P, Ščajev P, Medvids A, Andrulevicius M, Nargelas S, Malinauskas T, Stanionyte S, Skapas M, Grase L, Pludons A, Oehme M, Lyutovich K, Kasper E, Schulze J, Cheng H H 2020 Opt. Laser Technol. 128 106200Google Scholar

    [6]

    Han G Q, Su S J, Zhan C L, Zhou Q, Yang Y, Wang L X, Guo P F, Wong C P, Shen Z X, Cheng B W, Yeo Y C 2011 IEEE International Electron Devices Meeting Washington, DC Dec 05–07, 2011 p402

    [7]

    Wang L X, Su S J, Wang W, Gong X, Yang Y, Guo P F, Zhang G Z, Xue C L, Cheng B W, Han G Q, Yeo Y C 2013 Solid-State Electron. 83 66Google Scholar

    [8]

    Li H, Cheng H H, Lee L C, Lee C P, Su L H, Suen Y W 2014 Appl. Phys. Lett. 104 241904Google Scholar

    [9]

    Demeulemeester J, Schrauwen A, Nakatsuka O, Zaima S, Adachi M, Shimura Y, Comrie C M, Fleischmann C, Detavernier C, Temst K, Vantomme A 2011 Appl. Phys. Lett. 99 211905Google Scholar

    [10]

    Nishimura T, Nakatsuka O, Shimura Y, Takeuchi S, Vincent B, Vantomme A, Dekoster J, Caymax M, Loo R, Zaima S 2011 Solid-State Electron. 60 46Google Scholar

    [11]

    Liu Y, Wang H J, Yan J, Han G Q 2014 ECS Solid State Lett. 3 11Google Scholar

    [12]

    Wan W J, Ren W, Meng X R, Ping Y X, Wei X, Xue Z Y, Yu W J, Zhang M, Di Z F, Zhang B 2018 Chin. Phys. Lett. 35 056802Google Scholar

    [13]

    Khiangte K R, Rathore J S, Sharma V, Laha A, Mahapatra S 2018 Solid State Commun. 284–286 88Google Scholar

    [14]

    孟骁然, 平云霞, 常永伟, 魏星, 俞文杰, 薛忠营, 狄增峰, 张苗, 张波 2015 功能材料与器件学报 21 85

    Meng X R, Ping Y X, Chang Y W, Wei X, Yu W J, Xue Z Y, Di Z F, Zhang M, Zhang B 2015 J. Funct. Mater. Devices 21 85

    [15]

    Huang W Q, Cheng B W, Xue C L, Liu Z 2015 J. Appl. Phys. 118 165704Google Scholar

    [16]

    Lan H S, Chang S T, Liu C W 2017 Phys. Rev. B 95 201201Google Scholar

    [17]

    Wirths S, Geiger R, Driesch N V D, Mussler G, Stoica T, Mantl S, Lkonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [18]

    Yi S H, Shu K, Liao C, Hsu C W, Huang J Y 2018 IEEE Electron. Device Lett. 39 1278Google Scholar

    [19]

    Liu T H, Chiu P Y, Chuang Y, Liu C Y, Shen C H, Luo G L, Li J Y 2018 IEEE Electron. Device Lett. 39 468Google Scholar

    [20]

    Quintero A, Gergaud P, Hartmann J M, Delaye V, Bernier N, Cooper D, Saghi Z, Reboud V, Cassan E, Rodriguez P 2020 ECS Trans. 98 365

    [21]

    Zhang X, Zhang D L, Zheng J, Liu Z, He C, Xue C L, Zhang G Z, Li C B, Cheng B W, Wang Q M, 2015 Solid-State Electron. 114 178Google Scholar

    [22]

    Quintero A, Gergaud P, Hartmann J M, Reboud V, Cassan E, Rodriguez P 2020 Mater. Sci. Semicond. Process. 108 104890Google Scholar

    [23]

    Ping Y X, Hou C L, Zhang C M, Yu W J, Xue Z Y, Wei X, Peng W, Di Z F, Zhang M, Zhang B 2017 J. Alloys Compd. 693 527Google Scholar

    [24]

    Takeuchi S, Sakai A, Nakatsuka O, Ogawa M, Zaima S 2008 Thin Solid Films 517 159Google Scholar

    [25]

    胡成 2013 硕士学位论文 (上海: 复旦大学)

    Hu C 2013 M. S. Thesis (Shanghai: Fudan University) (in Chinese)

    [26]

    周祥标, 许鹏, 付超超, 吴东平 2016 半导体技术 41 456Google Scholar

    Zhou X B, Xu P, Fu C C, Wu D P 2016 Semicond. Technol. 41 456Google Scholar

  • 图 1  Ni/Ti/GeSn的方块电阻随退火温度的变化

    Figure 1.  Sheet resistance of Ni/Ti/GeSn samples annealed at various temperatures.

    图 2  Ni/Ti/GeSn样品不同退火方式、不同退火温度下的AFM测试图 (a)−(c) 微波退火150, 250, 350 ℃; (d)−(f) 快速热退火150, 250, 350 ℃

    Figure 2.  AFM images of annealed Ni/Ti/GeSn samples: (a)−(c) MWA at 150, 250 and 350 ℃; (d)−(f) RTA at 150, 250 and 350 ℃.

    图 3  (a)−(c) 微波退火300 ℃条件下的XTEM图、EDX图和EDX映射图; (d)−(f) 快速退火350 ℃条件下的XTEM图、EDX图、EDX映射图

    Figure 3.  (a)−(c) XTEM, EDX, and EDX mapping images of MWA at 300 ℃; (d)−(f) XTEM, EDX, and EDX mapping images of RTA at 350 ℃.

  • [1]

    Wang P P 1978 IEEE Trans. Electron. Devices 25 779Google Scholar

    [2]

    Wang H J, Liu Y, Liu M S, Zhang Q F, Zhang C F, Ma X H, Zhang J C, Hao Y, Han G Q 2015 Superlattices Microstruct. 83 401Google Scholar

    [3]

    Liu Q, Cai J H, He J Z, Wang Y Z, Zhang D L, Liu C, Ren W, Yu W J, Liu X K, Zhao Q T 2017 J. Infrared Millimeter Waves 36 543Google Scholar

    [4]

    Zhang L, Wang Y S, Chen N L, Lin G Y, Li C, Huang W, Chen S Y, Xu J F, Wang J Y 2016 J. Non-Cryst. Solids 448 74Google Scholar

    [5]

    Onufrijevs P, Ščajev P, Medvids A, Andrulevicius M, Nargelas S, Malinauskas T, Stanionyte S, Skapas M, Grase L, Pludons A, Oehme M, Lyutovich K, Kasper E, Schulze J, Cheng H H 2020 Opt. Laser Technol. 128 106200Google Scholar

    [6]

    Han G Q, Su S J, Zhan C L, Zhou Q, Yang Y, Wang L X, Guo P F, Wong C P, Shen Z X, Cheng B W, Yeo Y C 2011 IEEE International Electron Devices Meeting Washington, DC Dec 05–07, 2011 p402

    [7]

    Wang L X, Su S J, Wang W, Gong X, Yang Y, Guo P F, Zhang G Z, Xue C L, Cheng B W, Han G Q, Yeo Y C 2013 Solid-State Electron. 83 66Google Scholar

    [8]

    Li H, Cheng H H, Lee L C, Lee C P, Su L H, Suen Y W 2014 Appl. Phys. Lett. 104 241904Google Scholar

    [9]

    Demeulemeester J, Schrauwen A, Nakatsuka O, Zaima S, Adachi M, Shimura Y, Comrie C M, Fleischmann C, Detavernier C, Temst K, Vantomme A 2011 Appl. Phys. Lett. 99 211905Google Scholar

    [10]

    Nishimura T, Nakatsuka O, Shimura Y, Takeuchi S, Vincent B, Vantomme A, Dekoster J, Caymax M, Loo R, Zaima S 2011 Solid-State Electron. 60 46Google Scholar

    [11]

    Liu Y, Wang H J, Yan J, Han G Q 2014 ECS Solid State Lett. 3 11Google Scholar

    [12]

    Wan W J, Ren W, Meng X R, Ping Y X, Wei X, Xue Z Y, Yu W J, Zhang M, Di Z F, Zhang B 2018 Chin. Phys. Lett. 35 056802Google Scholar

    [13]

    Khiangte K R, Rathore J S, Sharma V, Laha A, Mahapatra S 2018 Solid State Commun. 284–286 88Google Scholar

    [14]

    孟骁然, 平云霞, 常永伟, 魏星, 俞文杰, 薛忠营, 狄增峰, 张苗, 张波 2015 功能材料与器件学报 21 85

    Meng X R, Ping Y X, Chang Y W, Wei X, Yu W J, Xue Z Y, Di Z F, Zhang M, Zhang B 2015 J. Funct. Mater. Devices 21 85

    [15]

    Huang W Q, Cheng B W, Xue C L, Liu Z 2015 J. Appl. Phys. 118 165704Google Scholar

    [16]

    Lan H S, Chang S T, Liu C W 2017 Phys. Rev. B 95 201201Google Scholar

    [17]

    Wirths S, Geiger R, Driesch N V D, Mussler G, Stoica T, Mantl S, Lkonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [18]

    Yi S H, Shu K, Liao C, Hsu C W, Huang J Y 2018 IEEE Electron. Device Lett. 39 1278Google Scholar

    [19]

    Liu T H, Chiu P Y, Chuang Y, Liu C Y, Shen C H, Luo G L, Li J Y 2018 IEEE Electron. Device Lett. 39 468Google Scholar

    [20]

    Quintero A, Gergaud P, Hartmann J M, Delaye V, Bernier N, Cooper D, Saghi Z, Reboud V, Cassan E, Rodriguez P 2020 ECS Trans. 98 365

    [21]

    Zhang X, Zhang D L, Zheng J, Liu Z, He C, Xue C L, Zhang G Z, Li C B, Cheng B W, Wang Q M, 2015 Solid-State Electron. 114 178Google Scholar

    [22]

    Quintero A, Gergaud P, Hartmann J M, Reboud V, Cassan E, Rodriguez P 2020 Mater. Sci. Semicond. Process. 108 104890Google Scholar

    [23]

    Ping Y X, Hou C L, Zhang C M, Yu W J, Xue Z Y, Wei X, Peng W, Di Z F, Zhang M, Zhang B 2017 J. Alloys Compd. 693 527Google Scholar

    [24]

    Takeuchi S, Sakai A, Nakatsuka O, Ogawa M, Zaima S 2008 Thin Solid Films 517 159Google Scholar

    [25]

    胡成 2013 硕士学位论文 (上海: 复旦大学)

    Hu C 2013 M. S. Thesis (Shanghai: Fudan University) (in Chinese)

    [26]

    周祥标, 许鹏, 付超超, 吴东平 2016 半导体技术 41 456Google Scholar

    Zhou X B, Xu P, Fu C C, Wu D P 2016 Semicond. Technol. 41 456Google Scholar

  • [1] Huang Shi-Hao, Li Jia-Peng, Li Hai-Lin, Lu Xu-Xing, Sun Qin-Qin, Xie Deng. Electron transmission dynamics of Ge1–xSnx alloys driven by inter-valley electrons transferring effect. Acta Physica Sinica, 2025, 74(3): 036101. doi: 10.7498/aps.74.20240980
    [2] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [3] He Tian-Li, Wei Hong-Yuan, Li Cheng-Ming, Li Geng-Wei. Comparative study of n-GaN transition group refractory metal Ohmic electrode. Acta Physica Sinica, 2019, 68(20): 206101. doi: 10.7498/aps.68.20190717
    [4] Zhao Qi-Chen, Hao Rui-Ting, Liu Si-Jia, Liu Xin-Xing, Chang Fa-Ran, Yang Min, Lu Yi-Lei, Wang Shu-Rong. Fabrication of Cu2ZnSnS4 thin films by sputtering quaternary compound target and the research of in-situ annealing. Acta Physica Sinica, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [5] Ping Yun-Xia, Wang Man-Le, Meng Xiao-Ran, Hou Chun-Lei, Yu Wen-Jie, Xue Zhong-Ying, Wei Xing, Zhang Miao, Di Zeng-Feng, Zhang Bo. Mechanism of NiSi0.7Ge0.3 epitaxial growth by Al interlayer mediation at 700 ℃. Acta Physica Sinica, 2016, 65(3): 036801. doi: 10.7498/aps.65.036801
    [6] Huang Li-Jing, Ren Nai-Fei, Li Bao-Jia, Zhou Ming. Effects of laser irradiation on the photoelectric properties of thermal-annealed metal/fluorine-doped tin oxide transparent conductive films. Acta Physica Sinica, 2015, 64(3): 034211. doi: 10.7498/aps.64.034211
    [7] Lu Wu-Yue, Zhang Yong-Ping, Chen Zhi-Zhan, Cheng Yue, Tan Jia-Hui, Shi Wang-Zhou. Effect of different annealing treatment methods on the Ni/SiC contact interface properties. Acta Physica Sinica, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [8] Su Shao-Jian, Zhang Dong-Liang, Zhang Guang-Ze, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming. High-quality Ge1-xSnx alloys grown on Ge(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [9] Li Xiao-Jing, Zhao De-Gang, He Xiao-Guang, Wu Liang-Liang, Li Liang, Yang Jing, Le Ling-Cong, Chen Ping, Liu Zong-Shun, Jiang De-Sheng. Influence of different annealing temperature and atmosphere on the Ni/Au Ohmic contact to p-GaN. Acta Physica Sinica, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [10] Zhang Lei, Ye Hui, Huangfu You-Rui, Liu Xu. Investigation of Ge quantum dots formation on SiO2 substratethrough annealing process. Acta Physica Sinica, 2011, 60(7): 076103. doi: 10.7498/aps.60.076103
    [11] Huang Yue, Gou Hong-Yan, Liao Zhong-Wei, Sun Qing-Qing, Zhang Wei, Ding Shi-Jin. Investigation on memory effect of MOS capacitors with Al2O3/Pt-nanocrystals/HfO2. Acta Physica Sinica, 2010, 59(3): 2057-2063. doi: 10.7498/aps.59.2057
    [12] Shan Xiao-Nan, Huang Ru, Li Yan, Cai Yi-Mao. Thermal stability of electrical characteristics of nickel silicide metal gate. Acta Physica Sinica, 2007, 56(8): 4943-4949. doi: 10.7498/aps.56.4943
    [13] Huang Wei, Zhang Li-Chun, Gao Yu-Zhi, Jin Hai-Yan. The improvement of thermal stability in NiSi film by adding Mo. Acta Physica Sinica, 2005, 54(5): 2252-2255. doi: 10.7498/aps.54.2252
    [14] Wang Yong-Qian, Chen Wei-De, Chen Chang-Yong, Diao Hong-Wei, Zhang Shi-Ben, Xu Yan-Yue, Kong Guang-Lin, Liao Xian-Bo. . Acta Physica Sinica, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [15] LI YIN-FENG, CHEN DU-XING, SHEN BBAO-GEN, M.VAZQUEZ, A.HERNANDO. DISPLACED HYSTERESIS LOOPS IN ANNEALED Fe-BASED AMORPHOUS ALLOYS. Acta Physica Sinica, 2001, 50(5): 953-957. doi: 10.7498/aps.50.953
    [16] XU ZUN-TU, XU JUN-YING, YANG GUO-WEN, ZHANG JING-MING, YIN TAO, ZHAO HONG-DONG, LIAN PENG, SHEN GUANG-DI. DIFFUSION OF ALUMINUM IN DOUBLE QUANTUM WELL STRUCTURE UPON RAPID THERMAL ANNEALING. Acta Physica Sinica, 1998, 47(6): 945-951. doi: 10.7498/aps.47.945
    [17] LIU JIA-LU, ZHANG TING-QING, FENG JIAN-HUA, ZHOU GUAN-SHAN, YING MING-JIONG. STUDY OF B+-IMPLANTED HgCdTe UNDER RAPID THERMAL ANNEALING. Acta Physica Sinica, 1998, 47(1): 47-52. doi: 10.7498/aps.47.47
    [18] YUAN JIAN, LU FANG, SUN HENG-HUI, WEI XING, YANG MIN, HUANG DA-MING, XU HONG-LAI, SHEN HONG-LIE, ZOU SHI-CHANG. STUDY OF ELECTRICAL PROPERTIES OF HEAVILY BORON DOPED Si EPILAYER AFTER RAPID THERMAL ANNEALING. Acta Physica Sinica, 1994, 43(7): 1137-1143. doi: 10.7498/aps.43.1137
    [19] CHEN CUN-LI, LI JIAN-NIAN, HUA WEN-YU. INVESTIGATION OF MECHANISM FOR SOLID PHASE REACTION BY RAPID THERMAL ANNEALING IN Ti-Si SYSTEM. Acta Physica Sinica, 1990, 39(7): 127-133. doi: 10.7498/aps.39.127
    [20] CHENG C. S., CHANG W. Y., LIU C. H., LIU C. C.. A PHASE DIAGRAM OF THE ALLOYS OF THE TERNARY SYSTEM OF COPPER-GERMANIUM-TIN. Acta Physica Sinica, 1966, 22(4): 423-428. doi: 10.7498/aps.22.423
Metrics
  • Abstract views:  6695
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2020
  • Accepted Date:  07 January 2021
  • Available Online:  26 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回