Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical phase transition and selective energy exchange in dual-cavity optochanical systems

Liu Ni Zhang Xiao-Fang Liang Jiu-Qing

Citation:

Dynamical phase transition and selective energy exchange in dual-cavity optochanical systems

Liu Ni, Zhang Xiao-Fang, Liang Jiu-Qing
PDF
HTML
Get Citation
  • In recent years, the cavity quantum photomechanics has been developed rapidly, and played a very important role in quantum information processing, quantum basic principle verification, and high-precision measurement. The kinds of quantum mechanical behaviors have also been explored and discovered in the study of cavity mechanics. By placing the Kerr medium in the system, quantum nonlinearity is introduced into the optomechanical system. Quantum phase transition is a relatively important part in the research of condensed matter physics. Since Dicke quantum phase transition was successfully observed experimentally, the problem of quantum phase transition in the optical cavity has attracted more attention. The spin-coherent-state variation method and the Holstein-Primakoff transformation are used to theoretically calculate the ground state energy functional, and the rich structure of the macroscopic multi-particle quantum state is given by adjusting the parameters. The quantum phase transition evolution equation describes the relationship between each phase and the time of generating a new phase when reaching the critical phase transition point. At the same time, the mode squeezing of multi-mode hybrid optomechanical system has also became one of the basic problems of quantum mechanical behavior in cavity quantum dynamics. In this article, we explore the quantum dynamics of optomechanical devices including single-cavity and dual-cavities. We find that the system will undergo a dynamic phase transition, which is similar to the Dicke-Hepp-Lieb superradiant type phase transition, and a new dynamic critical point appears in the coupling between the momentum quadratures of the two optical fields. By manipulating the coupling parameters, we can achieve selective energy exchange between any two modes and the critical coupling point corresponds to selective energy exchange. Mode squeezing, which is easy to measure by applying the quantum uncertainty relationship, is also revealed and consistent with selective energy exchange. The study of coordinate and momentum variances gives us the revelation that the compressed orthogonal variables are the most suitable for measurement because of the small quantum noise. In fact, phononic modes can store energy in a longer duration, while photonic modes can transfer energy in a long distance. This phenomenon makes the hybrid optomechanical cavities useful in the next-generation quantum communications and quantum information processing units.
      Corresponding author: Liu Ni, 317446484@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772177, 12047571) and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (STIP), China (Grant No. 2019L0069)
    [1]

    Marquardt F, Girvin S M 2009 Physics 2 40Google Scholar

    [2]

    Brennecke F, Ritter S, Donner T, Esslingert T 2008 Science 322 235Google Scholar

    [3]

    Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 478 89Google Scholar

    [4]

    Verhagen E, Deléglise S, Weis S, Schliesser A, Kippenberg T J 2012 Nature 482 63Google Scholar

    [5]

    Kumar T, Bhattacherjee A, ManMohan 2010 Physical Review A 81 013835Google Scholar

    [6]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 900

    [7]

    Antonio D, Czaplewski D A, Guest J R, López D 2015 Phys. Rev. Lett. 114 034103Google Scholar

    [8]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin P, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603Google Scholar

    [9]

    Chang D E, Safavi-Naeini A H, Hafezi M, Painter O 2011 New Journal of Physics 13 023003Google Scholar

    [10]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [11]

    刘妮, 王建芬, 梁九卿 2020 物理学报 69 064202Google Scholar

    Liu N, Wang J F, Liang J Q 2020 Acta Phys. Sin. 69 064202Google Scholar

    [12]

    Zhao X Q, Liu N, Bai X M, Liang J Q 2017 Ann. Phys 378 448Google Scholar

    [13]

    Xuereb A, Barbieri M, Paternostro M 2012 Physical Review A 86 013809Google Scholar

    [14]

    Xu K, Sun Z, Liu W, Zhang Y, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H, Wang H 2020 Science Advances 6 eaba4935Google Scholar

    [15]

    Yan B, Chernyak V Y, Zurek W H, Sinitsyn N A 2021 Phys. Rev. Lett. 126 070602Google Scholar

    [16]

    Lerose A, Marino J, Zunkovic B, Gambassi A, Silva A 2018 Phys. Rev. Lett. 120 130603Google Scholar

    [17]

    Nicola S, Michailidis A, Serbyn M 2021 Phys. Rev. Lett 126 040602Google Scholar

    [18]

    Korolkova N, Perina J 1997 Optics Communications 136 135Google Scholar

    [19]

    Korolkova N, Perina J 1997 Journal of Modern Optics 44 1525

    [20]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar

  • 图 1  光机械腔系统, 由频率为${\omega _{\rm{0}}}$的光学模(用运算符a表示), 频率为${\omega _{\rm{m}}}$的机械模(用运算符b表示)和频率为${\omega _{\rm{L}}}$(振幅为μ)的驱动场组成, 光腔与机械振子之间的耦合系数为g

    Figure 1.  An optomechanical cavity consisting of the optical mode (the frequency ${\omega _{\rm{0}}}$) denoted by a, the mechanical mode b (the frequency ${\omega _{\rm{m}}}$) and an pair of optical drivings (the frequency ${\omega _{\rm{L}}}$ and the amplitude μ) with the coupling strength g.

    图 2  在给定条件$\omega = {\omega _{\rm{m}}}$下, 激发能量${\varepsilon _i}/{\omega _{\rm{m}}}$随耦合参数$\eta /{\omega _{\rm{m}}}$的变化

    Figure 2.  Variation of the excitation energy ${\varepsilon _i}/{\omega _{\rm{m}}}$ with respect to the coupling parameter $\eta /{\omega _{\rm{m}}}$ in the case of $\omega = {\omega _{\rm{m}}}$.

    图 3  双光腔光机械系统, 由频率分别为${\omega _{\rm{1}}}$${\omega _{\rm{2}}}$的光学模(用运算符${a_1}$${a_2}$表示), 频率为${\omega _{\rm{m}}}$的机械模(用运算符b表示)和频率为${\omega _{\rm{L}}}$(振幅为${\mu _i}$)的两束对打的驱动场组成, 两模光腔与机械振子之间的耦合系数分别为${g_1}$${g_2}$

    Figure 3.  A double-optical cavtiy optomechanical system consisting of two optical mode (the frequencies ${\omega _{\rm{1}}}$ and ${\omega _{\rm{2}}}$) denoted by ${a_1}$ and ${a_2}$, the mechanical mode b (the frequency ${\omega _{\rm{m}}}$) and an pair of optical drivings (the frequency ${\omega _{\rm{L}}}$ and the amplitude ${\mu _i}$) with the coupling strength ${g_1}$ and ${g_2}$.

    图 4  激发能量${\varepsilon _i}/{\omega _{\rm{m}}}$随耦合参数 (a)${G_1}/{\omega _{\rm{m}}}$和(b)${G_2}/{\omega _{\rm{m}}}$的变化, 给定的参数是${\varOmega _1} = {\varOmega _2} = {\omega _{\rm{m}}}$

    Figure 4.  Variation of the excitation energy ${\varepsilon _i}/{\omega _{\rm{m}}}$ with respect to the coupling parameters (a) ${G_1}/{\omega _{\rm{m}}}$ and (b)${G_2}/{\omega _{\rm{m}}}$. The given parameters are ${\varOmega _1} = {\varOmega _2} = {\omega _{\rm{m}}}$.

    图 5  双光腔光机械系统, 由频率分别为${\omega _{\rm{1}}}$${\omega _{\rm{2}}}$的光学模(用运算符${a_1}$${a_2}$表示)和频率为${\omega _{\rm{m}}}$的机械模(用运算符b表示)组成, 两模光腔与机械振子之间的耦合系数分别为${g_1}$${g_2}$, 两腔间与机械振子的耦合系数为J

    Figure 5.  A double-optical cavtiy optomechanical system consisting of two optical mode (the frequencies ${\omega _{\rm{1}}}$ and ${\omega _{\rm{2}}}$) denoted by ${a_1}$ and ${a_2}$ and the mechanical mode b with the coupling strength ${g_1}$, ${g_2}$ andJ.

    图 6  激发能量${\varepsilon _i}/{\omega _{\rm{m}}}$随耦合参数 (a)$\delta /{\omega _{\rm{m}}}$, (b)${J_1}/{\omega _{\rm{m}}}$和(c)${J_2}/{\omega _{\rm{m}}}$的变化, 给定的参数是${\varOmega _1} = {\varOmega _2} = {\omega _{\rm{m}}}$

    Figure 6.  Variation of the excitation energy ${\varepsilon _i}/{\omega _{\rm{m}}}$ with respect to the coupling parameters (a)$\delta /{\omega _{\rm{m}}}$, (b) ${J_1}/{\omega _{\rm{m}}}$ and (c)${J_2}/{\omega _{\rm{m}}}$. The given parameters are ${\varOmega _1} = {\varOmega _2} = {\omega _{\rm{m}}}$.

    图 7  $ \omega = {\omega _{\rm{m}}}$下, 压缩方差$ {\left( {\Delta \alpha } \right)^2}{\omega _{\rm{m}}}$$ {\left( {\Delta {p_{\alpha} }} \right)^2}/{\omega _{\rm{m}}}$随耦合参数$ \eta /{\omega _{\rm{m}}}$的变化

    Figure 7.  Plot of the squeezing variances ${\left( {\Delta \alpha } \right)^2}{\omega _{\rm{m}}}$(solid line) and ${\left( {\Delta {p_{\alpha} }} \right)^2}/{\omega _{\rm{m}}}$(dashed line) as a function of $\eta /{\omega _{\rm{m}}}$ in the case of $\omega = {\omega _{\rm{m}}}$.

    图 8  ${\left( {\Delta \alpha } \right)^2}{\omega _{\rm{m}}}$下, 压缩方差${\left( {\Delta \alpha } \right)^2}{\omega _{\rm{m}}}$${\left( {\Delta {p_{\alpha} }} \right)^2}/{\omega _{\rm{m}}}$随耦合参数(a)${G_1}/{\omega _{\rm{m}}}$和(b)${G_2}/{\omega _{\rm{m}}}$的变化

    Figure 8.  Plot of the squeezing variances ${\left( {\Delta \alpha } \right)^2}{\omega _{\rm{m}}}$(solid line) and ${\left( {\Delta {p_{\alpha} }} \right)^2}/{\omega _{\rm{m}}}$(dashed line) as a function of (a) ${G_1}/{\omega _{\rm{m}}}$ and (b) ${G_2}/{\omega _{\rm{m}}}$.

    图 9  $\omega = {\omega _{\rm{m}}}$下, 压缩方差${\left( {\Delta \alpha } \right)^2}{\omega _{\rm{m}}}$(实线)和${\left( {\Delta {p_{\alpha} }} \right)^2}/{\omega _{\rm{m}}}$(虚线)随耦合参数 (a)$\delta /{\omega _{\rm{m}}}$, (b)${J_1}/{\omega _{\rm{m}}}$和(c)${\left( {\Delta \alpha } \right)^2}{\omega _{\rm{m}}}$的变化

    Figure 9.  Plot of the squeezing variances ${\left( {\Delta \alpha } \right)^2}{\omega _{\rm{m}}}$(solid line) and ${\left( {\Delta {p_{\alpha} }} \right)^2}/{\omega _{\rm{m}}}$(dashed line) as a function of (a)$\delta /{\omega _{\rm{m}}}$, (b)${J_1}/{\omega _{\rm{m}}}$, (c)${J_2}/{\omega _{\rm{m}}}$ in the case of $\omega = {\omega _{\rm{m}}}$.

  • [1]

    Marquardt F, Girvin S M 2009 Physics 2 40Google Scholar

    [2]

    Brennecke F, Ritter S, Donner T, Esslingert T 2008 Science 322 235Google Scholar

    [3]

    Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 478 89Google Scholar

    [4]

    Verhagen E, Deléglise S, Weis S, Schliesser A, Kippenberg T J 2012 Nature 482 63Google Scholar

    [5]

    Kumar T, Bhattacherjee A, ManMohan 2010 Physical Review A 81 013835Google Scholar

    [6]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 900

    [7]

    Antonio D, Czaplewski D A, Guest J R, López D 2015 Phys. Rev. Lett. 114 034103Google Scholar

    [8]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin P, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603Google Scholar

    [9]

    Chang D E, Safavi-Naeini A H, Hafezi M, Painter O 2011 New Journal of Physics 13 023003Google Scholar

    [10]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [11]

    刘妮, 王建芬, 梁九卿 2020 物理学报 69 064202Google Scholar

    Liu N, Wang J F, Liang J Q 2020 Acta Phys. Sin. 69 064202Google Scholar

    [12]

    Zhao X Q, Liu N, Bai X M, Liang J Q 2017 Ann. Phys 378 448Google Scholar

    [13]

    Xuereb A, Barbieri M, Paternostro M 2012 Physical Review A 86 013809Google Scholar

    [14]

    Xu K, Sun Z, Liu W, Zhang Y, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H, Wang H 2020 Science Advances 6 eaba4935Google Scholar

    [15]

    Yan B, Chernyak V Y, Zurek W H, Sinitsyn N A 2021 Phys. Rev. Lett. 126 070602Google Scholar

    [16]

    Lerose A, Marino J, Zunkovic B, Gambassi A, Silva A 2018 Phys. Rev. Lett. 120 130603Google Scholar

    [17]

    Nicola S, Michailidis A, Serbyn M 2021 Phys. Rev. Lett 126 040602Google Scholar

    [18]

    Korolkova N, Perina J 1997 Optics Communications 136 135Google Scholar

    [19]

    Korolkova N, Perina J 1997 Journal of Modern Optics 44 1525

    [20]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar

  • [1] He Su-Juan, Zou Wei. Solvable collective dynamics of globally coupled Stuart-Landau limit-cycle systems under mean-field feedback. Acta Physica Sinica, 2023, 72(20): 200502. doi: 10.7498/aps.72.20230842
    [2] Cai Zong-Kai, Xu Can, Zheng Zhi-Gang. Collective dynamics of higher-order coupled phase oscillators. Acta Physica Sinica, 2021, 70(22): 220501. doi: 10.7498/aps.70.20211206
    [3] Wang Tuo, Chen Hong-Yi, Qiu Peng-Fei, Shi Xun, Chen Li-Dong. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity. Acta Physica Sinica, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [4] Liu Ni, Huang Shan, Li Jun-Qi, Liang Jiu-Qing. Phase transition and thermodynamic properties of N two-level atoms in an optomechanical cavity at finite temperature. Acta Physica Sinica, 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [5] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [6] Jiang Zhao-Xiu, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Effects of poling state and direction on domain switching and phase transformation of Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [7] Xu Ting-Ting, Li Yi, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Liu Zhi-Min, Zhang Jiao, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition. Acta Physica Sinica, 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [8] Jia Shu-Fang, Liang Jiu-Qing. Finite-temperature properties of N two-level atoms in a single-mode optic cavity and phase transition. Acta Physica Sinica, 2015, 64(13): 130505. doi: 10.7498/aps.64.130505
    [9] Jiang Zhao-Xiu, Xin Ming-Zhi, Shen Hai-Ting, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Mechanical properties and phase transformation of porous unpoled Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [10] Niu Yu-Quan, Zheng Bin, Cui Chun-Hong, Wei Wei, Zhang Cai-Xia, Meng Qing-Tian. The adhesion of two cylindrical colloids to a tubular membrane. Acta Physica Sinica, 2014, 63(3): 038701. doi: 10.7498/aps.63.038701
    [11] Chen Lian-Ping, Chen Yi-Bin, Cao Jun. Mechanism of phase transition induced by high temperatures and its influences on the luminescence of Ca0.64WO4:Eu0.24 ceramics. Acta Physica Sinica, 2014, 63(21): 218102. doi: 10.7498/aps.63.218102
    [12] Liu Ben-Qiong, Xie Lei, Duan Xiao-Xi, Sun Guang-Ai, Chen Bo, Song Jian-Ming, Liu Yao-Guang, Wang Xiao-Lin. First principles studies of phase transition and mechanical properties of uranium. Acta Physica Sinica, 2013, 62(17): 176104. doi: 10.7498/aps.62.176104
    [13] Wang Can-Jun. Time-delay effect of a stochastic genotype selection model. Acta Physica Sinica, 2012, 61(5): 050501. doi: 10.7498/aps.61.050501
    [14] Jiang Dong-Dong, Gu Yan, Feng Yu-Jun, Du Jin-Mei. Phase transformation and dielectric properties of lead zirconate stannate titanate ferroelectric ceramic under hydraulic compression. Acta Physica Sinica, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [15] Chen Bin, Peng Xiang-He, Fan Jing-Hong, Sun Shi-Tao, Luo Ji. A thermo-elastoplastic constitutive equation including phase transformation and its applications. Acta Physica Sinica, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [16] Shao Jian-Li, Qin Cheng-Sen, Wang Pei. Atomistic simulation of mechanical properties of martensitic transformation under dynamic compression. Acta Physica Sinica, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [17] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] Wang Hui, Liu Jin-Fang, He Yan, Chen Wei, Wang Ying, Gerward L., Jiang Jian-Zhong. Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge. Acta Physica Sinica, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [19] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] Liu Hong, Wang Hui. Phase transition in biaxial nematic liquid crystal. Acta Physica Sinica, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
Metrics
  • Abstract views:  4846
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  25 January 2021
  • Accepted Date:  02 March 2021
  • Available Online:  07 June 2021
  • Published Online:  20 July 2021

/

返回文章
返回