Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Construction strategy and performance simulation of quantum satellite wide area network based on cobweb structure

Nie Min Han Kai-Jie Yang Guang Zhang Mei-Ling Sun Ai-Jing Pei Chang-Xing

Citation:

Construction strategy and performance simulation of quantum satellite wide area network based on cobweb structure

Nie Min, Han Kai-Jie, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing
PDF
HTML
Get Citation
  • Quantum satellite communication is a research hotspot and frontier in the field of communication. It has the advantages of ideal information security and wide coverage, which is of great significance in constructing a global quantum satellite wide area network. However, problems such as network reliability, security and routing relay still need to be improved when transmitting information over long distances. In this paper, the spider web is used as a unique natural communication topology to transform the natural spider web into an artificial spider web topology. The quantum information transmission adopts N-order quantum teleportation routing scheme, and the transmission delay is basically unchanged. On this basis, the spider web topology quantum wide area network transmission model is constructed. The bit error rate, throughput rate and security key generation rate of the network model are simulated and analyzed. Taking 9-node ring network and 9-node cobweb for example, the quantitative analysis and qualitative analysis are both conducted in this paper. The results show that the cobweb topology has higher reliability. When the average power spectral density of the noise is given and there is no relay, the bit error rate increases with the transmission distance increasing, so the introduction of relay should be considered. When the transmission distance and noise power spectral density are constant, the bit error rate decreases with the number of relay nodes increasing, so the appropriate routing process should be selected in the spider web topology. With the increase of the probability of transmitting entangled photon pairs, the throughput rate gradually increases. With the increase of transmission delay in the network, the throughput rate Q gradually decreases. However, the transmission delay is basically unchanged in this routing scheme, and the transmission delay of cobweb structure is very small. Therefore, the throughput rate of the topology quantum WAN of cobweb network based on N-order quantum teleportation proposed in this paper will not significantly decrease. When the transmission distance of quantum information increases, the network key generation rate decreases gradually. With the increase of the number of network relay nodes, the key generation rate increases gradually. Thus, it can be seen that using cobweb topology and N-order quantum teleportation routing scheme to construct a quantum satellite WAN has good advantages.
      Corresponding author: Han Kai-Jie, 3191696125@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971348, 61201194), the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013), and Natural Science Basic Research Program of Shaanxi, China (Grant No. 2021JM-464)
    [1]

    彭承志, 潘建伟 2016 中国科学院院刊 31 1096Google Scholar

    Peng Z C, Pan J W 2016 Bull. Chin. Acad. Sci. 31 1096Google Scholar

    [2]

    朱武 2016 硕士学位论文 (北京: 北京邮电大学)

    Zhu W 2016 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [3]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [4]

    Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Maimaiti A, Li C L, Zhang W J, Sun Q C, Liu W Y, Xiao J, Liao S K, Ren J G, Li H, You L X, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z, Pan J W 2020 Phys. Rev. Lett. 125 260503Google Scholar

    [5]

    Yin J, Li Y H, Liao S K, Meng Y, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Artur K. Ekert, Pan J W 2020 Nature 582 501

    [6]

    张志会, 马连轶 2018 中国科技论坛 34 1Google Scholar

    Zhang Z H, Ma L Y 2018 Forum Sci. Tech. Chin. 34 1Google Scholar

    [7]

    Liao S K, Cai W Q 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [8]

    周小清, 邬云文, 赵晗 2011 物理学报 60 040304Google Scholar

    Zhou X Q, Wu Y W, Zhao H 2011 Acta Phys. Sin. 60 040304Google Scholar

    [9]

    连涛, 聂敏 2012 光子学报 41 1251Google Scholar

    Lian T, Nie M 2012 Acta Photo. Sin. 41 1251Google Scholar

    [10]

    刘晓慧, 聂敏, 裴昌幸 2013 物理学报 62 200304Google Scholar

    Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304Google Scholar

    [11]

    聂敏, 郭建伟, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 激光与光电子学进展 57 1

    Nie M, Guo J W, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2021 Laser & Optoelect. Prog. 57 1

    [12]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F H, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214

    [13]

    卓春晖, 蒋平, 王昌河, 郭聪 2006 四川动物 26 898Google Scholar

    Zhuo C H, Jiang P, Wang C H, Guo C 2006 Sichuan J. Zoo 26 898Google Scholar

    [14]

    卓春晖 2007 硕士学位论文 (成都: 四川大学)

    Zhuo C H 2007 M. S. Thesis (Chengdu: Sichuan University) (in Chinese)

    [15]

    Liu X S, Zhang L, Lin J W 2010 First International Conference on Pervasive Computing, Signal Processing and Applications Harbin, China, September 17–19, 2010 p224

    [16]

    李彬 2013 硕士学位论文 (西安: 西安电子科技大学)

    Li B 2013 M.S. Thesis (Xi’an: Xidian University) (in Chinese)

    [17]

    赵振峰 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhao Z F 2013 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [18]

    刘晓胜, 张良, 周岩, 林建伟, 徐殿国 2012 中国电机工程学报 32 142Google Scholar

    Liu X S, Zhang L, Zhou Y, Lin J W, Xu D G 2012 Proc. CSEE 32 142Google Scholar

    [19]

    Bouwmeester D, Pan J W, Mattle K, Manfred E, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [20]

    Chen P, Deng F G, Long G L 2006 Chin. Phys. 15 2228Google Scholar

    [21]

    朱秋立, 石磊, 魏家华, 朱宇, 杨汝, 赵顾颢 2018 激光与光电子学进展 55 41

    Zhu Q L, Shi L, Wei J H, Zhu Y, Yang R, Zhao G H 2018 Laser & Optoelext. Prog. 55 41

    [22]

    朱畅华, 裴昌幸, 马怀新, 于晓飞 2006 西安电子科技大学学报 6 839

    Zhu C H, Pei C X, Ma H X, Yu X F 2006 J. Xidian. Univ. 6 839

    [23]

    李铁飞, 杨峰, 李伟, 崔树民 2015 电讯技术 55 959Google Scholar

    Li T F, Yang F, Li W, Cui S M 2015 Tele. Engin. 55 959Google Scholar

  • 图 1  自然界圆形蜘蛛网

    Figure 1.  Round spider web in nature.

    图 2  蛛网结构图

    Figure 2.  Cobweb structure diagram.

    图 3  人工蛛网演进过程 (a) 星型; (b) 环型; (c) 蛛网

    Figure 3.  Evolution of artificial cobweb: (a) Star; (b) ring; (c) spiderweb.

    图 4  环型与蛛网拓扑的网络可靠性分析

    Figure 4.  Network reliability analysis of ring and cobweb topologies.

    图 5  基于N阶量子隐形传态的量子路由方案

    Figure 5.  Quantum routing scheme based on N-order quantum teleportation.

    图 6  二阶量子隐形传态逻辑线路图

    Figure 6.  Second-order quantum teleportation logic circuit diagram.

    图 7  三阶量子隐形传态逻辑线路图

    Figure 7.  Third-order quantum teleportation logic circuit diagram.

    图 8  三种路由方案量子态传输时间与中继节点个数的关系

    Figure 8.  Relationship between the quantum state transfer time and the number of relay nodes.

    图 9  六边形逻辑蛛网拓扑模型

    Figure 9.  Hexagonal logic spider web topology model.

    图 10  基于蛛网拓扑的量子卫星广域网

    Figure 10.  Quantum satellite wide area network based on cobweb topology.

    图 11  误码率与传输距离的关系

    Figure 11.  Relationship between BER and transmission distance.

    图 12  误码率与中继节点个数的关系

    Figure 12.  Relationship between bit error rate and the number of relay nodes.

    图 13  吞吐率Q${P_1}$以及中继节点个数n的关系

    Figure 13.  Relationship between throughput rate Q and P1 and the number of relay nodes n.

    图 14  吞吐率与传输时延的关系

    Figure 14.  Relationship between throughput Q and transmission delay.

    图 15  密钥生成率与传输距离的关系

    Figure 15.  Relationship between key generation rate and transmission distance.

    图 16  密钥生成率与中继节点个数的关系

    Figure 16.  Relationship between key generation rate and number of relay nodes.

    表 1  已知测量结果后的量子门操作

    Table 1.  Quantum gate operation after known measurement results.

    $ {A}_{1} $异或$ {D}_{1} $$ {A}_{2} $异或$ {D}_{2} $量子门操作
    00
    01X
    10Z
    11X门和Z
    DownLoad: CSV

    表 2  已知测量结果后的量子门操作

    Table 2.  Quantum gate operation after known measurement results.

    $ {A}_{1} $异或$ {D}_{1} $异或$ {G}_{1} $$ {A}_{2} $异或$ {D}_{2} $异或$ {G}_{2} $量子门操作
    00
    01X
    10Z
    11X门和Z
    DownLoad: CSV

    表 3  量子信息传输误码率各参量含义

    Table 3.  Meaning of parameters of bit error rate in quantum information transmission.

    Lnλ$ {f}_{\rm{T}} $$ {f}_{\rm{R}} $$ {F}_{\rm{T}} $$ {F}_{\rm{R}} $$ {L}_{\rm{P}} $
    星地间传输距离中继节点个数光子波长发送端望远镜孔径接收端望远镜孔径发端望远镜传输因子收端望远镜传输因子链路损耗
    DownLoad: CSV
  • [1]

    彭承志, 潘建伟 2016 中国科学院院刊 31 1096Google Scholar

    Peng Z C, Pan J W 2016 Bull. Chin. Acad. Sci. 31 1096Google Scholar

    [2]

    朱武 2016 硕士学位论文 (北京: 北京邮电大学)

    Zhu W 2016 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [3]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [4]

    Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Maimaiti A, Li C L, Zhang W J, Sun Q C, Liu W Y, Xiao J, Liao S K, Ren J G, Li H, You L X, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z, Pan J W 2020 Phys. Rev. Lett. 125 260503Google Scholar

    [5]

    Yin J, Li Y H, Liao S K, Meng Y, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Artur K. Ekert, Pan J W 2020 Nature 582 501

    [6]

    张志会, 马连轶 2018 中国科技论坛 34 1Google Scholar

    Zhang Z H, Ma L Y 2018 Forum Sci. Tech. Chin. 34 1Google Scholar

    [7]

    Liao S K, Cai W Q 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [8]

    周小清, 邬云文, 赵晗 2011 物理学报 60 040304Google Scholar

    Zhou X Q, Wu Y W, Zhao H 2011 Acta Phys. Sin. 60 040304Google Scholar

    [9]

    连涛, 聂敏 2012 光子学报 41 1251Google Scholar

    Lian T, Nie M 2012 Acta Photo. Sin. 41 1251Google Scholar

    [10]

    刘晓慧, 聂敏, 裴昌幸 2013 物理学报 62 200304Google Scholar

    Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304Google Scholar

    [11]

    聂敏, 郭建伟, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 激光与光电子学进展 57 1

    Nie M, Guo J W, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2021 Laser & Optoelect. Prog. 57 1

    [12]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F H, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214

    [13]

    卓春晖, 蒋平, 王昌河, 郭聪 2006 四川动物 26 898Google Scholar

    Zhuo C H, Jiang P, Wang C H, Guo C 2006 Sichuan J. Zoo 26 898Google Scholar

    [14]

    卓春晖 2007 硕士学位论文 (成都: 四川大学)

    Zhuo C H 2007 M. S. Thesis (Chengdu: Sichuan University) (in Chinese)

    [15]

    Liu X S, Zhang L, Lin J W 2010 First International Conference on Pervasive Computing, Signal Processing and Applications Harbin, China, September 17–19, 2010 p224

    [16]

    李彬 2013 硕士学位论文 (西安: 西安电子科技大学)

    Li B 2013 M.S. Thesis (Xi’an: Xidian University) (in Chinese)

    [17]

    赵振峰 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhao Z F 2013 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [18]

    刘晓胜, 张良, 周岩, 林建伟, 徐殿国 2012 中国电机工程学报 32 142Google Scholar

    Liu X S, Zhang L, Zhou Y, Lin J W, Xu D G 2012 Proc. CSEE 32 142Google Scholar

    [19]

    Bouwmeester D, Pan J W, Mattle K, Manfred E, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [20]

    Chen P, Deng F G, Long G L 2006 Chin. Phys. 15 2228Google Scholar

    [21]

    朱秋立, 石磊, 魏家华, 朱宇, 杨汝, 赵顾颢 2018 激光与光电子学进展 55 41

    Zhu Q L, Shi L, Wei J H, Zhu Y, Yang R, Zhao G H 2018 Laser & Optoelext. Prog. 55 41

    [22]

    朱畅华, 裴昌幸, 马怀新, 于晓飞 2006 西安电子科技大学学报 6 839

    Zhu C H, Pei C X, Ma H X, Yu X F 2006 J. Xidian. Univ. 6 839

    [23]

    李铁飞, 杨峰, 李伟, 崔树民 2015 电讯技术 55 959Google Scholar

    Li T F, Yang F, Li W, Cui S M 2015 Tele. Engin. 55 959Google Scholar

  • [1] Wen Zhen-Nan, Yi You-Gen, Xu Xiao-Wen, Guo Ying. Continuous variable quantum teleportation with noiseless linear amplifier. Acta Physica Sinica, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [2] Wang Ming-Yu, Wang Xin-De, Ruan Dong, Long Gui-Lu. Quantum direct portation. Acta Physica Sinica, 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [3] Wu Ying, Li Jin-Fang, Liu Jin-Ming. Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements. Acta Physica Sinica, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [4] Yang Lu, Ma Hong-Yang, Zheng Chao, Ding Xiao-Lan, Gao Jian-Cun, Long Gui-Lu. Quantum communication scheme based on quantum teleportation. Acta Physica Sinica, 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [5] Jia Fang, Liu Cun-Jin, Hu Yin-Quan, Fan Hong-Yi. New formula for calculating the fidelity of teleportation and its applications. Acta Physica Sinica, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [6] Yang Guang, Lian Bao-Wang, Nie Min. Fidelity recovery scheme for quantum teleportation in amplitude damping channel. Acta Physica Sinica, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [7] Liu Shi-You, Zheng Kai-Min, Jia Fang, Hu Li-Yun, Xie Fang-Sen. Entanglement of one- and two-mode combination squeezed thermal states and its application in quantum teleportation. Acta Physica Sinica, 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [8] Zhang Pei, Zhou Xiao-Qing, Li Zhi-Wei. Identification scheme based on quantum teleportation for wireless communication networks. Acta Physica Sinica, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [9] Liu Xiao-Hui, Nie Min, Pei Chang-Xing. Quantum wireless wide-area networks and routing strategy. Acta Physica Sinica, 2013, 62(20): 200304. doi: 10.7498/aps.62.200304
    [10] Yang Xiao-Lin, Zhou Xiao-Qing, Zhao Han, Wang Peng-Peng. Data link layer of selective repeat protocol based on quantum teleportation. Acta Physica Sinica, 2012, 61(2): 020303. doi: 10.7498/aps.61.020303
    [11] Qiao Pan-Pan, Ahmad Abliz, Cai Jiang-Tao, Lu Jun-Zhe, Maimaitiyiming Tusun, Ribigu Maimaitiming. Quantum teleportation using superconducting charge qubits in thermal equilibrium. Acta Physica Sinica, 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [12] Yu Xu-Tao, Xu Jin, Zhang Zai-Chen. Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation. Acta Physica Sinica, 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [13] Zhou Xiao-Qing, Wu Yun-Wen. Broadcast and multicast in quantum teleportation internet. Acta Physica Sinica, 2012, 61(17): 170303. doi: 10.7498/aps.61.170303
    [14] Fang Mao-Fa, Peng Xiao-Fang, Liao Xiang-Ping, Pan Chang-Ning, Fang Jian-Shu. Fidelity of quantum teleportation of atomic-state in dissipative environment. Acta Physica Sinica, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [15] Zhou Xiao-Qing, Wu Yun-Wen, Zhao Han. Quantum teleportation internetworking and routing strategy. Acta Physica Sinica, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.2
    [16] Bing He, He Rui. A new quantum teleportation protocal. Acta Physica Sinica, 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [17] Xia Yun-Jie, Wang Guang-Hui, Du Shao-Jiang. Fidelity of the scheme of continunous variables quantum teleportation via minimum-correlation mixed quantum states. Acta Physica Sinica, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [18] Zhou Xiao-Qing, Wu Yun-Wen. Discussion on building the net of quantum teleportation using three-particle entangled states. Acta Physica Sinica, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [19] Zhang Qian, Li Fu-Li, Li Hong-Rong. Teleportation of a two-mode Gaussian state through double two-mode-squeezed-state quantum channels. Acta Physica Sinica, 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
    [20] Liu Chuan-Long, Zheng Yi-Zhuang. Teleportation of entangled coherent state through bipartite entangled quantum channels. Acta Physica Sinica, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
Metrics
  • Abstract views:  5391
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2021
  • Accepted Date:  26 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 July 2021

/

返回文章
返回