-
纯的CaWO4具有优异的耐压、耐热稳定性,化学组成为Ca0.64WO4:Eu0.24的陶瓷也具有CaWO4结构,但Ca2+晶格位置含有12 mol%的肖特基缺陷. 这种缺陷浓度高的CaWO4 相是否具有良好的高温稳定性还有待研究. 本文探讨了过度烧结对Ca0.64WO4:Eu0.24陶瓷相结构的影响,揭示了在高温下产生相变的可能原因,并研究了该相变对材料发光性能的影响. 研究表明,当烧结温度超过1100 ℃时,被肖特基缺陷束缚的部分氧离子会解离,造成Ca0.64WO4:Eu0.24陶瓷体相中氧元素含量严重不足,诱发CaWO4相发生相变,析出单斜晶系的Eu2WO6;研究还发现,CaWO4相的晶面间距在高温相变后会增大;这可能是导致Ca0.64WO4:Eu0.24陶瓷发光强度显著降低的一个重要原因.Ca0.64WO4:Eu0.24 also crystalizes in the phase of CaWO4 with about 12 mol% of Schottky defects on Ca2+-sites in the crystal lattice of CaWO4. The question whether such a phase is well stable at high temperatures remains to be studied, so the impacts of over-sintering on the structure of Ca0.64WO4:Eu0.24 ceramics are examined. The probable origins resulting in the phase transition at high temperatures are discussed, and the influences of such a phase transition on the luminescence properties are also studied. Observations reveal that some oxygen ions bonded to Schottky defects may be released when the sintering temperature is over 1100 ℃. This leads to the shortage of oxygen element for the bulk Ca0.64WO4:Eu0.24 ceramics, and a phase transition in CaWO4 may have occurred. A monoclinic phase of the formula Eu2 WO6 is generated. It is found that the distance between crystal planes in CaWO4 becomes larger after the phase transition. This may be one of the primary reasons accounting for the sharp decrease of luminescent intensities of Ca0.64WO4:Eu0.24 ceramics.
-
Keywords:
- phase transition /
- calcium tungstate /
- europium /
- luminescence
[1] Errandonea D, Manjon F J, Somayazulu M, Hausermann D 2004 J. Solid State Chem. 177 1087
[2] Senyshyn A, Kraus H., Mikhailik V B, Yakovyna V 2004 Phys. Rev. B 70 214306
[3] Pang H F, Li Z J, Xiang X, Zhang C L, Fu Y Q, Zu X T 2011 Chin. Phys. B 20 116104
[4] Basiev T T, Sobol A A, Voronko Y K, Zverev P G 2000 Opt. Mater. 15 205
[5] Shi S K, Gao J, Zhou J 2008 Opt. Mater. 30 1616
[6] Gao Y, L Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 077802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 物理学报 61 077802]
[7] Kuang J Z 2011 Journal of Functional Materials 42 1390 (in Chinese) [匡敬忠 2011 功能材料 42 1390]
[8] Hu Q, Lin X, Yang G L, Huang W D, Li J F 2012 Acta Metall. Sin. 48 1467 (in Chinese) [胡桥, 林鑫, 杨高林, 黄卫东, 李金富 2012 金属学报 48 1467]
[9] Wang B G, Shi E W, Zhong W Z, Yin Z W 1998 J. Inorg. Mater. 12 648 (in Chinese) [王步国, 施尔畏, 仲维卓, 殷之文 1998 无机材料学报 12 648]
[10] Achary S N, Patwe S J, Mathews M D, Tyagi A K 2006 J. Phys. Chem. Solids 67 774
[11] Huang Y L, Wang X G, Xiao G X 2007 Journal of Synthetic Crystals 36 1324 (in Chinese) [黄彦林, 王锡钢, 肖国先 2007 人工晶体学报 36 1324]
[12] Shi S K, Liu X R, Gao J, Zhou J 2008 Spectrochim. Acta, Part A 69 396
[13] Wu H E, Yang X Y, Yu X B, Liu J, Yang H, L H B, Yin K Z 2009 J. Alloys Compd. 480 867
-
[1] Errandonea D, Manjon F J, Somayazulu M, Hausermann D 2004 J. Solid State Chem. 177 1087
[2] Senyshyn A, Kraus H., Mikhailik V B, Yakovyna V 2004 Phys. Rev. B 70 214306
[3] Pang H F, Li Z J, Xiang X, Zhang C L, Fu Y Q, Zu X T 2011 Chin. Phys. B 20 116104
[4] Basiev T T, Sobol A A, Voronko Y K, Zverev P G 2000 Opt. Mater. 15 205
[5] Shi S K, Gao J, Zhou J 2008 Opt. Mater. 30 1616
[6] Gao Y, L Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 077802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 物理学报 61 077802]
[7] Kuang J Z 2011 Journal of Functional Materials 42 1390 (in Chinese) [匡敬忠 2011 功能材料 42 1390]
[8] Hu Q, Lin X, Yang G L, Huang W D, Li J F 2012 Acta Metall. Sin. 48 1467 (in Chinese) [胡桥, 林鑫, 杨高林, 黄卫东, 李金富 2012 金属学报 48 1467]
[9] Wang B G, Shi E W, Zhong W Z, Yin Z W 1998 J. Inorg. Mater. 12 648 (in Chinese) [王步国, 施尔畏, 仲维卓, 殷之文 1998 无机材料学报 12 648]
[10] Achary S N, Patwe S J, Mathews M D, Tyagi A K 2006 J. Phys. Chem. Solids 67 774
[11] Huang Y L, Wang X G, Xiao G X 2007 Journal of Synthetic Crystals 36 1324 (in Chinese) [黄彦林, 王锡钢, 肖国先 2007 人工晶体学报 36 1324]
[12] Shi S K, Liu X R, Gao J, Zhou J 2008 Spectrochim. Acta, Part A 69 396
[13] Wu H E, Yang X Y, Yu X B, Liu J, Yang H, L H B, Yin K Z 2009 J. Alloys Compd. 480 867
计量
- 文章访问数: 5325
- PDF下载量: 341
- 被引次数: 0