Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of uranium isotope ratio by laser ablation absorption spectroscopy

Ye Hao Huang Yin-Bo Wang Chen Liu Guo-Rong Lu Xing-Ji Cao Zhen-Song Huang Yao Qi Gang Mei Hai-Ping

Ye Hao, Huang Yin-Bo, Wang Chen, Liu Guo-Rong, Lu Xing-Ji, Cao Zhen-Song, Huang Yao, Qi Gang, Mei Hai-Ping. Measurement of uranium isotope ratio by laser ablation absorption spectroscopy. Acta Phys. Sin., 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
Citation: Ye Hao, Huang Yin-Bo, Wang Chen, Liu Guo-Rong, Lu Xing-Ji, Cao Zhen-Song, Huang Yao, Qi Gang, Mei Hai-Ping. Measurement of uranium isotope ratio by laser ablation absorption spectroscopy. Acta Phys. Sin., 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193

Measurement of uranium isotope ratio by laser ablation absorption spectroscopy

Ye Hao, Huang Yin-Bo, Wang Chen, Liu Guo-Rong, Lu Xing-Ji, Cao Zhen-Song, Huang Yao, Qi Gang, Mei Hai-Ping
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High precision measurement of uranium isotope ratio (235U/238U) has important application in the field of nuclear energy safety. In this paper, based on high sensitivity tunable absorption spectroscopy technology, combined with the sample processing method of pulsed laser ablation plasma, high-precision measurement of uranium 235U/238U isotope ratio in solid material is realized. In the experimental measurement, transitions near 394.4884 nm/394.4930 nm (vacuum) are selected as the 235U/238U analytical lines. The influence of buffer gas and its pressure on the persistence time of uranium atom in laser ablated plasma are studied in detail. The experimental results show that different buffer gases have different ability to restrict the movement of particles in the plasma, which leads to different longitudinal expansion velocity of the plasma (perpendicular to the surface of the sample), and increases the persistence time of uranium atoms in the laser beam. The effect of pressure change on plasma evolution can be reduced by adding buffer gas. When helium is used as the buffer gas, the persistence time of uranium atoms in the plasma is longer, which can improve the selection space of data acquisition delay. In the ablation environment with helium, the electron number density of laser ablated plasma is relatively low, which can reduce the influence of Stark broadening effect and obtain narrower absorption lines, which is more conducive to the measurement of uranium atomic absorption spectrum. In order to reduce the influence of Doppler shift effect on absorption spectrum measurement and avoid misjudgment in spectrum analysis, it is more appropriate to carry out experimental measurement after 3μs sampling delay. Through experiments, the optimal conditions for measuring atomic absorption spectrum of uranium are obtained. Under these conditions, five different samples with 235U content of 4.95%, 4.10%, 3.00%, 1.10% and 0.25% respectively are measured, and the high-resolution absorption spectrum signals of 235U and 238U are obtained. The absorption spectra of samples with different content are measured and statistically analyzed, the 235U absorption signal has high linearity, the fitting correlation coefficient can reach 0.989, and the limit of detection is 0.033% (3σ). The stability test of absorption spectrum signal shows that the relative standard deviation of 238U, 235U and 235U / 238U signals are 2.054%, 2.152% and 0.524% respectively. The wavelength scanning mode is superior to the fixed wavelength spectrum measurement, and the influence of the energy fluctuation between different ablation pulses on the spectrum measurement is weakened by the wavelength scanning mode to a certain extent. The results show that laser ablation combined with absorption spectroscopy technology is suitable for uranium isotope ratio analysis and has great potential applications in rapid isotope analysis of nuclear fuel.
      PACS:
      32.30.-r(Atomic spectra)
      32.10.Bi(Atomic masses, mass spectra, abundances, and isotopes)
      32.30.Jc(Visible and ultraviolet spectra)
      Corresponding author: Cao Zhen-Song, zscao@aiofm.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17010104)
    [1]

    Russo R E 1995 Appl. Spectrosc. 49 14Google Scholar

    [2]

    Chichkov B N, Momma C, Nolte S, Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109Google Scholar

    [3]

    Russo R E, Mao X, Liu H, Gonzalez J, Mao S S 2002 Talanta 57 425Google Scholar

    [4]

    Harilal S S, Brumfield B E, LaHaye N L, Hartig K C, Phillips M C 2018 Appl. Phys. Rev. 5 021301Google Scholar

    [5]

    Miziolek A W, Palleschi V, Schechter I 2006 Crit. Rev. Anal. Chem. 27 257Google Scholar

    [6]

    Harilal S S, Lahaye N L, Phillips M C 2017 Opt. Express. 25 2312Google Scholar

    [7]

    Skrodzki P J, Shah N P, Taylor N, Hartig K C, Lahaye N L, Brumfield B E, Jovanovic I, Phillips M C, Harilal S S 2016 Spectrochim. Acta, Part B 122 112Google Scholar

    [8]

    Smith C A, Martinez M A, Veirs D K, Cremers D A 2000 Spectrochim. Acta, Part B 57 929Google Scholar

    [9]

    Cremers D A, Beddingfield A, Smithwick R, Chinni R C, Jones C R, Beardsley B, Karch L 2012 Appl. Spectrosc. 66 250Google Scholar

    [10]

    Chan C Y, Choi I, Mao X, Zorba V, Lam O P, Shuh D K, Russo R E 2016 Spectrochim. Acta, Part B 122 31Google Scholar

    [11]

    Phillips M C, Brumfield B E, Lahaye N, Harilal S S, Hartig K C, Jovanovic I 2017 Scie. Rep 7 3784Google Scholar

    [12]

    Quentmeier A, Bolshov M, Niemax K 2001 Spectrochim. Acta, Part B 56 45Google Scholar

    [13]

    Liu H, Quentmeier A, Niemax K 2002 Spectrochim. Acta, Part B 57 1611Google Scholar

    [14]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Ohba H 2013 Appl. Phys. A 112 87Google Scholar

    [15]

    Miyabe M, Oba M, Jung K, Iimura H, Akaokaa K, Katoa M, Otobeb H, Khumaeni A, Wakaida I 2017 Spectrochim. Acta, Part B 134 42Google Scholar

    [16]

    Taylor N R, Phillips M C 2014 Opt. lett. 39 594Google Scholar

    [17]

    叶浩, 张骏昕, 梅海平, 黄尧, 袁子豪, 曹振松, 黄印博 2020 中国激光 47 299Google Scholar

    Ye H, Zhang J X, Mei H P, Huang Y, Yuan Z H, Cao Z S, Huang Y B 2020 Chin. J. Lasers 47 299Google Scholar

    [18]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Wakaida I 2010 Appl. Phys. A 101 65Google Scholar

    [19]

    Yan P, Luo W, Zhang J, Wang L 1992 Chin. J. Lasers 5 27

    [20]

    Kramida Y, Ralchenko J, Reader N A NIST Atomic Spectra Database, National Institute of Standards and Technology http://physics.nist.gov/asd [2021-01-25]

    [21]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Wakaida I, Watanabe K 2009 4th international conference on laser probing Nagoya, Japan, October 6–10, 2008 p30

    [22]

    Man B Y, Wang X T, Liu A H 1998 J. Appl. Phys. 83 3509Google Scholar

    [23]

    张树东, 陈冠英, 刘亚楠, 董晨钟 2002 原子核物理评论 19 206Google Scholar

    Zhang S D, Chen G Y, Liu Y N, Dong C Z 2002 Nucl. Phys. Rev. 19 206Google Scholar

    期刊类型引用(3)

    1. 齐刚,黄印博,凌菲彤,杨佳琦,黄俊,杨韬,张雷雷,卢兴吉,袁子豪,曹振松. 多微管阵列结构腔-原子吸收光谱测量Rb同位素比. 物理学报. 2023(05): 212-220 . 百度学术
    2. 陈文婧,黄春平,刘丰刚,梁仁瑜,刘奋成,杨海欧. 激光立体成形和超声冲击混合制造Ti60合金的显微组织和性能(英文). Transactions of Nonferrous Metals Society of China. 2023(11): 3319-3331 . 百度学术
    3. 李耀宗,张小安,梁昌慧,周贤明,曾利霞,梅策香. 激光诱导Al表面等离子体温度的发射谱诊断. 原子与分子物理学报. 2022(06): 100-107 . 百度学术

    其他类型引用(2)

  • 图 1  LAAS测量原理示意图

    Figure 1.  Principle of LAAS.

    图 2  LAAS实验装置简图

    Figure 2.  Schematic diagram of the experimental setup of LAAS.

    图 3  (a)等离子体透过率测量; (b)实验测量的235U/ 238U吸收光谱

    Figure 3.  (a) Plasma transmittance measurement; (b) measured absorption spectrum of 235U/ 238U.

    图 4  不同环境气体下测量结果比较(Air, He, Ar, N2)

    Figure 4.  Comparison of measurement results under different ambient gases (Air, He, Ar, N2).

    图 5  不同烧蚀环境下等离子体持续时间随样品池内压力的变化

    Figure 5.  The persistence of ablation plasma changes with pressure.

    图 6  等离子体膨胀简易模型示意图

    Figure 6.  Simple model of plasma expansion.

    图 7  不同采样延时的238U吸收光谱

    Figure 7.  Absorption spectra with different sampling delays.

    图 8  不同含量样品235U/238U吸收光谱

    Figure 8.  235U/238U absorption spectra of samples with different concentration.

    图 9  不同含量样品235U/238U吸收光谱及Voigt线型拟合光谱, 拟合曲线下部为拟合残差图

    Figure 9.  235U/238U absorption spectra and Voigt fitting spectra of samples with different concentration, the lower part of the fitted curve is the fitted residual graph.

    图 10  235U丰度与吸收强度的定标曲线

    Figure 10.  Calibration curve of 235U abundance and absorption intensity.

    图 11  1.10%样品235U/238U吸收光谱及Voigt线型拟合光谱

    Figure 11.  235U/238U absorption spectrum and Voigt fitting spectrum of 1.10% sample.

    图 12  235U/238U吸收光谱信号稳定性研究

    Figure 12.  Study on the stability of 235U/238U absorption spectrum signal.

    表 1  LAAS实验装置关键器件参数

    Table 1.  Key device parameters of LAAS experimental device.

    实验装置关键器件参数
    探测激光器线宽100 kHz
    烧蚀激光器波长1064 nm, 脉宽8 ns, 重复频率1—20 Hz, 单脉冲能量最大为200 mJ, 能量稳定性 ≤ 1%
    带通滤光片Semrock, 中心波长λ = 395 nm, 带宽Δλ = 11 nm
    陷波滤光片Thorlabs, 中心波长λ = 1064 nm, 带宽Δλ = 44 nm
    光电探测器Thorlabs, 探测带宽150 MHz
    DownLoad: CSV

    表 2  实验参数设置

    Table 2.  experimental parameter setting

    实验参数烧蚀激光能量/ mJ采样延时/μs缓冲气体压力/kPa扫描时间/s
    数值404He450
    DownLoad: CSV
  • [1]

    Russo R E 1995 Appl. Spectrosc. 49 14Google Scholar

    [2]

    Chichkov B N, Momma C, Nolte S, Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109Google Scholar

    [3]

    Russo R E, Mao X, Liu H, Gonzalez J, Mao S S 2002 Talanta 57 425Google Scholar

    [4]

    Harilal S S, Brumfield B E, LaHaye N L, Hartig K C, Phillips M C 2018 Appl. Phys. Rev. 5 021301Google Scholar

    [5]

    Miziolek A W, Palleschi V, Schechter I 2006 Crit. Rev. Anal. Chem. 27 257Google Scholar

    [6]

    Harilal S S, Lahaye N L, Phillips M C 2017 Opt. Express. 25 2312Google Scholar

    [7]

    Skrodzki P J, Shah N P, Taylor N, Hartig K C, Lahaye N L, Brumfield B E, Jovanovic I, Phillips M C, Harilal S S 2016 Spectrochim. Acta, Part B 122 112Google Scholar

    [8]

    Smith C A, Martinez M A, Veirs D K, Cremers D A 2000 Spectrochim. Acta, Part B 57 929Google Scholar

    [9]

    Cremers D A, Beddingfield A, Smithwick R, Chinni R C, Jones C R, Beardsley B, Karch L 2012 Appl. Spectrosc. 66 250Google Scholar

    [10]

    Chan C Y, Choi I, Mao X, Zorba V, Lam O P, Shuh D K, Russo R E 2016 Spectrochim. Acta, Part B 122 31Google Scholar

    [11]

    Phillips M C, Brumfield B E, Lahaye N, Harilal S S, Hartig K C, Jovanovic I 2017 Scie. Rep 7 3784Google Scholar

    [12]

    Quentmeier A, Bolshov M, Niemax K 2001 Spectrochim. Acta, Part B 56 45Google Scholar

    [13]

    Liu H, Quentmeier A, Niemax K 2002 Spectrochim. Acta, Part B 57 1611Google Scholar

    [14]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Ohba H 2013 Appl. Phys. A 112 87Google Scholar

    [15]

    Miyabe M, Oba M, Jung K, Iimura H, Akaokaa K, Katoa M, Otobeb H, Khumaeni A, Wakaida I 2017 Spectrochim. Acta, Part B 134 42Google Scholar

    [16]

    Taylor N R, Phillips M C 2014 Opt. lett. 39 594Google Scholar

    [17]

    叶浩, 张骏昕, 梅海平, 黄尧, 袁子豪, 曹振松, 黄印博 2020 中国激光 47 299Google Scholar

    Ye H, Zhang J X, Mei H P, Huang Y, Yuan Z H, Cao Z S, Huang Y B 2020 Chin. J. Lasers 47 299Google Scholar

    [18]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Wakaida I 2010 Appl. Phys. A 101 65Google Scholar

    [19]

    Yan P, Luo W, Zhang J, Wang L 1992 Chin. J. Lasers 5 27

    [20]

    Kramida Y, Ralchenko J, Reader N A NIST Atomic Spectra Database, National Institute of Standards and Technology http://physics.nist.gov/asd [2021-01-25]

    [21]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Wakaida I, Watanabe K 2009 4th international conference on laser probing Nagoya, Japan, October 6–10, 2008 p30

    [22]

    Man B Y, Wang X T, Liu A H 1998 J. Appl. Phys. 83 3509Google Scholar

    [23]

    张树东, 陈冠英, 刘亚楠, 董晨钟 2002 原子核物理评论 19 206Google Scholar

    Zhang S D, Chen G Y, Liu Y N, Dong C Z 2002 Nucl. Phys. Rev. 19 206Google Scholar

  • [1] Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie. Influence of surface ablation on plasma and its interaction with electromagnetic field. Acta Physica Sinica, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] Lu Yun-Jie, Tao Tao, Zhao Bin, Zheng Jian. Separation of ion component from solid hydrocarbon materials by laser ablation. Acta Physica Sinica, 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [3] Wang Yuan-Yuan, Wang Xian-Zhi, Song Jia-Jun, Zhang Xu, Wang Zhao-Hua, Wei Zhi-Yi. Amplification mechanism in stimulated Raman backward scattering of ultraintense laser in uniform plasma. Acta Physica Sinica, 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [4] Zhao Fa-Gang, Zhang Yu, Zhang Lei, Yin Wang-Bao, Dong Lei, Ma Wei-Guang, Xiao Lian-Tuan, Jia Suo-Tang. Laser-induced plasma characterization using self-absorption quantification method. Acta Physica Sinica, 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [5] Cai Song, Chen Gen-Yu, Zhou Cong, Zhou Feng-Lin, Li Guang. Research and application of plasma recoil pressure physical model for pulsed laser ablation material. Acta Physica Sinica, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [6] Liu Ming-Wei, Gong Shun-Feng, Li Jin, Jiang Chun-Lei, Zhang Yu-Tao, Zhou Bing-Ju. Non-resonant direct laser acceleration in underdense plasma channels. Acta Physica Sinica, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [7] Liu Yu-Feng, Zhang Lian-Shui, He Wan-Lin, Huang Yu, Du Yan-Jun, Lan Li-Juan, Ding Yan-Jun, Peng Zhi-Min. Spectroscopic study on the laser-induced breakdown flame plasma. Acta Physica Sinica, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [8] Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption. Acta Physica Sinica, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [9] Liu Yu-Feng, Ding Yan-Jun, Peng Zhi-Min, Huang Yu, Du Yan-Jun. Spectroscopic study on the time evolution behaviors of the laser-induced breakdown air plasma. Acta Physica Sinica, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [10] Chang Hao, Jin Xing, Chen Zhao-Yang. Numerical simulation of nanosecond laser ablation impulse coupling. Acta Physica Sinica, 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [11] Li Shi-Xiong, Bai Zhong-Chen, Huang Zheng, Zhang Xin, Qin Shui-Jie, Mao Wen-Xue. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma. Acta Physica Sinica, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [12] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] Xia Zhi-Lin, Guo Pei-Tao, Xue Yi-Yu, Huang Cai-Hua, Li Zhan-Wang. Investigation of the plasma bursting process in short pulsed laser induced film damage. Acta Physica Sinica, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [14] Liu Shi-Bing, Liu Yuan-Xing, He Run, Chen Tao. Instantaneous characteristics of excited atom state 5s' 4D7/2 in the copper plasma induced by laser. Acta Physica Sinica, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [15] Splitting of ultrashort laser pulses propagating in plasmas and the generation of soliton-like structures. Acta Physica Sinica, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [16] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical research on intense pulsed ion beam ablation plasma expansion into ambient gases. Acta Physica Sinica, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [17] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [18] Zhang Duan-Ming, Guan Li, Li Zhi-Hua, Zhong Zhi-Cheng, Hou Si-Pu, Yang Feng-Xia, Zheng Ke-Yu. Study on the evolvement of plasma generated by pulsed laser deposition of thin film. Acta Physica Sinica, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [19] Zhang Shu-Dong, Li Hai-Yang. Formation and emission spectra of C2 swan band during the reaction of laser ablating target of aluminum with CF4 beam. Acta Physica Sinica, 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
    [20] HE BIN, CHANG TIE-QIANG, ZHANG JIA-TAI, XU LIN-BAO. INVESTIGATION OF THE LONGITUDINAL MOTION OF ELECTRONS IN THE PLASMAS WITH ULTRA-INTENSE LASER PULSE. Acta Physica Sinica, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
  • 期刊类型引用(3)

    1. 齐刚,黄印博,凌菲彤,杨佳琦,黄俊,杨韬,张雷雷,卢兴吉,袁子豪,曹振松. 多微管阵列结构腔-原子吸收光谱测量Rb同位素比. 物理学报. 2023(05): 212-220 . 百度学术
    2. 陈文婧,黄春平,刘丰刚,梁仁瑜,刘奋成,杨海欧. 激光立体成形和超声冲击混合制造Ti60合金的显微组织和性能(英文). Transactions of Nonferrous Metals Society of China. 2023(11): 3319-3331 . 百度学术
    3. 李耀宗,张小安,梁昌慧,周贤明,曾利霞,梅策香. 激光诱导Al表面等离子体温度的发射谱诊断. 原子与分子物理学报. 2022(06): 100-107 . 百度学术

    其他类型引用(2)

Metrics
  • Abstract views:  6555
  • PDF Downloads:  142
  • Cited By: 5
Publishing process
  • Received Date:  26 January 2021
  • Accepted Date:  20 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回