-
使用等离子体背向受激拉曼散射对激光进行放大时, 等离子体的密度、温度和长度都会对激光的放大效果产生影响. 为了探究等离子体密度对结果的影响, 本文使用一维粒子模拟程序模拟了波长为800 nm的泵浦激光入射到均匀等离子体中, 等离子体密度和泵浦光光强对散射光光谱的影响. 模拟结果表明, 等离子体密度降低会导致散射光的波长变短, 而泵浦光的光强在一定范围内降低会增加散射光中背向散射光的比例. 通过分析散射光的光强和等离子体的密度, 发现前向拉曼散射是等离子体密度变化的原因. 模拟结果对等离子体背向受激拉曼散射放大的实验研究具有重要的指导意义.The density, temperature and length of the plasma used in the backward Raman amplification will all influence the result. To explore the influence of the plasma density and the pump intensity, this work uses the one-dimensional particle in cell (PIC) algorithm to simulate the process of the 800 nm pump laser injecting into the plasma. By analyzing the Raman scattered light, it is found that as the density of plasma increases, the wavelengths of the scattered light shorten. It is also found that the forward Raman scattering will cause the plasma density to change, which in turn influences the scattered light wavelength. Therefore, we should choose the plasma density based on the wavelength of the pump and the scattered light, while the amplification of the scattered is related to the pump intensity.
-
Keywords:
- plasma /
- laser amplification /
- backward Raman scattering /
- particle in cell algorithm
[1] Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar
[2] Capjack C E, James C R, McMullin J N 1982 J. Appl. Phys. 53 4046Google Scholar
[3] Murray J R, Goldhar J, Eimeri D, Szöke A 1979 IEEE J. Quantum Electron. 15 342Google Scholar
[4] Ping Y, Cheng W, Suckewer S, Clark D S, Fisch N J 2004 Phys. Rev. Lett. 92 175007Google Scholar
[5] Cheng W, Avitzour Y, Ping Y, Suckewer S, Fisch N J, Hur M S, Wurtele J S 2005 Phys. Rev. Lett. 94 045003Google Scholar
[6] Ren J, Li S, Morozov A, Suckewer S, Yampolsky N A, Malkin V M, Fisch N J 2008 Phys. Plasmas 15 056702Google Scholar
[7] Pai C H, Lin M W, Ha L C, Huang S T, Tsou Y C, Chu H H, Lin J Y, Wang J, Chen S Y 2008 Phys. Rev. Lett. 101 065005Google Scholar
[8] Malkin V M, Shvets G, Fisch N J 1999 Phys. Rev. Lett. 82 4448Google Scholar
[9] Ping Y, Kirkwood R K, Wang T L, Clark D S, Wilks S C, Meezan N, Berger R L, Wurtele J, Fisch N J, Malkin V M, Valeo E J, Martins S F, Joshi C 2009 Phys. Plasmas 16 123113Google Scholar
[10] Barth I, Toroker Z, Balakin A A, Fisch N J 2016 Phys. Rev. E 93 063210Google Scholar
[11] Ren J, Cheng W, Li S, Suckewer S 2007 Nat. Phys. 3 732Google Scholar
[12] Wu Z, Chen Q, Morozov A, Suckewer S 2019 Phys. Plasmas 26 103111Google Scholar
[13] Vieux G, Cipiccia S, Grant D W, Lemos N, Grant P, Ciocarlan C, Ersfeld B, Hur M S, Lepipas P, Manahan G G, Raj G, Reboredo Gil D, Subiel A, Welsh G H, Wiggins S M, Yoffe S R, Farmer J P, Aniculaesei C, Brunetti E, Yang X, Heathcote R, Nersisyan G, Lewis C L S, Pukhov A, Dias J M, Jaroszynski D A 2017 Sci. Rep. 7 2399Google Scholar
[14] Shuanglei L 2013 Ph. D. Dissertation (Princeton: Princeton University)
[15] Ping Y, Geltner I, Morozov A, Fisch N J, Suckewer S 2002 Phys. Rev. E 66 6Google Scholar
[16] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Phys. Controlled Fusion 57 113001Google Scholar
[17] Yampolsky N A, Fisch N J 2011 Phys. Plasmas 18 056711Google Scholar
[18] Toroker Z, Malkin V M, Fisch N J 2012 Phys. Rev. Lett. 109 085003Google Scholar
[19] Farmer J P, Ersfeld B, Jaroszynski D A 2010 Phys. Plasmas 17 113301Google Scholar
[20] Yang X, Vieux G, Brunetti E, Ersfeld B, Farmer J P, Hur M S, Issac R C, Raj G, Wiggins S M, Welsh G H, Yoffe S R, Jaroszynski D A 2015 Sci. Rep. 5 13333Google Scholar
-
-
[1] Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar
[2] Capjack C E, James C R, McMullin J N 1982 J. Appl. Phys. 53 4046Google Scholar
[3] Murray J R, Goldhar J, Eimeri D, Szöke A 1979 IEEE J. Quantum Electron. 15 342Google Scholar
[4] Ping Y, Cheng W, Suckewer S, Clark D S, Fisch N J 2004 Phys. Rev. Lett. 92 175007Google Scholar
[5] Cheng W, Avitzour Y, Ping Y, Suckewer S, Fisch N J, Hur M S, Wurtele J S 2005 Phys. Rev. Lett. 94 045003Google Scholar
[6] Ren J, Li S, Morozov A, Suckewer S, Yampolsky N A, Malkin V M, Fisch N J 2008 Phys. Plasmas 15 056702Google Scholar
[7] Pai C H, Lin M W, Ha L C, Huang S T, Tsou Y C, Chu H H, Lin J Y, Wang J, Chen S Y 2008 Phys. Rev. Lett. 101 065005Google Scholar
[8] Malkin V M, Shvets G, Fisch N J 1999 Phys. Rev. Lett. 82 4448Google Scholar
[9] Ping Y, Kirkwood R K, Wang T L, Clark D S, Wilks S C, Meezan N, Berger R L, Wurtele J, Fisch N J, Malkin V M, Valeo E J, Martins S F, Joshi C 2009 Phys. Plasmas 16 123113Google Scholar
[10] Barth I, Toroker Z, Balakin A A, Fisch N J 2016 Phys. Rev. E 93 063210Google Scholar
[11] Ren J, Cheng W, Li S, Suckewer S 2007 Nat. Phys. 3 732Google Scholar
[12] Wu Z, Chen Q, Morozov A, Suckewer S 2019 Phys. Plasmas 26 103111Google Scholar
[13] Vieux G, Cipiccia S, Grant D W, Lemos N, Grant P, Ciocarlan C, Ersfeld B, Hur M S, Lepipas P, Manahan G G, Raj G, Reboredo Gil D, Subiel A, Welsh G H, Wiggins S M, Yoffe S R, Farmer J P, Aniculaesei C, Brunetti E, Yang X, Heathcote R, Nersisyan G, Lewis C L S, Pukhov A, Dias J M, Jaroszynski D A 2017 Sci. Rep. 7 2399Google Scholar
[14] Shuanglei L 2013 Ph. D. Dissertation (Princeton: Princeton University)
[15] Ping Y, Geltner I, Morozov A, Fisch N J, Suckewer S 2002 Phys. Rev. E 66 6Google Scholar
[16] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Phys. Controlled Fusion 57 113001Google Scholar
[17] Yampolsky N A, Fisch N J 2011 Phys. Plasmas 18 056711Google Scholar
[18] Toroker Z, Malkin V M, Fisch N J 2012 Phys. Rev. Lett. 109 085003Google Scholar
[19] Farmer J P, Ersfeld B, Jaroszynski D A 2010 Phys. Plasmas 17 113301Google Scholar
[20] Yang X, Vieux G, Brunetti E, Ersfeld B, Farmer J P, Hur M S, Issac R C, Raj G, Wiggins S M, Welsh G H, Yoffe S R, Jaroszynski D A 2015 Sci. Rep. 5 13333Google Scholar
计量
- 文章访问数: 4472
- PDF下载量: 81
- 被引次数: 0