Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

All-optical Thomson scattering

Yan Wen-Chao, Zhu Chang-Qing, Wang Jin-Guang, Feng Jie, Li Yi-Fei, Tan Jun-Hao, Chen Li-Ming
PDF
HTML
Get Citation
  • With the development of laser and accelerator technology, and improvement of the particle energy and field intensity, the scattering process between electron and photon will reach the highly nonlinear regime, where the multi-photon process takes place and the quantum electrodynamics starts to play a role. In the near future, with the commissioning of the multi-PW laser facilities, these effects will be available. In this article, we review the recent progress of electron-photon scattering experiments, from single or few-photon regime to high-order multi-photon regime. In the scattering process, collimated bright X/gamma-energy photons are generated, making it possible to realize a compact top-table bright light source, which is also known as inverse Compton scattering source. Finally, the prospects and challenges of scattering experiments are discussed.
      Corresponding author: Yan Wen-Chao, wenchaoyan@sjtu.edu.cn ; Chen Li-Ming, lmchen@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11991073, 12074251, 11905289, 11805266), the Science Challenge Project of China Academy of Engineering Physics (Grant No. TZ2018005), the National Basic Research Program of China (Grant No. 2017YFA0403301), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030400, XDB17030500)
    [1]

    Thomson J 1899 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47 253Google Scholar

    [2]

    Barkla C G 1903 Proc. Phys. Soc. London 19 185Google Scholar

    [3]

    Barkla C G 1903 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 5 685Google Scholar

    [4]

    Stephenson R J 1967 Am. J. Phys. 35 140Google Scholar

    [5]

    Compton A H 1923 Phys. Rev. 21 483Google Scholar

    [6]

    Compton A H 1923 Nature 112 435

    [7]

    Woo Y H 1925 Phys. Rev. 25 444Google Scholar

    [8]

    Woo Y H 1930 Proc. Natl. Acad. Sci. U.S.A. 16 814Google Scholar

    [9]

    Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 470Google Scholar

    [10]

    Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 467Google Scholar

    [11]

    Woo Y H 1931 Phys. Rev. 38 6Google Scholar

    [12]

    Woo Y H 1932 Phys.l Rev. 41 21Google Scholar

    [13]

    Woo Y H 1932 Phys. Rev. 39 555Google Scholar

    [14]

    D E Evans, J K 1969 Rep. Prog. Phys. 32 207Google Scholar

    [15]

    Glenzer S H, Redmer R 2009 Rev. Mod. Phys. 81 1625Google Scholar

    [16]

    Longair M S 2011 High-Energy Astrophysics (Cambridge: Cambridge University Press)

    [17]

    Prunty S L 2014 Phys. Scr. 89 128001Google Scholar

    [18]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [19]

    Harvey C, Heinzl T, Ilderton A 2009 Phys. Rev. A 79 063407Google Scholar

    [20]

    Heinzl T, Ilderton A 2009 Eur. Phys. J. D 55 359Google Scholar

    [21]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [22]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [23]

    Geddes C G R, Toth C, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538Google Scholar

    [24]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [25]

    Leemans W P, Nagler B, Gonsalves A J, Tóth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nat. Phys. 2 696Google Scholar

    [26]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [27]

    Mourou G A, Korn G, Sandner W, Collier J L 2011 ELI – Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers Whitebook at THOSS Media GmbH https://eli-laser.eu/media/1019/eli-whitebook.pdf

    [28]

    Papadopoulos D N, Zou J P, Blanc C L, Chériaux G, Georges P, Druon F, Mennerat G, Ramirez P, Martin L, Fréneaux A, Beluze A, Lebas N, Monot P, Mathieu F, Audebert P 2016 High Power Laser Sci. Eng. 4 e34Google Scholar

    [29]

    Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fusion 60 044002Google Scholar

    [30]

    Danson C N, Haefner C, Bromage J, Butcher T, Chanteloup J C F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J, Hillier D I, Hopps N W, Kato Y, Khazanov E A, Kodama R, Korn G, Li R X, Li Y T, Limpert J, Ma J G, Nam C H, Neely D, Papadopoulos D, Penman R R, Qian L J, Rocca J J, Shaykin A A, Siders C W, Spindloe C, Szatmari S, Trines R, Zhu J Q, Zhu P, Zuegel J D 2019 High Power Laser Science and Engineering 7 e54Google Scholar

    [31]

    Chu Y, Gan Z, Liang X, Yu L, Lu X, Wang C, Wang X, Xu L, Lu H, Yin D 2015 Opt. Lett. 40 5011Google Scholar

    [32]

    Zamfir N V 2014 Eur. Phys. J.-Spec. Top. 223 1221Google Scholar

    [33]

    Hernandez-Gomez C, Blake S P, Chekhlov O, et al. 2010 J. Phys.: Conf. Ser. 244 032006Google Scholar

    [34]

    Weber S, Bechet S, Borneis S, Brabec L, Bučka M, Chacon-Golcher E, Ciappina M, DeMarco M, Fajstavr A, Falk K 2018 Matter Radiat. Extremes 2 149

    [35]

    Wenchao Y, Colton F, Grigory G, Daniel H, Ji L, Ping Z, Baozhen Z, Jun Z, Cheng L, Min C, Shouyuan C, Sudeep B, Donald U 2017 Nat. Photonics 11 514Google Scholar

    [36]

    Vranic M, Martins J L, Vieira J, Fonseca R A, Silva L O 2014 Phys. Rev. Lett. 113 134801Google Scholar

    [37]

    Li J X, Hatsagortsyan K Z, Keitel C H 2014 Phys. Rev. Lett. 113 044801Google Scholar

    [38]

    Burton D A, Noble A 2014 Contemp. Phys. 55 110Google Scholar

    [39]

    Thomas A G R, Ridgers C P, Bulanov S S, Griffin B J, Mangles S P D 2012 Phys. Rev. X 2 041004

    [40]

    O'Connell R F 2012 Contemp. Phys. 53 301Google Scholar

    [41]

    Di Piazza A, Mueller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [42]

    Bulanov S V, Esirkepov T Z, Kando M, Koga J K, Bulanov S S 2011 Phys. Rev. E 84 056605Google Scholar

    [43]

    Hammond R T 2010 Phys. Rev. A 81 062104Google Scholar

    [44]

    Di Piazza A, Hatsagortsyan K Z, Keitel C H 2009 Phys. Rev. Lett. 102 254802Google Scholar

    [45]

    Di Piazza A 2016 Phys. Rev. Lett. 117 213201Google Scholar

    [46]

    Gu Y J, Klimo O, Bulanov S V, Weber S 2018 Commun. Phys. 1 93Google Scholar

    [47]

    Ilderton A 2011 Phys. Rev. Lett. 106 020404Google Scholar

    [48]

    Hu H, Mueller C, Keitel C H 2010 Phys. Rev. Lett. 105 080401Google Scholar

    [49]

    Gu Y J, Klimo O, Weber S, Korn G 2016 New J. Phys. 18 113023Google Scholar

    [50]

    Sarri G, Schumaker W, Di Piazza A, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V, He Z H 2013 Phys. Rev. Lett. 110 255002Google Scholar

    [51]

    Sarri G, Poder K, Cole J M, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G 2015 Nat. Commun. 6 6747Google Scholar

    [52]

    Bulanov S V, Sasorov P, Bulanov S S, Korn G 2019 Phys. Rev. D 100 016012 6

    [53]

    Sengupta N D 1949 Bull. Calcutta Math. Soc. 41 187

    [54]

    Sarachik E S, Schappert G T 1970 Phys. Rev. D 1 2738Google Scholar

    [55]

    Salamin Y I, Faisal F H M 1996 Phys. Rev. A 54 4383Google Scholar

    [56]

    Brown L S, Kibble T W B 1964 Phys. Rev. 133 A705Google Scholar

    [57]

    Goldman I I 1964 Sov. Phys. JETP 19 954

    [58]

    Nikishov A I, Ritus V I 1964 Sov. Phys. JETP 19 529

    [59]

    Chen S Y, Maksimchuk A, Umstadter D 1998 Nature 396 653Google Scholar

    [60]

    Koga J, Esirkepov T Z, Bulanov S V 2005 Phys. Plasmas 12 093106Google Scholar

    [61]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003

    [62]

    Bula C, McDonald K T, Prebys E J, Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L 1996 Phys. Rev. Lett. 76 3116Google Scholar

    [63]

    Leemans W P, Schoenlein R W, Volfbeyn P, Chin A H, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Phys. Rev. Lett. 77 4182Google Scholar

    [64]

    Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [65]

    Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. Spec. Top.-Accel. Beams 13 070704Google Scholar

    [66]

    Banerjee S, Kalmykov S Y, Powers N D, Golovin G, Ramanathan V, Cunningham N J, Brown K J, Chen S, Ghebregziabher I, Shadwick B A, Umstadter D P, Cowan B M, Bruhwiler D L, Beck A, Lefebvre E 2013 Phys. Rev. Spec. Top. - Accel. Beams 16

    [67]

    Maier A R, Delbos N M, Eichner T, Hübner L, Jalas S, Jeppe L, Jolly S W, Kirchen M, Leroux V, Messner P, Schnepp M, Trunk M, Walker P A, Werle C, Winkler P 2020 Phys. Rev. X 10 031039

    [68]

    Li Y F, Li D Z, Huang K, Tao M Z, Li M H, Zhao J R, Ma Y, Guo X, Wang J G, Chen M 2017 Phys. Plasmas 24 023108Google Scholar

    [69]

    Couperus J P, Pausch R, Köhler A, Zarini O, Krämer J M, Garten M, Huebl A, Gebhardt R, Helbig U, Bock S, Zeil K, Debus A, Bussmann M, Schramm U, Irman A 2017 Nat. Commun. 8 487Google Scholar

    [70]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [71]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [72]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E 2013 Nat. Commun. 4

    [73]

    Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [74]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [75]

    Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U, Sauerbrey R 2006 Phys. Rev. Lett. 96 014802Google Scholar

    [76]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [77]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106 9

    [78]

    Tsai H E, Arefiev A V, Shaw J M, Stark D J, Wang X, Zgadzaj R, Downer M C 2017 Phys. Plasmas 24 013106Google Scholar

    [79]

    Döpp A, Guillaume E, Thaury C, Gautier J, Andriyash I, Lifschitz A, Malka V, Rousse A, Phuoc K T 2016 Plasma Phys. Controlled Fusion 58 034005Google Scholar

    [80]

    Yu C, Qi R, Wang W, Liu J, Li W, Wang C, Zhang Z, Liu J, Qin Z, Fang M 2016 Sci. Rep. 6 29518Google Scholar

    [81]

    Feng J, Wang J, Li Y, Zhu C, Li M, He Y, Li D, Wang W, Chen L 2017 Phys. Plasmas 24 093110Google Scholar

    [82]

    Zhu C, Wang J, Feng J, Li Y, Li D, Li M, He Y, Ma J, Tan J, Zhang B 2018 Plasma Phys. Controlled Fusion 61 024001

    [83]

    Ma Y, Hua J, Liu D, He Y, Zhang T, Chen J, Yang F, Ning X, Yang Z, Zhang J, Pai C H, Gu Y, Lu W 2020 Matter Radiat. Extremes 5 064401Google Scholar

    [84]

    Schindler S, Doepp A, Ding H, et al. 2019 SPIE Proceedings 11037 11037Google Scholar

    [85]

    Wenz J, Doepp A, Khrennikov K, Schindler S, Gilljohann M F, Ding H, Gotzfried J, Buck A, Xu J, Heigoldt M, Helml W, Veisz L, Karsch S 2019 Nat. Photonics 13 263Google Scholar

    [86]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [87]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2014 Nat. Photonics 8 28Google Scholar

    [88]

    Golovin G, Banerjee S, Chen S, Powers N, Liu C, Yan W, Zhang J, Zhang P, Zhao B, Umstadter D 2016 Nucl. Instrum. Methods Phys. Res., Sec. A 830 375Google Scholar

    [89]

    Liu C, Golovin G, Chen S, Zhang J, Zhao B, Haden D, Banerjee S, Silano J, Karwowski H, Umstadter D 2014 Opt. Lett. 39 4132Google Scholar

    [90]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Di Piazza A, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [91]

    Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003Google Scholar

    [92]

    Liu C, Zhang J, Chen S, Golovin G, Banerjee S, Zhao B, Powers N, Ghebregziabher I, Umstadter D 2014 Opt. Lett. 39 80Google Scholar

    [93]

    Zhao B, Banerjee S, Yan W, Zhang P, Zhang J, Golovin G, Liu C, Fruhling C, Haden D, Chen S 2018 Opt. Commun. 412 141Google Scholar

    [94]

    Corvan D J, Sarri G, Zepf M 2014 Rev. Sci. Instrum. 85 065119Google Scholar

    [95]

    Kojima S, Ikenouchi T, Arikawa Y, Sakata S, Zhang Z, Abe Y, Nakai M, Nishimura H, Shiraga H, Ozaki T, Miyamoto S, Yamaguchi M, Takemoto A, Fujioka S, Azechi H 2016 Rev. Sci. Instrum. 87 43502Google Scholar

    [96]

    Singh S, Versaci R, Laso Garcia A, Morejon L, Ferrari A, Molodtsova M, Schwengner R, Kumar D, Cowan T 2018 Rev. Sci. Instrum. 89 085118Google Scholar

    [97]

    Haden D, Golovin G, Yan W, Fruhling C, Zhang P, Zhao B, Banerjee S, Umstadter D 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 951 1630329

    [98]

    Cole J M, Behm K T, Gerstmayr E, Blackburn T G, Wood J C, Baird C D, Duff M J, Harvey C, Ilderton A, Joglekar A S 2018 Phys. Rev. X 8 011020

    [99]

    Poder K, Tamburini M, Sarri G, Di Piazza A, Kuschel S, Baird C D, Behm K, Bohlen S, Cole J M, Corvan D J 2018 Phys. Rev. X 8 031004

    [100]

    Samarin G M, Zepf M, Sarri G 2018 J. Mod. Opt. 65 1362Google Scholar

    [101]

    Petrillo V, Dattoli G, Drebot I, Nguyen F 2016 Phys. Rev. Lett. 117 123903Google Scholar

    [102]

    Chen Y Y, Hatsagortsyan K Z, Keitel C H 2019 Matter Radiat. Extremes 4 024401Google Scholar

    [103]

    Albert F, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001Google Scholar

    [104]

    Umstadter D P 2015 Contemp. Phys. 56 417Google Scholar

    [105]

    Albert F, Thomas A G R, Mangles S P D, Banerjee S, Corde S, Flacco A, Litos M, Neely D, Vieira J, Najmudin Z 2014 Plasma Phys. Controlled Fusion 56 084015Google Scholar

    [106]

    Kando M, Esirkepov T, Koga J, Pirozhkov A, Bulanov S 2018 Quantum Beam Science 2 9Google Scholar

    [107]

    Kando M, Pirozhkov A S, Kawase K, Esirkepov T Z, Fukuda Y, Kiriyama H, Okada H, Daito I, Kameshima T, Hayashi Y 2009 Phys. Rev. Lett. 103 235003Google Scholar

    [108]

    Bulanov S V, Esirkepov T Z, Kando M, Pirozhkov A S, Rosanov N N 2013 Phys. Usp. 56 429Google Scholar

    [109]

    Petrillo V, Serafini L, Tomassini P 2008 Phys. Rev. Spec. Top. Accel. Beams 11 070703Google Scholar

    [110]

    Li F Y, Sheng Z M, Liu Y, Meyer-ter-Vehn J, Mori W B, Lu W, Zhang J 2013 Phys. Rev. Lett. 110 135002Google Scholar

    [111]

    Meyer-Ter-Vehn J, Wu H C 2009 Eur. Phys. J. D 55 433Google Scholar

    [112]

    Wu H C, Meyer-ter-Vehn J, Fernandez J, Hegelich B M 2010 Phys. Rev. Lett. 104 234801Google Scholar

    [113]

    Wu H C, Meyer-ter-Vehn J 2012 Nat. Photonics 6 304Google Scholar

    [114]

    Golovin G, Banerjee S, Liu C, et al. 2016 Sci. Rep. 6 24622Google Scholar

    [115]

    Har-Shemesh O, Di Piazza A 2012 Opt. Lett. 37 1352Google Scholar

    [116]

    Gu Y J, Weber S 2018 Opt. Express 26 19932Google Scholar

  • 图 1  近期国际上全光汤姆孙散射的主要实验进展及发展方向

    Figure 1.  Recent progress and road map of the Thomson scattering.

    图 2  两种不同的实验方案 (a)单束激光-等离子体镜方案; (b)双光束方案

    Figure 2.  Two different experimental geometries for all-optical scattering: (a) Single beam plasma mirror regime; (b) dual beam regime.

    图 3  等离子体镜方案产生X射线的示意图

    Figure 3.  Illustration of the X-ray generation via plasma mirror regime.

    图 4  全光逆康普顿散射X射线随电子能量的定标率, 红色代表使用800 nm散射激光, 蓝色代表使用400 nm散射激光

    Figure 4.  Scaling law of inverse Compton scattering X-ray energy by fundamental and second-order harmonics of Ti: Sapphire scattering laser.

    图 5  文献[91]报道的全光汤姆孙散射的非线性效应, a0明显影响了X射线能量的定标率

    Figure 5.  Scaling shift in the few-photon scattering experiment. Reprinted with permission from Ref. [91].

    图 6  文献[35]报道的高阶多光子效应

    Figure 6.  Effect of high-order multi-photon scattering reported in Ref. [35].

    图 7  汤姆孙散射截面随a0变化的定标率, 该变化曲线由文献[60]的理论计算得出

    Figure 7.  Scaling law of the Thomson scattering cross section vs. a0 in the rest frame. The blue range means where the RR effect matters. The curves were plotted based on Ref. [60]

    表 1  常见全光逆康普顿X射线源参数

    Table 1.  Parameter of all-optical inverse Compton scattering X-ray source.

    参数数值
    源尺寸/μm~5 (root mean square)
    发散角/ mrad~5 (FWHM)
    峰值能量keV—20 MeV
    单能性准单能(线性)/连续谱(非线性)*
    单发光子数107—1010
    峰值亮度/ ph·(s·mm2·mrad2·0.1%BW)–11017—1022
    DownLoad: CSV
  • [1]

    Thomson J 1899 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47 253Google Scholar

    [2]

    Barkla C G 1903 Proc. Phys. Soc. London 19 185Google Scholar

    [3]

    Barkla C G 1903 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 5 685Google Scholar

    [4]

    Stephenson R J 1967 Am. J. Phys. 35 140Google Scholar

    [5]

    Compton A H 1923 Phys. Rev. 21 483Google Scholar

    [6]

    Compton A H 1923 Nature 112 435

    [7]

    Woo Y H 1925 Phys. Rev. 25 444Google Scholar

    [8]

    Woo Y H 1930 Proc. Natl. Acad. Sci. U.S.A. 16 814Google Scholar

    [9]

    Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 470Google Scholar

    [10]

    Woo Y H 1931 Proc. Natl. Acad. Sci. U.S.A. 17 467Google Scholar

    [11]

    Woo Y H 1931 Phys. Rev. 38 6Google Scholar

    [12]

    Woo Y H 1932 Phys.l Rev. 41 21Google Scholar

    [13]

    Woo Y H 1932 Phys. Rev. 39 555Google Scholar

    [14]

    D E Evans, J K 1969 Rep. Prog. Phys. 32 207Google Scholar

    [15]

    Glenzer S H, Redmer R 2009 Rev. Mod. Phys. 81 1625Google Scholar

    [16]

    Longair M S 2011 High-Energy Astrophysics (Cambridge: Cambridge University Press)

    [17]

    Prunty S L 2014 Phys. Scr. 89 128001Google Scholar

    [18]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [19]

    Harvey C, Heinzl T, Ilderton A 2009 Phys. Rev. A 79 063407Google Scholar

    [20]

    Heinzl T, Ilderton A 2009 Eur. Phys. J. D 55 359Google Scholar

    [21]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [22]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [23]

    Geddes C G R, Toth C, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538Google Scholar

    [24]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [25]

    Leemans W P, Nagler B, Gonsalves A J, Tóth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nat. Phys. 2 696Google Scholar

    [26]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [27]

    Mourou G A, Korn G, Sandner W, Collier J L 2011 ELI – Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers Whitebook at THOSS Media GmbH https://eli-laser.eu/media/1019/eli-whitebook.pdf

    [28]

    Papadopoulos D N, Zou J P, Blanc C L, Chériaux G, Georges P, Druon F, Mennerat G, Ramirez P, Martin L, Fréneaux A, Beluze A, Lebas N, Monot P, Mathieu F, Audebert P 2016 High Power Laser Sci. Eng. 4 e34Google Scholar

    [29]

    Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fusion 60 044002Google Scholar

    [30]

    Danson C N, Haefner C, Bromage J, Butcher T, Chanteloup J C F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J, Hillier D I, Hopps N W, Kato Y, Khazanov E A, Kodama R, Korn G, Li R X, Li Y T, Limpert J, Ma J G, Nam C H, Neely D, Papadopoulos D, Penman R R, Qian L J, Rocca J J, Shaykin A A, Siders C W, Spindloe C, Szatmari S, Trines R, Zhu J Q, Zhu P, Zuegel J D 2019 High Power Laser Science and Engineering 7 e54Google Scholar

    [31]

    Chu Y, Gan Z, Liang X, Yu L, Lu X, Wang C, Wang X, Xu L, Lu H, Yin D 2015 Opt. Lett. 40 5011Google Scholar

    [32]

    Zamfir N V 2014 Eur. Phys. J.-Spec. Top. 223 1221Google Scholar

    [33]

    Hernandez-Gomez C, Blake S P, Chekhlov O, et al. 2010 J. Phys.: Conf. Ser. 244 032006Google Scholar

    [34]

    Weber S, Bechet S, Borneis S, Brabec L, Bučka M, Chacon-Golcher E, Ciappina M, DeMarco M, Fajstavr A, Falk K 2018 Matter Radiat. Extremes 2 149

    [35]

    Wenchao Y, Colton F, Grigory G, Daniel H, Ji L, Ping Z, Baozhen Z, Jun Z, Cheng L, Min C, Shouyuan C, Sudeep B, Donald U 2017 Nat. Photonics 11 514Google Scholar

    [36]

    Vranic M, Martins J L, Vieira J, Fonseca R A, Silva L O 2014 Phys. Rev. Lett. 113 134801Google Scholar

    [37]

    Li J X, Hatsagortsyan K Z, Keitel C H 2014 Phys. Rev. Lett. 113 044801Google Scholar

    [38]

    Burton D A, Noble A 2014 Contemp. Phys. 55 110Google Scholar

    [39]

    Thomas A G R, Ridgers C P, Bulanov S S, Griffin B J, Mangles S P D 2012 Phys. Rev. X 2 041004

    [40]

    O'Connell R F 2012 Contemp. Phys. 53 301Google Scholar

    [41]

    Di Piazza A, Mueller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [42]

    Bulanov S V, Esirkepov T Z, Kando M, Koga J K, Bulanov S S 2011 Phys. Rev. E 84 056605Google Scholar

    [43]

    Hammond R T 2010 Phys. Rev. A 81 062104Google Scholar

    [44]

    Di Piazza A, Hatsagortsyan K Z, Keitel C H 2009 Phys. Rev. Lett. 102 254802Google Scholar

    [45]

    Di Piazza A 2016 Phys. Rev. Lett. 117 213201Google Scholar

    [46]

    Gu Y J, Klimo O, Bulanov S V, Weber S 2018 Commun. Phys. 1 93Google Scholar

    [47]

    Ilderton A 2011 Phys. Rev. Lett. 106 020404Google Scholar

    [48]

    Hu H, Mueller C, Keitel C H 2010 Phys. Rev. Lett. 105 080401Google Scholar

    [49]

    Gu Y J, Klimo O, Weber S, Korn G 2016 New J. Phys. 18 113023Google Scholar

    [50]

    Sarri G, Schumaker W, Di Piazza A, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V, He Z H 2013 Phys. Rev. Lett. 110 255002Google Scholar

    [51]

    Sarri G, Poder K, Cole J M, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G 2015 Nat. Commun. 6 6747Google Scholar

    [52]

    Bulanov S V, Sasorov P, Bulanov S S, Korn G 2019 Phys. Rev. D 100 016012 6

    [53]

    Sengupta N D 1949 Bull. Calcutta Math. Soc. 41 187

    [54]

    Sarachik E S, Schappert G T 1970 Phys. Rev. D 1 2738Google Scholar

    [55]

    Salamin Y I, Faisal F H M 1996 Phys. Rev. A 54 4383Google Scholar

    [56]

    Brown L S, Kibble T W B 1964 Phys. Rev. 133 A705Google Scholar

    [57]

    Goldman I I 1964 Sov. Phys. JETP 19 954

    [58]

    Nikishov A I, Ritus V I 1964 Sov. Phys. JETP 19 529

    [59]

    Chen S Y, Maksimchuk A, Umstadter D 1998 Nature 396 653Google Scholar

    [60]

    Koga J, Esirkepov T Z, Bulanov S V 2005 Phys. Plasmas 12 093106Google Scholar

    [61]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003

    [62]

    Bula C, McDonald K T, Prebys E J, Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L 1996 Phys. Rev. Lett. 76 3116Google Scholar

    [63]

    Leemans W P, Schoenlein R W, Volfbeyn P, Chin A H, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Phys. Rev. Lett. 77 4182Google Scholar

    [64]

    Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [65]

    Albert F, Anderson S G, Gibson D J, Hagmann C A, Johnson M S, Messerly M, Semenov V, Shverdin M Y, Rusnak B, Tremaine A M, Hartemann F V, Siders C W, McNabb D P, Barty C P J 2010 Phys. Rev. Spec. Top.-Accel. Beams 13 070704Google Scholar

    [66]

    Banerjee S, Kalmykov S Y, Powers N D, Golovin G, Ramanathan V, Cunningham N J, Brown K J, Chen S, Ghebregziabher I, Shadwick B A, Umstadter D P, Cowan B M, Bruhwiler D L, Beck A, Lefebvre E 2013 Phys. Rev. Spec. Top. - Accel. Beams 16

    [67]

    Maier A R, Delbos N M, Eichner T, Hübner L, Jalas S, Jeppe L, Jolly S W, Kirchen M, Leroux V, Messner P, Schnepp M, Trunk M, Walker P A, Werle C, Winkler P 2020 Phys. Rev. X 10 031039

    [68]

    Li Y F, Li D Z, Huang K, Tao M Z, Li M H, Zhao J R, Ma Y, Guo X, Wang J G, Chen M 2017 Phys. Plasmas 24 023108Google Scholar

    [69]

    Couperus J P, Pausch R, Köhler A, Zarini O, Krämer J M, Garten M, Huebl A, Gebhardt R, Helbig U, Bock S, Zeil K, Debus A, Bussmann M, Schramm U, Irman A 2017 Nat. Commun. 8 487Google Scholar

    [70]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [71]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [72]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E 2013 Nat. Commun. 4

    [73]

    Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [74]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [75]

    Schwoerer H, Liesfeld B, Schlenvoigt H P, Amthor K U, Sauerbrey R 2006 Phys. Rev. Lett. 96 014802Google Scholar

    [76]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [77]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106 9

    [78]

    Tsai H E, Arefiev A V, Shaw J M, Stark D J, Wang X, Zgadzaj R, Downer M C 2017 Phys. Plasmas 24 013106Google Scholar

    [79]

    Döpp A, Guillaume E, Thaury C, Gautier J, Andriyash I, Lifschitz A, Malka V, Rousse A, Phuoc K T 2016 Plasma Phys. Controlled Fusion 58 034005Google Scholar

    [80]

    Yu C, Qi R, Wang W, Liu J, Li W, Wang C, Zhang Z, Liu J, Qin Z, Fang M 2016 Sci. Rep. 6 29518Google Scholar

    [81]

    Feng J, Wang J, Li Y, Zhu C, Li M, He Y, Li D, Wang W, Chen L 2017 Phys. Plasmas 24 093110Google Scholar

    [82]

    Zhu C, Wang J, Feng J, Li Y, Li D, Li M, He Y, Ma J, Tan J, Zhang B 2018 Plasma Phys. Controlled Fusion 61 024001

    [83]

    Ma Y, Hua J, Liu D, He Y, Zhang T, Chen J, Yang F, Ning X, Yang Z, Zhang J, Pai C H, Gu Y, Lu W 2020 Matter Radiat. Extremes 5 064401Google Scholar

    [84]

    Schindler S, Doepp A, Ding H, et al. 2019 SPIE Proceedings 11037 11037Google Scholar

    [85]

    Wenz J, Doepp A, Khrennikov K, Schindler S, Gilljohann M F, Ding H, Gotzfried J, Buck A, Xu J, Heigoldt M, Helml W, Veisz L, Karsch S 2019 Nat. Photonics 13 263Google Scholar

    [86]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [87]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2014 Nat. Photonics 8 28Google Scholar

    [88]

    Golovin G, Banerjee S, Chen S, Powers N, Liu C, Yan W, Zhang J, Zhang P, Zhao B, Umstadter D 2016 Nucl. Instrum. Methods Phys. Res., Sec. A 830 375Google Scholar

    [89]

    Liu C, Golovin G, Chen S, Zhang J, Zhao B, Haden D, Banerjee S, Silano J, Karwowski H, Umstadter D 2014 Opt. Lett. 39 4132Google Scholar

    [90]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Di Piazza A, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [91]

    Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003Google Scholar

    [92]

    Liu C, Zhang J, Chen S, Golovin G, Banerjee S, Zhao B, Powers N, Ghebregziabher I, Umstadter D 2014 Opt. Lett. 39 80Google Scholar

    [93]

    Zhao B, Banerjee S, Yan W, Zhang P, Zhang J, Golovin G, Liu C, Fruhling C, Haden D, Chen S 2018 Opt. Commun. 412 141Google Scholar

    [94]

    Corvan D J, Sarri G, Zepf M 2014 Rev. Sci. Instrum. 85 065119Google Scholar

    [95]

    Kojima S, Ikenouchi T, Arikawa Y, Sakata S, Zhang Z, Abe Y, Nakai M, Nishimura H, Shiraga H, Ozaki T, Miyamoto S, Yamaguchi M, Takemoto A, Fujioka S, Azechi H 2016 Rev. Sci. Instrum. 87 43502Google Scholar

    [96]

    Singh S, Versaci R, Laso Garcia A, Morejon L, Ferrari A, Molodtsova M, Schwengner R, Kumar D, Cowan T 2018 Rev. Sci. Instrum. 89 085118Google Scholar

    [97]

    Haden D, Golovin G, Yan W, Fruhling C, Zhang P, Zhao B, Banerjee S, Umstadter D 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 951 1630329

    [98]

    Cole J M, Behm K T, Gerstmayr E, Blackburn T G, Wood J C, Baird C D, Duff M J, Harvey C, Ilderton A, Joglekar A S 2018 Phys. Rev. X 8 011020

    [99]

    Poder K, Tamburini M, Sarri G, Di Piazza A, Kuschel S, Baird C D, Behm K, Bohlen S, Cole J M, Corvan D J 2018 Phys. Rev. X 8 031004

    [100]

    Samarin G M, Zepf M, Sarri G 2018 J. Mod. Opt. 65 1362Google Scholar

    [101]

    Petrillo V, Dattoli G, Drebot I, Nguyen F 2016 Phys. Rev. Lett. 117 123903Google Scholar

    [102]

    Chen Y Y, Hatsagortsyan K Z, Keitel C H 2019 Matter Radiat. Extremes 4 024401Google Scholar

    [103]

    Albert F, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001Google Scholar

    [104]

    Umstadter D P 2015 Contemp. Phys. 56 417Google Scholar

    [105]

    Albert F, Thomas A G R, Mangles S P D, Banerjee S, Corde S, Flacco A, Litos M, Neely D, Vieira J, Najmudin Z 2014 Plasma Phys. Controlled Fusion 56 084015Google Scholar

    [106]

    Kando M, Esirkepov T, Koga J, Pirozhkov A, Bulanov S 2018 Quantum Beam Science 2 9Google Scholar

    [107]

    Kando M, Pirozhkov A S, Kawase K, Esirkepov T Z, Fukuda Y, Kiriyama H, Okada H, Daito I, Kameshima T, Hayashi Y 2009 Phys. Rev. Lett. 103 235003Google Scholar

    [108]

    Bulanov S V, Esirkepov T Z, Kando M, Pirozhkov A S, Rosanov N N 2013 Phys. Usp. 56 429Google Scholar

    [109]

    Petrillo V, Serafini L, Tomassini P 2008 Phys. Rev. Spec. Top. Accel. Beams 11 070703Google Scholar

    [110]

    Li F Y, Sheng Z M, Liu Y, Meyer-ter-Vehn J, Mori W B, Lu W, Zhang J 2013 Phys. Rev. Lett. 110 135002Google Scholar

    [111]

    Meyer-Ter-Vehn J, Wu H C 2009 Eur. Phys. J. D 55 433Google Scholar

    [112]

    Wu H C, Meyer-ter-Vehn J, Fernandez J, Hegelich B M 2010 Phys. Rev. Lett. 104 234801Google Scholar

    [113]

    Wu H C, Meyer-ter-Vehn J 2012 Nat. Photonics 6 304Google Scholar

    [114]

    Golovin G, Banerjee S, Liu C, et al. 2016 Sci. Rep. 6 24622Google Scholar

    [115]

    Har-Shemesh O, Di Piazza A 2012 Opt. Lett. 37 1352Google Scholar

    [116]

    Gu Y J, Weber S 2018 Opt. Express 26 19932Google Scholar

  • [1] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu. K-X rays induced by helium-like C ions in thick target atoms of different metals. Acta Physica Sinica, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] Yang Lu, Wang Xiao-Nan, Chen Xin, Chen Peng-Fan, Xia Qian-Wen, Xiong Li, Long Hao-Yu, Li Lin-Yang, Mao Xiao-Bao, Zhou Hai-Long, Zhang Wei-Wei, Lan Xiao-Fei, He Yang-Fan. An enhanced radiation pressure acceleration scheme for accelerating protons using the uniform density plasma channel. Acta Physica Sinica, 2024, 73(11): 115202. doi: 10.7498/aps.73.20240032
    [3] Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities. Acta Physica Sinica, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [4] Zhou Shao-Tong, Ren Xiao-Dong, Huang Xian-Bin, Xu Qiang. Soft x-ray imaging system used for Z-pinch experiments. Acta Physica Sinica, 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [5] Ye Han-Sheng, Gu Yu-Qiu, Huang Wen-Hui, Wu Yu-Chi, Tan Fang, Zhang Xiao-Hui, Wang Shao-Yi. Parameter optimization of self-reflecting all-laser-driven Thomson scattering based on laser wakefield acceleration. Acta Physica Sinica, 2021, 70(8): 085204. doi: 10.7498/aps.70.20210549
    [6] Qiang Peng-Fei, Sheng Li-Zhi, Li Lin-Sen, Yan Yong-Qing, Liu Zhe, Zhou Xiao-Hong. Optical design of X-ray focusing telescope. Acta Physica Sinica, 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [7] Ma Kun, Jiao Zheng, Jiang Feng-Jian, Ye Jian-Feng, Lv Hai-Jiang, Chen Zhan-Bin. Theoretical calculation of Kα and Kβ X-ray satellite and hypersatellite structures for hollow argon atoms. Acta Physica Sinica, 2018, 67(17): 173201. doi: 10.7498/aps.67.20180553
    [8] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xe26+ of the different kinetic energies on Au surface. Acta Physica Sinica, 2014, 63(16): 163201. doi: 10.7498/aps.63.163201
    [9] Zhang Xiao-An, Mei Ce-Xiang, Zhao Yong-Tao, Cheng Rui, Wang Xing, Zhou Xian-Ming, Lei Yu, Sun Yuan-Bo, Xu Ge, Ren Jie-Ru. X-ray emission of C6+ pulsed ion beams of CSR impacting on Au target. Acta Physica Sinica, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [10] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Cheng Rui, Zhou Xian-Ming, Lei Yu, Wang Xing, Sun Yuan-Bo, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 152Eu20+ of near Bohn velocity on Au surface. Acta Physica Sinica, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [11] Liu Shen-Ye, Huang Yi-Xiang, Hu Xin, Zhang Ji-Yan, Yang Guo-Hong, Li Jun, Yi Rong-Qing, Du Hua-Bing, Ding Yong-Kun. Experimental research on X-ray radiation and ablation of an Ag foil targets irradiated by high intensity 2ω0 laser light beam. Acta Physica Sinica, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [12] Huang Kai, Yan Wen-Chao, Li Ming-Hua, Tao Meng-Ze, Chen Yan-Ping, Chen Jie, Yuan Xiao-Hui, Zhao Jia-Rui, Ma Yong, Li Da-Zhang, Gao Jie, Chen Li-Ming, Zhang Jie. X-ray source produced by laser solid target interaction at kHz repetition rate. Acta Physica Sinica, 2013, 62(20): 205204. doi: 10.7498/aps.62.205204
    [13] Zhou Shao-Tong, Li Jun, Huang Xian-Bin, Cai Hong-Chun, Zhang Si-Qun, Li Jing, Duan Shu-Chao, Zhou Rong-Guo. Experimental investigation of radiation charactristics of Ti wire X-pinch X-ray source on Yang accelerator. Acta Physica Sinica, 2012, 61(16): 165202. doi: 10.7498/aps.61.165202
    [14] Sun Yan-Qian, Chen Li-Ming, Zhang Lu, Mao Jing-Yi, Liu Feng, Li Da-Zhang, Liu Cheng, Li Wei-Chang, Wang Zhao-Hua, Li Ying-Jun, Wei Zhi-Yi, Zhang Jie. X-ray source generation under laser-Ar cluster interaction. Acta Physica Sinica, 2012, 61(7): 075206. doi: 10.7498/aps.61.075206
    [15] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xeq+ on Mo surface. Acta Physica Sinica, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [16] Liu Xin, Lei Yao-Hu, Zhao Zhi-Gang, Guo Jin-Chuan, Niu Han-Ben. Design and fabrication of hard X-ray phase grating. Acta Physica Sinica, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [17] Chen Bo, Zhu Pei_Ping, Liu Yi-Jin, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Ming Hai, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [18] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] Zhao Yong-Tao, Xiao Guo-Qing, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Li Fu-Li, Zhang Yan-Ping, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The x-ray spectra of hollow atoms. Acta Physica Sinica, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [20] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
Metrics
  • Abstract views:  7542
  • PDF Downloads:  279
  • Cited By: 0
Publishing process
  • Received Date:  11 February 2021
  • Accepted Date:  21 March 2021
  • Available Online:  13 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回