Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface segregation, structural features, and diffusion of NiCu bimetallic nanoparticles

Deng Yong-He Zhang Yu-Wen Tan Heng-Bo Wen Da-Dong Gao Ming Wu An-Ru

Citation:

Surface segregation, structural features, and diffusion of NiCu bimetallic nanoparticles

Deng Yong-He, Zhang Yu-Wen, Tan Heng-Bo, Wen Da-Dong, Gao Ming, Wu An-Ru
PDF
HTML
Get Citation
  • Bimetallic core-shell nanoparticles such as NiCu are of great interest not only due to their excellent stability, selectivity, and magnetic and catalytic properties, but also because they are tunable by changing the morphology, surface element distribution, and particle size of the nanoparticles. The surface segregation and structural features of NiCu bimetallic nanoparticles, the deposition growth and the surface diffusion of Cu adsorbed atoms on the Ni substrate surface are studied by using molecular dynamics and the Montero method combined with embedded atomic potential. The results show that the Cu atom has a strong tendency of surface segregation. With the increase of concentration of Cu atoms, Cu atoms preferentially occupy the vertex, edge, (100), and (111) facet of nanoparticles due to the difference in configuration energy between Cu atoms and surface Ni atoms with different coordination numbers after the exchange, and finally form perfect Ni-core/Cu-shell nanoparticles. When growth temperature T = 400 K, the Ni-core/Cu-shell structure formed is the most stable. By observing the NiCu core-shell structure’s growth sequence, it is found that a few Ni atoms are replaced by Cu atoms on the step edge of the Ni substrate. The diffusion energy barrier of Cu atoms adsorbed on a Ni substrate surface is calculated by using the nudged elastic band method. The results show that Cu atoms adsorbed need to overcome a large ES barrier for both exchange and diffusion, making it difficult to diffuse between the facets of Ni substrate surface in a temperature range of 200–800 K. The lowest energy barrier for the diffusion of Cu atoms between facets of Ni substrate surface is 0.43 eV, and the diffusion path is from (111) facet to (100) facet. In contrast to Ni substrate, Ni atoms deposited on Cu substrate can easily migrate from the (111) facet to the (100) facet with a diffusion energy barrier of only about 0.12 eV, and at the present simulated temperature, Ni adsorbed atoms are unable to migrate on the (100) facet, resulting in a growth configuration toward an octahedral shape with its eight apex angles almost occupied by Ni atoms. In this paper, a new idea and method are provided for the preliminary design of NiCu nano-catalysts from atoms.
      Corresponding author: Deng Yong-He, dengyonghe1@163.com
    • Funds: Projects supported by the National Natural Science Foundation of China (Grant Nos. 51701071, 51871096) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2016JJ5028, 2018JJ3100)
    [1]

    Yang J Y, Hu W Y, Dai X Y 2018 Comput. Mater. Sci 154 371Google Scholar

    [2]

    Riccardo F, Julius J, Johnston R L 2008 Chem. Rev. 108 845Google Scholar

    [3]

    Nguyen N H, Hu A, Persic J, Wen J Z 2011 Chem. Phys. Lett. 503 112Google Scholar

    [4]

    Huang R, Wen Y H, Shao G F, Sun S G 2013 J. Phys. Chem. C 117 4278Google Scholar

    [5]

    Yang J Y, Hu W Y, Tang J F 2015 Thin Solid Films 593 137Google Scholar

    [6]

    Huang R, Wen Y H, Zhu Z Z, Sun S G 2012 J. Phys. Chem. C 116 8664Google Scholar

    [7]

    Mobedpour B, Rajabdoust S, Roumina R 2018 Comput. Mater. Sci 151 132Google Scholar

    [8]

    Henz B J, Hawa T, Zachariah M 2009 Mol. Simul. 35 804Google Scholar

    [9]

    Yang L Y, Gan X L, Xu C, Lang L, Jian Z Y, Xiao S F, Deng H Q, Li X F, Tian Z A, Hu W Y 2019 Comput. Mater. Sci. 156 47Google Scholar

    [10]

    Jian L G, Qiang W, Tian L H, Kai W, Cheng H J 2008 Chin. Phys. B 17 3343Google Scholar

    [11]

    Yang J Y, Hu W Y, Wu Y Q, Dai X Y 2012 Cryst. Growth Des. 12 2978Google Scholar

    [12]

    Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Surf. Sci. 606 971Google Scholar

    [13]

    Tang J F, Yang J Y 2013 Thin Solid Films 536 318Google Scholar

    [14]

    Dai X Y, Hu W Y, Yang J Y, Chen C P 2015 Physica B 458 144Google Scholar

    [15]

    Yang J Y, Hu W Y, Tang J F, Dai X Y 2013 Comput. Mater. Sci. 74 160Google Scholar

    [16]

    Baletto F, Mottet C, Ferrando R 2002 Phys. Rev. B 66 155420Google Scholar

    [17]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504Google Scholar

    [18]

    Baletto F, Mottet C, Ferrando R 2003 Eur. Phys. J. D 24 233Google Scholar

    [19]

    Baletto F, Mottet C, Rapallo A, Rossi G, Ferrando R 2004 Surf. Sci. 566-568 192

    [20]

    Deng L, Hu W Y, Deng H Q, Xiao S F 2010 J. Phys. Chem. C 114 11026Google Scholar

    [21]

    Deng L, Hu W Y, Deng H Q, Xiao S F, Tang J F 2011 J. Phys. Chem. C 115 11355

    [22]

    Deng L, Deng H Q, Xiao S F, Tang J F, Hu W Y 2013 Faraday Discuss. 162 293Google Scholar

    [23]

    Tang J, Deng L, Deng H, Xiao S, Zhang X, Hu W 2014 J. Phys. Chem. C 118 27850Google Scholar

    [24]

    Tang J, Deng L, Xiao S, Deng H, Zhang X, Hu W 2015 J. Phys. Chem. C 119 21515Google Scholar

    [25]

    Austin N, Butina B, Mpourmpakis G 2016 Prog. Nat. Sci. 26 487Google Scholar

    [26]

    Tripathi A, Hareesh C, Sinthika S, Andersson G, Thapa R 2020 Appl. Surf. Sci. 528 146964Google Scholar

    [27]

    Aslan M 2021 Mater. Today. Commun 26 101821Google Scholar

    [28]

    Buendia F, Anzaldo A T, Vital C, Beltran M R 2020 J. Chem. Phys. 152 024303Google Scholar

    [29]

    Yamauchi T, Tsukahara Y, Sakata T, Mori H, Yanagida T, Kawai T, Wada Y 2010 Nanoscale 2 515Google Scholar

    [30]

    Bonet F, Grugeon S, Dupont L, Herrera U R, Guéry C, Tarascon J M 2003 J. Solid State Chem. 172 111Google Scholar

    [31]

    Chatterjee J, Bettge M, Haik Y, Jen Chen C 2005 J. Magn. Magn. Mater. 293 303Google Scholar

    [32]

    Hristova E, Dong Y, Grigoryan V G, Springborg M 2008 J. Phys. Chem. A 112 7905Google Scholar

    [33]

    Xiao K, Qi X, Bao Z, Wang X, Zhong L, Fang K, Lin M, Sun Y 2013 Catal. Sci. Technol 3 1591Google Scholar

    [34]

    Quaino P, Belletti G, Shermukhamedov S A, Glukhov D V, Santos E, Schmickler W, Nazmutdinov R 2017 Phys. Chem. Chem. Phys. 19 26812Google Scholar

    [35]

    Guisbiers G, Khanal S, Ruiz-Zepeda F, Roque de la Puente J, Jose-Yacaman M 2014 Nanoscale 6 14630Google Scholar

    [36]

    Panizon E, Olmos-Asar J A, Peressi M, Ferrando R 2015 Phys. Chem. Chem. Phys. 17 28068Google Scholar

    [37]

    Mendes P C D, Justo S G, Mucelini J, Soares M D, Batista K E A, Quiles M G, Piotrowski M J, Da Silva J L F 2019 J. Phys. Chem. C 124 1158

    [38]

    Hardeveld R, Hartog F 1969 Surf. Sci. 15 189Google Scholar

    [39]

    Wang G, Hove M A, Ross P, Baskes M I 2005 Prog. Surf. Sci. 79 28

    [40]

    Dzhurakhalov A, Marc H 2007 Phys. Rev. B 76 045429Google Scholar

    [41]

    Martin T P 1996 Phys. Rep. 273 199Google Scholar

    [42]

    Onat B, Durukanoglu S 2013 J. Phys. Condes. Matter 26 035404

    [43]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [44]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng 18 015012Google Scholar

    [45]

    Cleveland C L, Luedtke W D, Landman U 1999 Phys. Rev. B 60 5065Google Scholar

    [46]

    Zhi Z, Hu W Y, Xiao S F 2006 Phys. Rev. B 73 125443Google Scholar

    [47]

    Huang R, Wen Y H, Zhu Z Z, Sun S G 2012 J. Phys. Chem. C 116 11837

    [48]

    Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501Google Scholar

    [49]

    Feng D, Feng Y, Yuan S, Zhang X, Wang G 2017 Appl. Therm. Eng 111 1457Google Scholar

    [50]

    Hamid I, Fang M, Duan H 2015 AIP Adv 5 047129Google Scholar

    [51]

    Ding F, Rosén A, Bolton K 2004 Phys. Rev. B 70 075416Google Scholar

    [52]

    Wang Q, Wang X, Liu J, Yang Y 2017 J. Nanopart. Res 19 25Google Scholar

    [53]

    Vitos L, Ruban A V, Skriver H L, Kollár J 1998 Surf. Sci. 411 186Google Scholar

    [54]

    Abbaspour M, Akbarzadeh H, Lotfi S 2018 J. Alloys. Compd. 764 323Google Scholar

    [55]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520Google Scholar

    [56]

    Strohl J K, King T S 1989 J. Catal. 116 540Google Scholar

    [57]

    Tang J F, Yang J Y 2013 J. Nanopart. Res 15 2050Google Scholar

    [58]

    高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平 2020 物理学报 69 046401Google Scholar

    Gao M, Deng Y H, Wen D D, Tian Z A, Zhao H P, Peng P 2020 Acta Phys Sin 69 046401Google Scholar

    [59]

    Zhang Y W, Deng Y H, Zeng Q F, Wen D D, Zhao H P, Gao M, Dai X Y, Wu A R 2020 Chin. Phys. B 29 116601Google Scholar

    [60]

    张宇文, 邓永和, 文大东, 赵鹤平, 高明 2020 物理学报 69 136601Google Scholar

    Zhang Y W, Dong Y H, Wen D D, Zhao H P, Gao M 2020 Acta Phys Sin 69 136601Google Scholar

  • 图 1  (a) TOC结构纳米粒子的总原子数与表面原子数比例随尺寸的关系; (b) TOC纳米粒子的表面催化位点比例随尺寸的关系

    Figure 1.  (a) The total atom number and surface atom percentage of TOC structure nanoparticles as a function of nanoparticle size; (b) the relationship between the surface catalytic sites density of TOC structure nanoparticles and the size of nanoparticles.

    图 2  具有TOC结构的Ni和Cu纳米粒子的每原子势能和林德曼指数随温度的变化

    Figure 2.  Relations of the potential energy per atom and Lindemann index as a function of temperature for the Ni and Cu nanoparticles with TOC structures.

    图 3  在200 K, 586原子的Ni1–xCux双金属纳米粒子中Cu的分布随Cu浓度的变化

    Figure 3.  Variation of the fractional composition of Cu at different surface sites as a function of overall Cu composition for 586 atom nanoparticles at T = 200 K.

    图 4  Ni, Cu纳米粒子的表面能随原子尺寸的关系

    Figure 4.  Variation of the surface energy of Ni and Cu nanoparticles as atomic number.

    图 5  随机和偏析结构的Ni1–xCux双金属纳米粒子的形成热与Cu原子浓度的变化关系. 实线为偏析结构, 虚线为随机结构

    Figure 5.  The formation energy of Ni1–xCux bimetallic nanoparticles with random and segregation structure varies with the concentration of Cu atom. The solid line is a segregation structure, and the dotted line is a random structure.

    图 6  在200 K, 586个原子TOC形貌的Ni1–xCux双金属纳米粒子结构. 橘红色和海蓝色的球分别表示Cu原子和Ni原子

    Figure 6.  Configurations and cross-section snapshots of 586 atom TOC Ni1–xCux nanoparticles at T = 200 K. The orange-red and sea-blue balls represent Cu atoms and Ni atoms, respectively.

    图 7  在温度T = 200, 400, 600和800 K下, $N_{\rm{Ni}}^{{\rm{surf}}} $$N_{\rm{Cu}}^{{\rm{bulk}}} $与沉积的Cu原子数的函数关系

    Figure 7.  The growth of Cu atoms on the TOC Ni substrate with 1289 atoms at T = 200, 400, 600, and 800 K, the $N_{\rm{Ni}}^{{\rm{surf}}} $ and $N_{\rm{Cu}}^{{\rm{bulk}}} $ as a function of the deposited Cu atoms (Ndep).

    图 8  T = 400 K, Al原子在Ni TOC1289基底上的生长序列 (a) Ndep = 100; (b) Ndep = 200; (c) Ndep = 300; (d) Ndep = 400; (e) Ndep = 500; (f) Ndep = 600. 橘红色和海蓝色的球分别表示Cu原子和Ni原子

    Figure 8.  Growth sequence of NiCu clusters at T = 400 K. The snapshots of the growth simulation for various Ndep of 100, 200, 300, 400, 500, and 600. The orange-red and sea-blue ball show the Cu and the Ni atom, respectively.

    图 9  Cu (Ni) 吸附原子在Ni TOC1289 (Cu TOC1289) 基底表面的扩散势垒 (a) Ni-基底 (111)→(100); (b) Ni基底 (111)→(111); (c) Cu基底 (111)→(100); (d) Cu基底 (111)→(111). 橘红色和海蓝色的球分别表示Cu原子和Ni原子

    Figure 9.  The diffusion energy barrier of Cu adatom on the surface of the Ni TOC1289: (a) Ni-base (111)→(100) facet; (b) Ni-base (111)→(111) facet; (c) Cu-base (111)→(100) facet; (d) Cu-base (111)→(111) facet. The orange-red and sea-blue balls represent Cu atoms and Ni atoms, respectively.

    图 10  T = 400 K, Ni原子在Cu TOC1289基底上的生长序列 (a) Ndep = 100; (b) Ndep = 200; (c) Ndep = 300. 橘红色和海蓝色的球分别表示Cu原子和Ni原子

    Figure 10.  Growth sequence of NiCu clusters at T = 400 K: (a) Ndep = 100; (b) Ndep = 200; (c) Ndep = 300. The orange-red and sea-blue ball show the Cu and the Ni atom respectively.

    表 1  对于586原子的TOC纳米粒子, 内部Cu原子与表面Ni原子交换后构型能差值 (∆E, 单位: eV/atom), 数字6, 7, 8, 9和12分别表示顶点、边缘、(100) 面、(111) 面和体内的位置

    Table 1.  Configuration energy difference values (∆E, unit: eV/ atom) for a bulk Cu atom exchanging with surface Ni atoms for the TOC nanoparticles of 586 atoms. The numbers 6, 7, 8, 9, and 12 are represent the sites at the vertex, edge, (100) facet, (111) facet, and bulk, respectively

    ConfigurationE/(eV·atom–1)
    12 → 6–0.395
    12 → 7–0.303
    12 → 8–0.194
    12 → 9–0.149
    DownLoad: CSV
  • [1]

    Yang J Y, Hu W Y, Dai X Y 2018 Comput. Mater. Sci 154 371Google Scholar

    [2]

    Riccardo F, Julius J, Johnston R L 2008 Chem. Rev. 108 845Google Scholar

    [3]

    Nguyen N H, Hu A, Persic J, Wen J Z 2011 Chem. Phys. Lett. 503 112Google Scholar

    [4]

    Huang R, Wen Y H, Shao G F, Sun S G 2013 J. Phys. Chem. C 117 4278Google Scholar

    [5]

    Yang J Y, Hu W Y, Tang J F 2015 Thin Solid Films 593 137Google Scholar

    [6]

    Huang R, Wen Y H, Zhu Z Z, Sun S G 2012 J. Phys. Chem. C 116 8664Google Scholar

    [7]

    Mobedpour B, Rajabdoust S, Roumina R 2018 Comput. Mater. Sci 151 132Google Scholar

    [8]

    Henz B J, Hawa T, Zachariah M 2009 Mol. Simul. 35 804Google Scholar

    [9]

    Yang L Y, Gan X L, Xu C, Lang L, Jian Z Y, Xiao S F, Deng H Q, Li X F, Tian Z A, Hu W Y 2019 Comput. Mater. Sci. 156 47Google Scholar

    [10]

    Jian L G, Qiang W, Tian L H, Kai W, Cheng H J 2008 Chin. Phys. B 17 3343Google Scholar

    [11]

    Yang J Y, Hu W Y, Wu Y Q, Dai X Y 2012 Cryst. Growth Des. 12 2978Google Scholar

    [12]

    Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Surf. Sci. 606 971Google Scholar

    [13]

    Tang J F, Yang J Y 2013 Thin Solid Films 536 318Google Scholar

    [14]

    Dai X Y, Hu W Y, Yang J Y, Chen C P 2015 Physica B 458 144Google Scholar

    [15]

    Yang J Y, Hu W Y, Tang J F, Dai X Y 2013 Comput. Mater. Sci. 74 160Google Scholar

    [16]

    Baletto F, Mottet C, Ferrando R 2002 Phys. Rev. B 66 155420Google Scholar

    [17]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504Google Scholar

    [18]

    Baletto F, Mottet C, Ferrando R 2003 Eur. Phys. J. D 24 233Google Scholar

    [19]

    Baletto F, Mottet C, Rapallo A, Rossi G, Ferrando R 2004 Surf. Sci. 566-568 192

    [20]

    Deng L, Hu W Y, Deng H Q, Xiao S F 2010 J. Phys. Chem. C 114 11026Google Scholar

    [21]

    Deng L, Hu W Y, Deng H Q, Xiao S F, Tang J F 2011 J. Phys. Chem. C 115 11355

    [22]

    Deng L, Deng H Q, Xiao S F, Tang J F, Hu W Y 2013 Faraday Discuss. 162 293Google Scholar

    [23]

    Tang J, Deng L, Deng H, Xiao S, Zhang X, Hu W 2014 J. Phys. Chem. C 118 27850Google Scholar

    [24]

    Tang J, Deng L, Xiao S, Deng H, Zhang X, Hu W 2015 J. Phys. Chem. C 119 21515Google Scholar

    [25]

    Austin N, Butina B, Mpourmpakis G 2016 Prog. Nat. Sci. 26 487Google Scholar

    [26]

    Tripathi A, Hareesh C, Sinthika S, Andersson G, Thapa R 2020 Appl. Surf. Sci. 528 146964Google Scholar

    [27]

    Aslan M 2021 Mater. Today. Commun 26 101821Google Scholar

    [28]

    Buendia F, Anzaldo A T, Vital C, Beltran M R 2020 J. Chem. Phys. 152 024303Google Scholar

    [29]

    Yamauchi T, Tsukahara Y, Sakata T, Mori H, Yanagida T, Kawai T, Wada Y 2010 Nanoscale 2 515Google Scholar

    [30]

    Bonet F, Grugeon S, Dupont L, Herrera U R, Guéry C, Tarascon J M 2003 J. Solid State Chem. 172 111Google Scholar

    [31]

    Chatterjee J, Bettge M, Haik Y, Jen Chen C 2005 J. Magn. Magn. Mater. 293 303Google Scholar

    [32]

    Hristova E, Dong Y, Grigoryan V G, Springborg M 2008 J. Phys. Chem. A 112 7905Google Scholar

    [33]

    Xiao K, Qi X, Bao Z, Wang X, Zhong L, Fang K, Lin M, Sun Y 2013 Catal. Sci. Technol 3 1591Google Scholar

    [34]

    Quaino P, Belletti G, Shermukhamedov S A, Glukhov D V, Santos E, Schmickler W, Nazmutdinov R 2017 Phys. Chem. Chem. Phys. 19 26812Google Scholar

    [35]

    Guisbiers G, Khanal S, Ruiz-Zepeda F, Roque de la Puente J, Jose-Yacaman M 2014 Nanoscale 6 14630Google Scholar

    [36]

    Panizon E, Olmos-Asar J A, Peressi M, Ferrando R 2015 Phys. Chem. Chem. Phys. 17 28068Google Scholar

    [37]

    Mendes P C D, Justo S G, Mucelini J, Soares M D, Batista K E A, Quiles M G, Piotrowski M J, Da Silva J L F 2019 J. Phys. Chem. C 124 1158

    [38]

    Hardeveld R, Hartog F 1969 Surf. Sci. 15 189Google Scholar

    [39]

    Wang G, Hove M A, Ross P, Baskes M I 2005 Prog. Surf. Sci. 79 28

    [40]

    Dzhurakhalov A, Marc H 2007 Phys. Rev. B 76 045429Google Scholar

    [41]

    Martin T P 1996 Phys. Rep. 273 199Google Scholar

    [42]

    Onat B, Durukanoglu S 2013 J. Phys. Condes. Matter 26 035404

    [43]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [44]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng 18 015012Google Scholar

    [45]

    Cleveland C L, Luedtke W D, Landman U 1999 Phys. Rev. B 60 5065Google Scholar

    [46]

    Zhi Z, Hu W Y, Xiao S F 2006 Phys. Rev. B 73 125443Google Scholar

    [47]

    Huang R, Wen Y H, Zhu Z Z, Sun S G 2012 J. Phys. Chem. C 116 11837

    [48]

    Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501Google Scholar

    [49]

    Feng D, Feng Y, Yuan S, Zhang X, Wang G 2017 Appl. Therm. Eng 111 1457Google Scholar

    [50]

    Hamid I, Fang M, Duan H 2015 AIP Adv 5 047129Google Scholar

    [51]

    Ding F, Rosén A, Bolton K 2004 Phys. Rev. B 70 075416Google Scholar

    [52]

    Wang Q, Wang X, Liu J, Yang Y 2017 J. Nanopart. Res 19 25Google Scholar

    [53]

    Vitos L, Ruban A V, Skriver H L, Kollár J 1998 Surf. Sci. 411 186Google Scholar

    [54]

    Abbaspour M, Akbarzadeh H, Lotfi S 2018 J. Alloys. Compd. 764 323Google Scholar

    [55]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520Google Scholar

    [56]

    Strohl J K, King T S 1989 J. Catal. 116 540Google Scholar

    [57]

    Tang J F, Yang J Y 2013 J. Nanopart. Res 15 2050Google Scholar

    [58]

    高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平 2020 物理学报 69 046401Google Scholar

    Gao M, Deng Y H, Wen D D, Tian Z A, Zhao H P, Peng P 2020 Acta Phys Sin 69 046401Google Scholar

    [59]

    Zhang Y W, Deng Y H, Zeng Q F, Wen D D, Zhao H P, Gao M, Dai X Y, Wu A R 2020 Chin. Phys. B 29 116601Google Scholar

    [60]

    张宇文, 邓永和, 文大东, 赵鹤平, 高明 2020 物理学报 69 136601Google Scholar

    Zhang Y W, Dong Y H, Wen D D, Zhao H P, Gao M 2020 Acta Phys Sin 69 136601Google Scholar

  • [1] Liao Jing-Jing, Lin Fu-Jun. Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback. Acta Physica Sinica, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [2] Zhang Heng, Huang Yan, Shi Wang-Zhou, Zhou Xiao-Hao, Chen Xiao-Shuang. First-principles study on the diffusion dynamics of Al atoms on Si surface. Acta Physica Sinica, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [3] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [4] Gao Xue-Yun, Wang Hai-Yan, Li Chun-Long, Ren Hui-Ping, Li De-Chao, Liu Zong-Chang. First-principles study of the effect of lanthanum on the Cu diffusion mechanism in bcc-Fe. Acta Physica Sinica, 2014, 63(24): 248101. doi: 10.7498/aps.63.248101
    [5] Lv Bing, Linghu Rong-Feng, Song Xiao-Shu, Wang Xiao-Lu, Yang Xiang-Dong, He Duan-Wei. Adsorption and diffusion of oxygen on Pt (111) surface and subsurface. Acta Physica Sinica, 2012, 61(7): 076802. doi: 10.7498/aps.61.076802
    [6] Xiang Hui, Liu Da-Huan, Yang Qing-Yuan, Mi Jian-Guo, Zhong Chong-Li. Effect of framework flexibility on diffusion of short alkanes in metal-organic framework. Acta Physica Sinica, 2011, 60(9): 093602. doi: 10.7498/aps.60.093602
    [7] Wang Bo, Zhang Jian-Min, Yin Bao-Xiang, Lu Yan-Dong, Gan Xiu-Ying, Xu Ke-Wei. Anisotropy analysis of surface energy and prediction of surface segregation for fcc metals. Acta Physica Sinica, 2011, 60(1): 016601. doi: 10.7498/aps.60.016601
    [8] Lu Yu-Dong, He Xiao-Qi, En Yun-Fei, Wang Xin, Zhuang Zhi-Qiang. Directional diffusion of atoms in metal strips/bump interconnects of flip chip. Acta Physica Sinica, 2010, 59(5): 3438-3444. doi: 10.7498/aps.59.3438
    [9] Liu Jian-Cai, Zhang Xin-Ming, Chen Ming-An, Tang Jian-Guo, Liu Sheng-Dan. Simulation of surface segregation of in to Al(001) surface. Acta Physica Sinica, 2010, 59(8): 5641-5645. doi: 10.7498/aps.59.5641
    [10] Yang Chun, Feng Yu Fang, Yu Yi. Dynamics study of the adsorption and diffusion in early growth stage of AlN/α-Al2O3(0001) films. Acta Physica Sinica, 2009, 58(5): 3553-3559. doi: 10.7498/aps.58.3553
    [11] Cao Bo, Bao Liang-Man, Li Gong-Ping, He Shan-Hu. Diffusion and interface reaction of Cu and Si in Cu/SiO2/Si (111) systems. Acta Physica Sinica, 2006, 55(12): 6550-6555. doi: 10.7498/aps.55.6550
    [12] Wang Yong-Liang, Zhang Chao, Tang Xin, Zhang Qing-Yu. Influence of interaction between Cu adatoms on the hopping diffusion on Cu(001) surface. Acta Physica Sinica, 2006, 55(8): 4214-4220. doi: 10.7498/aps.55.4214
    [13] Yang Chun, Yu Yi, Li Yan-Rong, Liu Yong-Hua. Temperature effect on the adsorption, diffusion and initial growth mode of ZnO/Al2O3(0001) from first principles. Acta Physica Sinica, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [14] Tang Xin, Zhang Chao, Zhang Qing-Yu. Study on the influence of three-dimensional Cu(111) islands on the diffusion of adatom by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(12): 5797-5803. doi: 10.7498/aps.54.5797
    [15] Zhang Hui, Zhang Guo-Ying, Wang Rui-Dan, Zhou Yong-Jun, Li Xing. Influence of O adsorbed on different surfaces of NixCu1-x on the segregation of Cu. Acta Physica Sinica, 2005, 54(11): 5356-5361. doi: 10.7498/aps.54.5356
    [16] Wang Xiu-Ying, Gao Ming, Sun Li-Ling, Liu Ri-Ping, Zhang Jun, Wang Wen-Kui. Diffusion of implanted Mo in Zr57Nb5Cu15.4Ni12.6Al10 non-crystalline alloy. Acta Physica Sinica, 2004, 53(1): 200-203. doi: 10.7498/aps.53.200
    [17] Wang Xiu-Ying, Sun Li-Ling, Liu Ri-Ping, Yao Yu-Shu , Zhang Jun, Wang Wen-Kui. Diffusion of Co in Zr_46.75Ti_8.25Cu_7.5Ni_10Be_27.5 bulk metallic glass in supercooled liquid region under high pressure. Acta Physica Sinica, 2004, 53(11): 3845-3848. doi: 10.7498/aps.53.3845
    [18] Jin Jin-Sheng, Xia A-Gen, Ye Gao-Xiang. . Acta Physica Sinica, 2002, 51(9): 2144-2149. doi: 10.7498/aps.51.2144
    [19] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [20] CHEN MIN, WEI HE-LIN, LIU ZU-LI, YAO KAI-LUN. EFFECT OF LOW-ENERGY DEPOSITION PARTICLES ON INITIAL STAGE OF THIN FILM. Acta Physica Sinica, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
Metrics
  • Abstract views:  7229
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2021
  • Accepted Date:  14 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回