Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Control of firing mode in nonlinear neuron circuit driven by photocurrent

Xie Ying Zhu Zhi-Gang Zhang Xiao-Feng Ren Guo-Dong

Citation:

Control of firing mode in nonlinear neuron circuit driven by photocurrent

Xie Ying, Zhu Zhi-Gang, Zhang Xiao-Feng, Ren Guo-Dong
PDF
HTML
Get Citation
  • Firing patterns discern the electrical activities in biological neurons when intracellular and extracellular ions are pumped into cells and exchanged there. Artificial neural circuits can be tamed to reproduce similar firing modes from biological neurons by applying appropriate physical stimuli. Photocurrent generated in the phototube can be used as a signal source, which can stimulate the neural circuits, while the involvement of which branch circuit will be much different because the channel current can control the dynamics of functional neuron to a different degree. In this paper, based on a nonlinear (FitzHugh-Nagumo, FHN) neural circuit composed of one capacitor, induction coil, nonlinear resistor, two ideal resistors and one periodical stimulus, the phototube is incorporated into different branch circuits for changing the channel current and the biophysical role of photocurrent is investigated. The dynamical equations of three types of system are unified, though they fall in different areas in parameter space. The membrane potential can be directly changed and firing modes are switched when photocurrent is activated to change the channel current by connecting the phototube to the capacitor. The induced current across the induction coil is regulated to balance the external stimulus when the phototube is connected to the induction coil in series. The two types of photosensitive neuron models constructed in this paper are compared with the photocurrent driven inductive branch showing that the photocurrent driven capacitive branch can very effectively regulate the membrane potential and greatly improve the photosensitive sensitivity.
      Corresponding author: Zhu Zhi-Gang, zhuzg@lut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12072139) and the Lanzhou University Technology Doctoral Research Initiation Project, China (Grant No. 061906).
    [1]

    Torres J J, Elices I, Marro J 2015 Plos One 10 E0121156Google Scholar

    [2]

    Belykh I, De Lange E, Hasler M 2005 Phys. Rev. Lett. 94 188101Google Scholar

    [3]

    Wig G S, Schlaggar B L, Petersen S E 2011 Ann. Ny. Acad. Sci. 1224 126Google Scholar

    [4]

    Izhikevich E M 2004 IEEE T. Neural. Networ. 15 1063Google Scholar

    [5]

    Ozer M, Ekmekci N H 2005 Phys. Lett. A 338 150Google Scholar

    [6]

    Bao B C, Liu Z, Xu J P 2010 Electron Lett. 46 237Google Scholar

    [7]

    Li Q, Zeng H, Li J 2015 Nonlinear Dynam. 79 2295Google Scholar

    [8]

    Song X, Wang C, Ma J, Tang J 2015 Sci. China Technol. Sci. 58 1007Google Scholar

    [9]

    Lin W, Wang Y, Ying H, Lai Y C, Wang X 2015 Phys. Rev. E 92 012912Google Scholar

    [10]

    Ren G, Tang J, Ma J, Xu Y 2015 Commun. Nonlinear Sci. 29 170Google Scholar

    [11]

    Perc M, Marhl M 2005 Phys. Rev. E 71 026229Google Scholar

    [12]

    Perc M 2007 Chaos Soliton Fract. 32 1118Google Scholar

    [13]

    Takembo C N, Fouda H P E 2020 Sci. Rep. 10 1Google Scholar

    [14]

    Sharp A A, O'neil M B, Abbott L, Marder E 1993 Trends Neurosci. 16 389Google Scholar

    [15]

    Ma J, Zhang G, Hayat T, Ren G 2019 Nonlinear Dynam. 95 1585Google Scholar

    [16]

    Rocha R, Ruthiramoorthy J, Kathamuthu T 2017 Nonlinear Dynam. 88 2577Google Scholar

    [17]

    Binczak S, Jacquir S, Bilbault J-M, Kazantsev V B, Nekorkin V I 2006 Neural Networks 19 684Google Scholar

    [18]

    Cosp J, Binczak S, Madrenas J, Fernández D 2008 IEEE International Symposium On Circuits And Systems Seattle, WA, USA, May18–21, 2008 pp2370−2373

    [19]

    Wang C, Chu R, Ma J 2015 Complexity 21 370Google Scholar

    [20]

    Volos C, Akgul A, Pham V T, Stouboulos I, Kyprianidis I 2017 Nonlinear Dynam. 89 1047Google Scholar

    [21]

    Ma J, Yang Z Q, Yang L J, Tang J 2019 J Zhejiang Univ. Sci A 20 639Google Scholar

    [22]

    Karthikeyan A, Cimen M E, Akgul A, Boz A F, Rajagopal K 2021 Nonlinear Dynam. 103 1979Google Scholar

    [23]

    Zhang S, Zheng J, Wang X, Zeng Z 2021 Chaos 31 011101Google Scholar

    [24]

    Sahin M, Taskiran Z C, Guler H, Hamamci S 2019 Sensor Actuat A 290 107Google Scholar

    [25]

    Ren G, Zhou P, Ma J, Cai N, Alsaedi A, Ahmad B 2017 Int. J. Bifurcat Chaos 27 1750187Google Scholar

    [26]

    Wang C, Liu Z, Hobiny A, Xu W, Ma J 2020 Chaos Soliton Fract. 134 109697Google Scholar

    [27]

    Hindmarsh J L, Rose R 1984 Proc. Roy. Soc. Lond. B: Bio. Sci. 221 87Google Scholar

    [28]

    Cao H, Wu Y 2013 Int. J. Bifurcat Chaos 23 1330041Google Scholar

    [29]

    Tanaka G, Ibarz B, Sanjuan M A, Aihara K 2006 Chaos 16 013113Google Scholar

    [30]

    Zhang J, Huang S, Pang S, Wang M, Gao S 2016 Nonlinear Dynam. 84 1303Google Scholar

    [31]

    Usha K, Subha P 2019 Chin. Phys. B 28 020502Google Scholar

    [32]

    Wang Q, Lu Q, Chen G, Duan L 2009 Chaos Soliton Fract. 39 918Google Scholar

    [33]

    Ma J, Tang J 2015 Sci. China Technol. Sci. 58 2038Google Scholar

    [34]

    Lv M, Wang C, Ren G, Ma J, Song X 2016 Nonlinear Dynam. 85 1479Google Scholar

    [35]

    Zou W, Senthilkumar D, Zhan M, Kurths J 2013 Phys. Rev. Lett. 111 014101Google Scholar

    [36]

    Kenett D Y, Perc M, Boccaletti S 2015 Chaos Soliton Fract. 80 1Google Scholar

    [37]

    Ducci S, Treps N, Maître A, Fabre C 2001 Phys. Rev. A 64 023803Google Scholar

    [38]

    Wong S T, Plettner T, Vodopyanov K L, Urbanek K, Digonnet M, Byer R L 2008 Opt. Lett. 33 1896Google Scholar

    [39]

    Zhang Y, Zhou P, Tang J, Ma J 2021 Chin. J. Phys. 71 72Google Scholar

    [40]

    Xu Y, Guo Y, Ren G, Ma J 2020 Appl. Math. Comput. 385 125427Google Scholar

    [41]

    Gerasimova S, Gelikonov G, Pisarchik A, Kazantsev V 2015 J. Commun. Technol. 60 900Google Scholar

    [42]

    Liu Y, Xu Y, Ma J 2020 Commun Nonlinear Sci. 89 105297Google Scholar

    [43]

    Guo Y, Zhu Z, Wang C, Ren G 2020 Optik 218 16499

    [44]

    Shilnikov A 2012 Nonlinear Dynam. 68 305Google Scholar

    [45]

    Duan L, Lu Q, Wang Q 2008 Neurocomputing 72 341Google Scholar

    [46]

    Karaoğlu E, Yılmaz E, Merdan H 2016 Neurocomputing 182 102Google Scholar

    [47]

    Liu Y, Xu W J, Ma J, Alzahrani F, Hobiny A 2020 Front Inform. Tech. El. 21 1387Google Scholar

  • 图 1  余弦电压源驱动的简单FHN电路的示意图, 其中NR为非线性电阻, C为电容, L为感应线圈, RRS为线性电阻(分压电阻), E为恒压源, VS为余弦电压源.

    Figure 1.  Schematic diagram for the FHN neural circuit. NR is a nonlinear resistor, C is capacitor, L represents induction coil, R and RS are linear resistors, E is a constant voltage source, and VS is the external voltage source.

    图 2  将光电管和电容串联的FHN电路原理示意图, 其中K表示光电管中的阴极, A表示光电管中的阳极

    Figure 2.  Schematic diagram for the FHN neural circuit while phototube couples with capacitor. K denotes cathode and A represents anode in the phototube.

    图 3  光电管电压与光电流关系图

    Figure 3.  Plot of the relationship between voltage and photocurrent.

    图 4  将光电管和恒压源串联的FHN电路原理示意图

    Figure 4.  Schematic diagram for the FHN neural circuit while phototube couples with induction coil.

    图 5  不同分岔参数(B1, ω, ξ)下的分岔图 (a) ω = 0.4, ξ = 0.175; (b) B1 = 0.8, ξ = 0.175; (c) B1 = 0.8, ω = 0.4, 其中参数a = 0.7, b = 0.8, c = 0.1, 初始值为(x, y) = (0.2, 0.1).

    Figure 5.  Bifurcation diagram calculated by changing the bifurcation parameters (B, ω, ξ) at a = 0.7, b = 0.8, c = 0.1, initial parameters (x, y) = (0.2, 0.1): (a) ω = 0.4, ξ = 0.175; (b) B1 = 0.8, ξ = 0.175; (c) B1 = 0.8, ω = 0.4.

    图 6  不同分岔参数(B1, ω, ξ)下的李雅普诺夫指数图 (a) ω = 0.4, ξ = 0.175; (b) B1 = 0.8, ξ = 0.175; (c) B1 = 0.8, ω = 0.4, 其中参数a = 0.7, b = 0.8, c = 0.1, 初始值为(x, y) = (0.2, 0.1).

    Figure 6.  Distribution for the Lyapunov exponent spectrum calculated by changing the bifurcation parameters (B1, ω, ξ) at a = 0.7, b = 0.8, c = 0.1, initial parameters (x, y) = (0.2, 0.1): (a) ω = 0.4, ξ = 0.175; (b) B1 = 0.8, ξ = 0.175; (c) B1 = 0.8, ω = 0.4.

    图 7  不同分岔参数下的时间序列图, 其中固定参数ω = 0.4, ξ = 0.175, (a1) B1 = 0.001, (a2) B1 = 0.5, (a3) B1 = 0.9, (a4) B1 = 1.1; 固定参数B1 = 0.8, ξ = 0.175时, (b1) ω = 0.11, (b2) ω = 0.31, (b3) ω = 0.4, (b4) ω = 0.5; 固定参数B1 = 0.8, ω = 0.4时, (c1) ξ = 0.15, (c2) ξ = 0.175, (c3) ξ = 0.21, (c4) ξ = 0.45. 参数a = 0.7, b = 0.8, c = 0.1, 初始值为(x, y) = (0.2, 0.1).

    Figure 7.  Firing patterns generated by applying different bifurcation parameters at a = 0.7, b = 0.8, c = 0.1, initial parameters (x, y) = (0.2, 0.1): (a1) B1 = 0.001, (a2) B1 = 0.5, (a3) B1 = 0.9, (a4) B1 = 1.1 with fixed parameters ω = 0.4, ξ = 0.175; (b1) ω = 0.11, (b2) ω = 0.31, (b3) ω = 0.4, (b4) ω = 0.5 with fixed parameters B1 = 0.8, ξ = 0.175; (c1) ξ = 0.15, (c2) ξ = 0.175, (c3) ξ = 0.21, (c4) ξ = 0.45 with fixed parameters B1 = 0.8, ω = 0.4.

    图 8  不同分岔参数ω下, 关于B2的分岔图 (a) ω = 0.001; (b) ω = 0.01; (c) ω = 0.1; (d) ω = 0.4; 其中参数a = 0.7, b = 0.8, c = 0.1, B1 = 0.8, ξ = 0.175, 初始值为(x, y) = (0.2, 0.1)

    Figure 8.  Bifurcation diagram of B2 calculated by changing the bifurcation parameter ω at a = 0.7, b = 0.8, c = 0.1, B1 = 0.8, ξ = 0.175, initial parameters (x, y) = (0.2, 0.1): (a) ω = 0.001; (b) ω = 0.01; (c) ω = 0.1; (d) ω = 0.4.

    图 9  不同分岔参数(B1, ω, ξ, B2)下的分岔图 (a) B2 = 0.2, ξ = 0.175, ω = 0.4; (b) B2 = 0.2, B1 = 0.8, ξ = 0.175; (c) B2 = 0.2, B1 = 0.8, ω = 0.4; (d) B1 = 0.8, ξ = 0.175, ω = 0.4; 其中参数 a = 0.7, b = 0.8, c = 0.1, 初始值为 (x, y) = (0.2, 0.1).

    Figure 9.  Bifurcation diagram calculated by changing the bifurcation parameters (B1, ω, ξ, B2) at a = 0.7, b = 0.8, c = 0.1, initial parameters (x, y) = (0.2, 0.1): (a) B2 = 0.2, ξ = 0.175, ω = 0.4; (b) B2 = 0.2, B1 = 0.8, ξ = 0.175; (c) B2 = 0.2, B1 = 0.8, ω = 0.4; (d) B1 = 0.8, ξ = 0.175, ω = 0.4.

    图 10  不同分岔参数(B1, ω, ξ, B2)下的李雅普诺夫指数图 (a) B2 = 0.2, ξ = 0.175, ω = 0.4; (b) B2 = 0.2, B1 = 0.8, ξ = 0.175; (c) B2 = 0.2, B1 = 0.8, ω = 0.4; (d) B1 = 0.8, ξ = 0.175, ω = 0.4; 其中参数 a = 0.7, b = 0.8, c = 0.1, 初始值为(x, y) = (0.2, 0.1).

    Figure 10.  Distribution for the Lyapunov exponent spectrum calculated by changing the bifurcation parameters (B1, ω, ξ, B2) at a = 0.7, b = 0.8, c = 0.1, initial parameters (x, y) = (0.2, 0.1): (a) B2 = 0.2, ξ = 0.175, ω = 0.4; (b) B2 = 0.2, B1 = 0.8, ξ = 0.175; (c) B2 = 0.2, B1 = 0.8, ω = 0.4; (d) B1 = 0.8, ξ = 0.175, ω = 0.4.

    图 11  不同分岔参数下的时间序列图, 其中固定参数ω = 0.4, ξ = 0.175, B2 = 0.2时, (a1) B1 = 0.1, (a2) B1 = 0.8, (a3) B1 = 1.2, (a4) B1 = 1.75; 固定参数B1 = 0.8, ξ = 0.175, B2 = 0.2时, (b1) ω = 0.001, (b2) ω = 0.18, (b3) ω = 0.25, (b4) ω = 0.4; 固定参数B1 = 0.8, ω = 0.4, B2 = 0.2时, (c1) ξ = 0.005, (c2) ξ = 0.175, (c3) ξ = 0.5, (c4) ξ = 1.5; 固定参数B1 = 0.8, ω = 0.4, ξ = 0.175时, (d1) B2 = 0.2, (d2) B2 = 0.28, (d3) B2 = 1.0, (d4) B2 = 1.6. 其中参数a = 0.7, b = 0.8, c = 0.1, 初始值为(x, y) = (0.2, 0.1).

    Figure 11.  Firing patterns generated by applying different bifurcation parameters at a = 0.7, b = 0.8, c = 0.1, initial parameters (x, y) = (0.2, 0.1): (a1) B1 = 0.1, (a2) B1 = 0.8, (a3) B1 = 1.2, (a4) B1 = 1.75 with fixed parameters ω = 0.4, ξ = 0.175, B2 = 0.2; (b1) ω = 0.001, (b2) ω = 0.18, (b3) ω = 0.25, (b4) ω = 0.4 with fixed parameters B1 = 0.8, ξ = 0.175, B2 = 0.2; (c1) ξ = 0.005, (c2) ξ = 0.175, (c3) ξ = 0.5, (c4) ξ = 1.5 with fixed parameters B1 = 0.8, ω = 0.4, B2 = 0.2; (d1) B2 = 0.2, (d2) B2 = 0.28, (d3) B2 = 1.0, (d4) B2 = 1.6 with fixed parameters B1 = 0.8, ω = 0.4, ξ = 0.175.

    图 12  不同分岔参数(B1, ω, ξ, B2)下的分岔图 (a) B2 = 0.2, ξ = 0.175, ω = 0.4; (b) B2 = 0.2, B1 = 0.8, ξ = 0.175; (c) B2 = 0.2, B1 = 0.8, ω = 0.4; (d) B1 = 0.8, ξ = 0.175, ω = 0.4; 其中参数a = 0.7, b = 0.8, c = 0.1, 初始值为(x, y) = (0.2, 0.1)

    Figure 12.  Bifurcation diagram calculated by changing the bifurcation parameters (B1, ω, ξ, B2) at a = 0.7, b = 0.8, c = 0.1, initial parameters (x, y) = (0.2, 0.1): (a) B2 = 0.2, ξ = 0.175, ω = 0.4; (b) B2 = 0.2, B1 = 0.8, ξ = 0.175; (c) B2 = 0.2, B1 = 0.8, ω = 0.4; (d) B1 = 0.8, ξ = 0.175, ω = 0.4.

    图 13  不同分岔参数(B1, ω, ξ, B2)下的李雅普诺夫指数图 (a) B2 = 0.2, ξ = 0.175, ω = 0.4; (b) B2 = 0.2, B1 = 0.8, ξ = 0.175; (c) B2 = 0.2, B1 = 0.8, ω = 0.4; (d) B1 = 0.8, ξ = 0.175, ω = 0.4; 其中参数a = 0.7, b = 0.8, c = 0.1, 初始值为 (x, y) = (0.2, 0.1)

    Figure 13.  Lyapunov exponent spectrum calculated by changing the bifurcation parameters (B1, ω, ξ, B2) at a = 0.7, b = 0.8, c = 0.1, initial parameters (x, y) = (0.2, 0.1): (a) B2 = 0.2, ξ = 0.175, ω = 0.4; (b) B2 = 0.2, B1 = 0.8, ξ = 0.175; (c) B2 = 0.2, B1 = 0.8, ω = 0.4; (d) B1 = 0.8, ξ = 0.175, ω = 0.4.

  • [1]

    Torres J J, Elices I, Marro J 2015 Plos One 10 E0121156Google Scholar

    [2]

    Belykh I, De Lange E, Hasler M 2005 Phys. Rev. Lett. 94 188101Google Scholar

    [3]

    Wig G S, Schlaggar B L, Petersen S E 2011 Ann. Ny. Acad. Sci. 1224 126Google Scholar

    [4]

    Izhikevich E M 2004 IEEE T. Neural. Networ. 15 1063Google Scholar

    [5]

    Ozer M, Ekmekci N H 2005 Phys. Lett. A 338 150Google Scholar

    [6]

    Bao B C, Liu Z, Xu J P 2010 Electron Lett. 46 237Google Scholar

    [7]

    Li Q, Zeng H, Li J 2015 Nonlinear Dynam. 79 2295Google Scholar

    [8]

    Song X, Wang C, Ma J, Tang J 2015 Sci. China Technol. Sci. 58 1007Google Scholar

    [9]

    Lin W, Wang Y, Ying H, Lai Y C, Wang X 2015 Phys. Rev. E 92 012912Google Scholar

    [10]

    Ren G, Tang J, Ma J, Xu Y 2015 Commun. Nonlinear Sci. 29 170Google Scholar

    [11]

    Perc M, Marhl M 2005 Phys. Rev. E 71 026229Google Scholar

    [12]

    Perc M 2007 Chaos Soliton Fract. 32 1118Google Scholar

    [13]

    Takembo C N, Fouda H P E 2020 Sci. Rep. 10 1Google Scholar

    [14]

    Sharp A A, O'neil M B, Abbott L, Marder E 1993 Trends Neurosci. 16 389Google Scholar

    [15]

    Ma J, Zhang G, Hayat T, Ren G 2019 Nonlinear Dynam. 95 1585Google Scholar

    [16]

    Rocha R, Ruthiramoorthy J, Kathamuthu T 2017 Nonlinear Dynam. 88 2577Google Scholar

    [17]

    Binczak S, Jacquir S, Bilbault J-M, Kazantsev V B, Nekorkin V I 2006 Neural Networks 19 684Google Scholar

    [18]

    Cosp J, Binczak S, Madrenas J, Fernández D 2008 IEEE International Symposium On Circuits And Systems Seattle, WA, USA, May18–21, 2008 pp2370−2373

    [19]

    Wang C, Chu R, Ma J 2015 Complexity 21 370Google Scholar

    [20]

    Volos C, Akgul A, Pham V T, Stouboulos I, Kyprianidis I 2017 Nonlinear Dynam. 89 1047Google Scholar

    [21]

    Ma J, Yang Z Q, Yang L J, Tang J 2019 J Zhejiang Univ. Sci A 20 639Google Scholar

    [22]

    Karthikeyan A, Cimen M E, Akgul A, Boz A F, Rajagopal K 2021 Nonlinear Dynam. 103 1979Google Scholar

    [23]

    Zhang S, Zheng J, Wang X, Zeng Z 2021 Chaos 31 011101Google Scholar

    [24]

    Sahin M, Taskiran Z C, Guler H, Hamamci S 2019 Sensor Actuat A 290 107Google Scholar

    [25]

    Ren G, Zhou P, Ma J, Cai N, Alsaedi A, Ahmad B 2017 Int. J. Bifurcat Chaos 27 1750187Google Scholar

    [26]

    Wang C, Liu Z, Hobiny A, Xu W, Ma J 2020 Chaos Soliton Fract. 134 109697Google Scholar

    [27]

    Hindmarsh J L, Rose R 1984 Proc. Roy. Soc. Lond. B: Bio. Sci. 221 87Google Scholar

    [28]

    Cao H, Wu Y 2013 Int. J. Bifurcat Chaos 23 1330041Google Scholar

    [29]

    Tanaka G, Ibarz B, Sanjuan M A, Aihara K 2006 Chaos 16 013113Google Scholar

    [30]

    Zhang J, Huang S, Pang S, Wang M, Gao S 2016 Nonlinear Dynam. 84 1303Google Scholar

    [31]

    Usha K, Subha P 2019 Chin. Phys. B 28 020502Google Scholar

    [32]

    Wang Q, Lu Q, Chen G, Duan L 2009 Chaos Soliton Fract. 39 918Google Scholar

    [33]

    Ma J, Tang J 2015 Sci. China Technol. Sci. 58 2038Google Scholar

    [34]

    Lv M, Wang C, Ren G, Ma J, Song X 2016 Nonlinear Dynam. 85 1479Google Scholar

    [35]

    Zou W, Senthilkumar D, Zhan M, Kurths J 2013 Phys. Rev. Lett. 111 014101Google Scholar

    [36]

    Kenett D Y, Perc M, Boccaletti S 2015 Chaos Soliton Fract. 80 1Google Scholar

    [37]

    Ducci S, Treps N, Maître A, Fabre C 2001 Phys. Rev. A 64 023803Google Scholar

    [38]

    Wong S T, Plettner T, Vodopyanov K L, Urbanek K, Digonnet M, Byer R L 2008 Opt. Lett. 33 1896Google Scholar

    [39]

    Zhang Y, Zhou P, Tang J, Ma J 2021 Chin. J. Phys. 71 72Google Scholar

    [40]

    Xu Y, Guo Y, Ren G, Ma J 2020 Appl. Math. Comput. 385 125427Google Scholar

    [41]

    Gerasimova S, Gelikonov G, Pisarchik A, Kazantsev V 2015 J. Commun. Technol. 60 900Google Scholar

    [42]

    Liu Y, Xu Y, Ma J 2020 Commun Nonlinear Sci. 89 105297Google Scholar

    [43]

    Guo Y, Zhu Z, Wang C, Ren G 2020 Optik 218 16499

    [44]

    Shilnikov A 2012 Nonlinear Dynam. 68 305Google Scholar

    [45]

    Duan L, Lu Q, Wang Q 2008 Neurocomputing 72 341Google Scholar

    [46]

    Karaoğlu E, Yılmaz E, Merdan H 2016 Neurocomputing 182 102Google Scholar

    [47]

    Liu Y, Xu W J, Ma J, Alzahrani F, Hobiny A 2020 Front Inform. Tech. El. 21 1387Google Scholar

  • [1] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [2] Liang Yan-Mei, Lu Bo, Gu Hua-Guang. Analysis to dynamics of complex electrical activities in Wilson model of brain neocortical neuron using fast-slow variable dissection with two slow variables. Acta Physica Sinica, 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [3] Zhao Ya-Qi, Liu Mou-Tian, Zhao Yong, Duan Li-Xia. Dynamics of mixed bursting in coupled pre-Bötzinger complex. Acta Physica Sinica, 2021, 70(12): 120501. doi: 10.7498/aps.70.20210093
    [4] Ding Xue-Li, Gu Hua-Guang, Jia Bing, Li Yu-Ye. Anticipated synchronization of electrical activity induced by inhibitory autapse in coupled Morris-Lecar neuron model. Acta Physica Sinica, 2021, 70(21): 218701. doi: 10.7498/aps.70.20210912
    [5] Zhang Xiu-Fang, Ma Jun, Xu Ying, Ren Guo-Dong. Synchronization between FitzHugh-Nagumo neurons coupled with phototube. Acta Physica Sinica, 2021, 70(9): 090502. doi: 10.7498/aps.70.20201953
    [6] Hua Hong-Tao, Lu Bo, Gu Hua-Guang. Nonlinear mechanism of excitatory autapse-induced reduction or enhancement of firing frequency of neuronal bursting. Acta Physica Sinica, 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [7] Cao Ben,  Guan Li-Nan,  Gu Hua-Guang. Bifurcation mechanism of not increase but decrease of spike number within a neural burst induced by excitatory effect. Acta Physica Sinica, 2018, 67(24): 240502. doi: 10.7498/aps.67.20181675
    [8] Ren Guo-Dong, Wu Gang, Ma Jun, Chen Yang. Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Physica Sinica, 2015, 64(5): 058702. doi: 10.7498/aps.64.058702
    [9] Wu Xuan-Lü, Xiao Guo-Chun, Lei Bo. Improved discrete-time model for a digital controlled single-phase full-bridge voltage inverter. Acta Physica Sinica, 2013, 62(5): 050503. doi: 10.7498/aps.62.050503
    [10] Feng Chao-Wen, Cai Li, Yang Xiao-Kuo, Kang Qiang, Peng Wei-Dong, Bai Peng. Research of one-dimensional discrete chaotic system constructed by the hybrid circuits of single-electron transistor and metal oxide semiconductor. Acta Physica Sinica, 2012, 61(8): 080503. doi: 10.7498/aps.61.080503
    [11] Ji Ying, Bi Qin-Sheng. Bifurcation analysis of slow-fast behavior in modified Chua's circuit. Acta Physica Sinica, 2012, 61(1): 010202. doi: 10.7498/aps.61.010202
    [12] Li Qun-Hong, Yan Yu-Long, Yang Dan. Bifurcations in coupled electrical circuit systems. Acta Physica Sinica, 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [13] Feng Chao-Wen, Cai Li, Kang Qiang, Peng Wei-Dong, Bai Peng, Wang Jia-Fu. Realization of the discrete chaotic system based on SET-MOS circuits. Acta Physica Sinica, 2011, 60(11): 110502. doi: 10.7498/aps.60.110502
    [14] Gu Hua-Guang, Zhu Zhou, Jia Bing. Dynamics of a novel chaotic neural firing pattern discovered in experiment and simulated in mathematical model. Acta Physica Sinica, 2011, 60(10): 100505. doi: 10.7498/aps.60.100505
    [15] Chen Zhang-Yao, Bi Qin-Sheng. Bifurcations and chaos of coupled Jerk systems. Acta Physica Sinica, 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [16] Zhang Xiao-Fang, Chen Zhang-Yao, Bi Qin-Sheng. Evolution from regular movement patterns to chaotic attractors in a nonlinear electrical circuit. Acta Physica Sinica, 2010, 59(5): 3057-3065. doi: 10.7498/aps.59.3057
    [17] Feng Chao-Wen, Cai Li, Zhang Li-Sen, Yang Xiao-Kuo, Zhao Xiao-Hui. Implementation of multi-scroll Chua’s circuit by hybrid single electron transistor and metal oxide semiconductor structure. Acta Physica Sinica, 2010, 59(12): 8426-8431. doi: 10.7498/aps.59.8426
    [18] Zhang Xiao-Fang, Chen Zhang-Yao, Bi Qin-Sheng. Complicated oscillations in coupled electrical circuits. Acta Physica Sinica, 2009, 58(5): 2963-2970. doi: 10.7498/aps.58.2963
    [19] Zhang Wei, Zhou Shu-Hua, Ren Yong, Shan Xiu-Ming. Bifurcation analysis and control in Turbo decoding algorithm. Acta Physica Sinica, 2006, 55(2): 622-627. doi: 10.7498/aps.55.622
    [20] Hao Jian-Hong, Ding Wu. Limit cycle oscillating and chaos of the radiation field in a traveling wave tube amplifier. Acta Physica Sinica, 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
Metrics
  • Abstract views:  5887
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2021
  • Accepted Date:  15 July 2021
  • Available Online:  17 August 2021
  • Published Online:  05 November 2021

/

返回文章
返回