Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anticipated synchronization of electrical activity induced by inhibitory autapse in coupled Morris-Lecar neuron model

Ding Xue-Li Gu Hua-Guang Jia Bing Li Yu-Ye

Citation:

Anticipated synchronization of electrical activity induced by inhibitory autapse in coupled Morris-Lecar neuron model

Ding Xue-Li, Gu Hua-Guang, Jia Bing, Li Yu-Ye
PDF
HTML
Get Citation
  • Anticipated synchronization, the response of the driven subsystem which appears earlier than the stimulation from the driving subsystem, is a universally counterintuitive nonlinear behavior. This behavior is also observed in the experiment on the nervous system in different brain regions. In the present paper, the anticipated synchronization phenomenon evoked by the inhibitory autapse is simulated in the coupled system composed of Morris-Lecar model, and the condition of excitability of single neurons and parameter ranges for the anticipated synchronization is presented. For a coupled system composed of two neurons, whether both neurons are either type-I excitability/Hopf bifurcation or type-II excitability/saddle-node bifurcation on an invariant cycle, in a driven neuron unidirectionally receiving the excitatory synaptic current from a driving neuron the delayed synchronization (the response of the driven neuron appears after the drive of the driving neuron) instead of the anticipated synchronization is simulated. After the inhibitory autapse is introduced into the driven neuron, the anticipated synchronization can be simulated in the coupled neurons when both neurons are of type-II excitability. With the increase of the conductance of the inhibitory autapse, the transition from delayed synchronization to anticipated synchronization is simulated. The time interval between spike of the driving and driven neuron is acquired, and the parameter ranges of anticipated synchronization in the plane of conductance of the inhibitory autapse and excitatory synapse are obtained. However, if both neurons are of type-I excitability, only delayed synchronization is simulated for the driven neuron with inhibitory autapse. Furthermore, the appearance of anticipated synchronization for type-II neurons and no anticipated synchronization for type-I neurons are suggested to have a relationship between the different responses of firing to external inhibitory stimulation for neurons with type-II excitability and type-I excitability. For spiking of type-II neuron, when an inhibitory pulse stimulation is applied, the spike following the pulse appears earlier than the one in the absence of stimulation in a wide range of the stimulation phase. However, for spiking behavior of type-I excitability, the spike following an inhibitory pulse stimulation appears later than the spike in the absence of stimulation. The results present the condition of single neurons for the appearance of anticipated synchronization induced by the inhibitory self-feedback mediated by autapse, which is helpful for understanding the dynamics of the counter-intuitive behavior, anticipated synchronization, presenting possible measures to modulate the anticipated synchronization, and proving directions for further study of anticipated synchronization.
      Corresponding author: Gu Hua-Guang, guhuaguang@tongji.edu.cn
    • Funds: Project supported by the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. 11762001), the National Natural Science Foundation of China (Grant Nos. 12072236, 11872276), the Program for Excellent Young Talents in Colleges and Universities of Anhui Province of China (Grant No. gxyqZD2020077), and the Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region, China (Grant No. NJYT-20-A09).
    [1]

    Boccaletti S, Kurths J, Osipov G, Valladares D L, Zhou C S 2002 Phys. Rep. 366 1Google Scholar

    [2]

    Izhikevich E M 2007 Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Cambridge: The MIT Press) pp301−348

    [3]

    Voss H U 2000 Phys. Rev. E 61 5115Google Scholar

    [4]

    Yao C G, He Z W, Nakano T, Qian Y, Shuai J W 2019 Nonlinear Dyn. 97 1425Google Scholar

    [5]

    丁学利, 贾冰, 李玉叶 2019 物理学报 68 180502Google Scholar

    Ding X L, Jia B, Li Y Y 2019 Acta Phys. Sin. 68 180502Google Scholar

    [6]

    He Z W, Yao C G, Shuai J W, Nakano T 2020 Chin. Phys. B 29 128702Google Scholar

    [7]

    Wu F, Gu H 2020 Int. J. Bifurcat. Chaos 30 2030009Google Scholar

    [8]

    Zhao Z G, Li L, Gu H G 2020 Commun. Nonlinear Sci. Numer. Simulat. 85 105250Google Scholar

    [9]

    Voss H U 2001 Phys. Rev. Lett. 87 014102Google Scholar

    [10]

    Voss H U 2001 Phys. Rev. E 64 039904Google Scholar

    [11]

    Voss H U 2016 Phys. Rev. E 93 030201Google Scholar

    [12]

    Voss H U 2018 Chaos 28 113113Google Scholar

    [13]

    Tang S, Liu J M 2003 Phys. Rev. Lett. 90 194101Google Scholar

    [14]

    Ciszak M, Calvo O, Masoller C, Mirasso C R, Toral R 2003 Phys. Rev. Lett. 90 204102Google Scholar

    [15]

    Simonov A Y, Gordleeva S Y, Pisarchik A, Kazantsev V 2014 JETP Lett. 98 632Google Scholar

    [16]

    Matias F S, Carelli P V, Mirasso C R, Copelli M 2011 Phys. Rev. E 84 021922Google Scholar

    [17]

    Matias F S, Gollo L L, Carelli P V, Mirasso C R, Copelli M 2016 Phys. Rev. E 94 042411Google Scholar

    [18]

    Matias F S, Carelli P V, Mirasso C R, Copelli M 2015 PLoS One 10 e0140504Google Scholar

    [19]

    Sausedo-Solorio J M, Pisarchik A N 2014 Phys. Lett. A 378 2108Google Scholar

    [20]

    Pyragienè T, Pyragas K 2013 Nonlinear Dyn. 74 297Google Scholar

    [21]

    Pinto M A, Rosso O A, Matias F S 2019 Phys. Rev. E 99 062411Google Scholar

    [22]

    Matias F S, Gollo L L, Carelli P V, Bressler S L, Copelli M, Mirasso C R 2014 NeuroImage 99 411Google Scholar

    [23]

    Carlos F L P, Ubirakitan M M, Rodrigues M C A, Aguilar-Domingo M, Herrera-Gutiérrez E, Gómez-Amor J, Copelli M, Carelli P V, Matias F S 2020 Phys. Rev. E 102 032216Google Scholar

    [24]

    Salazar R F, Dotson N M, Bressler S L, Gray C M 2012 Science 338 1097Google Scholar

    [25]

    Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler S L 2004 Proc. Natl. Acad. Sci. USA 101 9849Google Scholar

    [26]

    Matias F S, Carelli P V, Mirasso C R, Mirasso C R, Copelli M 2017 Phys. Rev. E 95 052410Google Scholar

    [27]

    Porta L D, Matias F S, Santos A, Santos A J, Alonso A, Carelli P V, Copelli M, Mirasso C R 2019 Front. Syst. Neurosci. 13 41Google Scholar

    [28]

    Dima G C, Copelli M, Mindlin G B 2018 Int. J. Bifurcat. Chaos 28 1830025Google Scholar

    [29]

    Ciszak M, Marino F, Toral R, Balle S 2004 Phys. Rev. Lett. 93 114102Google Scholar

    [30]

    Montani F, Rosso O A, Matias F S, Bressler S L, Mirasso C R 2015 Philos. Trans. A Math. Phys. Eng. Sci. 373 20150110Google Scholar

    [31]

    Mayol C, Mirasso C R, Toral R 2012 Phys. Rev. E 85 056216Google Scholar

    [32]

    Masoller C, Zanette D H 2001 Physica A 300 359Google Scholar

    [33]

    Hernández-García E, Masoller C, Mirasso C 2002 Phys. Lett. A 295 39Google Scholar

    [34]

    Kostur M, Hänggi P, Talkner P, Mateos J L 2005 Phys. Rev. E 72 036210Google Scholar

    [35]

    Sun Z K, Wei X, Yang X L 2007 Chin. Phys. 16 3226Google Scholar

    [36]

    Hayashi Y, Nasuto S J, Eberle H 2016 Phys. Rev. E 93 052229Google Scholar

    [37]

    Sivaprakasam S, Shahverdiev E M, Spencer P S, Shore K A 2001 Phys. Rev. Lett. 87 154101Google Scholar

    [38]

    Ciszak M, Mirasso C R, Toral R, Calvo O 2009 Phys. Rev. E 79 046203Google Scholar

    [39]

    Stepp N, Turvey M T 2017 J. Exp. Psychol. Hum. Percept. Perform. 43 914Google Scholar

    [40]

    Morris C, Lecar H 1981 Biophys. J. 35 193Google Scholar

    [41]

    谢勇, 程建慧 2017 物理学报 66 090501Google Scholar

    Xie Y, Cheng J H 2017 Acta Phys. Sin. 66 090501Google Scholar

    [42]

    Ermentrout B 1996 Neural. Comput. 8 979Google Scholar

    [43]

    Smeal R M, Ermentrout G B, White J A 2010 Philos. Trans. R. Soc. Lond. B:Biol. Sci. 365 2407Google Scholar

    [44]

    Qian Y, Gao H Y, Yao C G, Cui X H, Ma J 2018 Chin. Phys. B 27 108902Google Scholar

    [45]

    Yang C, Liu Z, Wang Q, Luan G, Zhai F 2021 Cogn. Neurodyn. 15 43Google Scholar

    [46]

    Zhang X H, Liu S Q 2018 Chin. Phys. B 27 040501Google Scholar

    [47]

    Cao B, Gu H G, Li Y Y 2021 Chin. Phys. B 30 050502Google Scholar

    [48]

    李国芳, 孙晓娟 2017 物理学报 66 240501Google Scholar

    Li G F, Sun X J 2017 Acta Phys. Sin. 66 240501Google Scholar

    [49]

    杨永霞, 李玉叶, 古华光 2020 物理学报 67 040501Google Scholar

    Yang Y X, Li Y Y, Gu H G 2020 Acta Phys. Sin. 67 040501Google Scholar

    [50]

    Jia Y B, Gu H G, Li Y Y, Ding X L 2021 Commun. Nonlinear Sci. Numer. Simulat. 95 105643Google Scholar

    [51]

    Deleuze C, Bhumbra G S, Pazienti A, Lourenco J, Mailhes C, Aguirre A, Beato M, Bacci A 2019 PLoS Biol. 17 e3000419Google Scholar

    [52]

    Yin L P, Zheng R, Ke W, He Q, Zhang Y, Li J, Wang B, Mi Z, Long Y S, Rasch M J, Li T, Luan G, Shu Y 2018 Nat. Commun. 9 4890Google Scholar

  • 图 1  II型兴奋性ML模型在抑制性刺激下的放电 (a)与无刺激的放电(黑线)相比, 负向方波脉冲(虚线, 幅值A = –7 μA/cm2, 宽度d = 4 ms)诱发的放电(红线)提前; (b)不同的负向方波脉冲(宽度d = 4 ms)诱发的PRC; (c)图(b)的局部放大图; (d)黑线和红线分别对应图(a)的黑线和红线(V, dV/dt)的相轨迹, 从脉冲刺激结束到各自的动作电位峰值; (e)图(d)的局部放大图(从脉冲刺激开始到V = –20 mV, 箭头代表刺激结束); (f)图(d)的局部放大图( 动作电位峰值前)

    Figure 1.  Firing of ML model with type II excitability under the action of inhibitory stimulation: (a) Compared with no stimulations (black solid line), firing (red line) induced by negative square pulse (dashed line, amplitude A = –7 μA/cm2, width d = 4 ms) is earlier; (b) PRC induced by negative square pulses with different strengths (width d = 4 ms); (c) locally enlargement of panel (b); (d) black and red curve correspond to trajectory in (V, dV/dt) plane of black and red curve of panel (a), respectively (from begging time of the pulse stimulation to peak of the action potential); (e) enlargement of panel (d) (from begging time of the pulse stimulation to –20 mV); (f) enlargement of panel (d) (phase before the peak of action potential).

    图 2  抑制性自突触诱发II型兴奋性ML神经元模型产生的3种动力学行为(${g_{\text{I}}}$ = 0.3 μS/cm2). DS (${g_{\text{E}}}$ = 1.8 μS/cm2): (a1)驱动(黑)和被驱动(红)神经元的膜电位; (a2)两神经元放电时间间隔的变化. AS (${g_{\text{E}}}$ = 0.1 μS/cm2): (b1)驱动(黑)和被驱动(红)神经元的膜电位; (b2)两神经元放电时间间隔的变化. PD (${g_{\text{E}}}$ = 0.03 μS/cm2): (c1)驱动(黑)和被驱动(红)神经元的膜电位; (c2)两神经元放电时间间隔的变化

    Figure 2.  Three dynamic behaviors induced by inhibitory autapse (${g_{\text{I}}}$ = 0.3 μS/cm2) in the ML neuron model with type II excitability. DS (${g_{\text{E}}}$ = 1.8 μS/cm2): (a1) Membrane potential of driving (black) and driven (red) neurons; (a2) change of time interval between spikes of two neurons. AS (${g_{\text{E}}}$ = 0.1 μS/cm2): (b1) Membrane potential of driving (black) and driven (red) neurons; (b2) change of time interval between spikes of two neurons. PD (${g_{\text{E}}}$ = 0.03 μS/cm2): (c1) Membrane potential of driving (black) and driven (red) neurons; (c2) change of time interval between spikes of two neurons.

    图 3  单向耦合II型兴奋性ML模型在没有抑制性自突触(${g_{\text{I}}}$= 0)时产生DS (两神经元放电时差在不同兴奋性电导下大于0, 即$\tau $> 0)

    Figure 3.  DS of type II ML model with unidirectional excitatory coupling and without inhibitory autapse (${g_{\text{I}}}$ = 0) (time interval between spikes of the two neurons is larger than 0 at different values of conductance of excitatory synapse, i.e. $\tau $> 0).

    图 4  不同抑制性电导${g_{\text{I}}}$下兴奋性耦合的II型兴奋性ML模型的AS (两神经元放电时间间隔$\tau $${g_{\text{E}}}$的变化).$\tau $> 0表示DS状态, $\tau $< 0代表AS状态. 三角符号标记以左出现PD

    Figure 4.  Anticipated synchronization of type II ML model with excitatory coupling at different values of the conductance of inhibitory autapse (changes of time interval $\tau $ between spikes of two neurons with respect to${g_{\text{E}}}$). $\tau $> 0 and $\tau $< 0 represent DS and AS states, respectively. PD locates left to the triangle.

    图 5  单向兴奋性耦合的II型兴奋性ML模型的3类行为在参数平面(${g_{\text{I}}}$, ${g_{\text{E}}}$)的分布 (a)两神经元放电间隔$\tau $的分布, 红、绿和黑色分别表示DS ($\tau $> 0), AS ($\tau $< 0)和PD ($\tau $的值不稳定); (b)两神经元放电间隔$\tau $的量值

    Figure 5.  Distribution of three behavior in parameter plane (${g_{\text{I}}}$, ${g_{\text{E}}}$) of the type II ML model with unidirectional excitatory coupling: (a) Distribution of time interval $\tau $ between spikes of two neurons, red, green, and black indicate DS ($\tau $> 0), AS ($\tau $< 0), and PD (the value of $\tau $ is unstable), respectively; (b) values of time interval $\tau $.

    图 6  (a)不同抑制性方波脉冲(宽度d = 4 ms)刺激诱发I型兴奋性ML模型的PRC; (b)图(a)的局部放大图

    Figure 6.  (a) PRC induced by inhibitory square pulses (width d = 4 ms) stimulation in ML model with type I excitability; (b) locally enlarged of panel (a).

    图 7  单向耦合I型兴奋性ML模型在没有抑制性自突触电导(${g_{\text{I}}}$ = 0 μS/cm2)时产生DS (两神经元放电时差在不同兴奋性电导下大于0, 即$\tau $> 0)

    Figure 7.  DS of type I ML model with unidirectional excitatory coupling and without inhibitory autapse (${g_{\text{I}}}$ = 0) (time interval between spikes of the two neurons is larger than 0 at different values of conductance of excitatory autapse, i.e.$\tau $> 0).

    图 8  抑制性自突触诱发I型兴奋性ML神经元模型产生的2种动力学行为(${g_{\text{I}}}$ = 0.2 μS/cm2). DS (${g_{\text{E}}}$ = 0.02 μS/cm2): (a1)驱动(黑)和被驱动(红)神经元的膜电位; (a2)两神经元放电时间间隔的变化. PD (${g_{\text{E}}}$ = 0 μS/cm2): (b1)驱动(黑)和被驱动(红)神经元的膜电位; (b2)两神经元放电时间间隔的变化

    Figure 8.  Two dynamical behaviors induced by inhibitory autapse in the ML neuron model with type I excitability (${g_{\text{I}}}$ = 0.2 μS/cm2). DS (${g_{\text{E}}}$ = 0.02 μS/cm2): (a1) Membrane potential of driving (black) and driven (red) neurons; (a2) change of time interval between spikes of two neurons. PD (${g_{\text{E}}}$ = 0.0 μS/cm2): (b1) Membrane potential of driving (black) and driven (red) neurons; (b2) change of time interval between spikes of two neurons.

    图 9  不同抑制性电导${g_{\text{I}}}$下兴奋性耦合I型兴奋性ML模型的DS (两神经元放电时间间隔$\tau $${g_{\text{E}}}$的变化). $\tau $> 0表示DS状态, 三角符号标记处出现PD

    Figure 9.  DS of the type I ML model with excitatory coupling at different values of conductance of inhibitory autapse (changes of time interval $\tau $ between spikes of the two neurons was with respect to ${g_{\text{E}}}$). $\tau $> 0 represents DS state, and the phase-drift locates to the triangle.

    图 10  单向兴奋性耦合的I型兴奋性ML模型的DS在参数空间(${g_{\text{I}}}$, ${g_{\text{E}}}$)的分布 (a)两神经元放电间隔$\tau $的分布; 红和黑分别表示DS ($\tau $>0)和PD ($\tau $的值不稳定)区域; (b)两神经元放电间隔$\tau $的量值

    Figure 10.  Distribution of DS in parameter plane (${g_{\text{I}}}$, ${g_{\text{E}}}$) of type I ML model with unidirectional excitatory coupling: (a) Distribution of time interval $\tau $ between spikes of two neurons, red and black indicate DS ($\tau $> 0) and PD (the value of $\tau $ is unstable), respectively; (b) values of time interval $\tau $.

    表 1  ML模型的参数值

    Table 1.  Parameter values of ML model.

    参数第1组第2组
    $C$/(μF·cm–2)520
    ${g_{{\text{Ca}}}}$/(μS·cm–2)44
    ${V_{{\text{Ca}}}}$/mV120120
    ${g_{\text{K}}}$/(μS·cm–2)88
    ${V_{\text{K}}}$/mV–80–84
    ${g_{\text{L}}}$/(μS·cm–2)22
    ${V_{\text{L}}}$/mV–60–60
    ${V_1}$/mV–1.2–1.2
    ${V_2}$/mV1818
    ${V_3}$/mV412
    ${V_4}$/mV17.417.4
    $\phi $0.0666670.066667
    DownLoad: CSV

    表 2  突触的参数值

    Table 2.  Parameter values of synapse.

    参数第1组第2组
    ${T_{\max }}$/mM–111
    ${V_{\rm{p}}}$/mV3020
    ${K_{\rm{p}}}$/mV50.8
    ${E_{\rm{E}}}$/mV4535
    ${E_{\rm{I}}}$/mV–60–50
    ${\alpha _{\rm{E}}}$/(mM–1·ms–1)0.10.8
    ${\beta _{\rm{E}}}$/ms–10.51
    ${\alpha _{\rm{I}}}$/(mM–1·ms–1)0.10.05
    ${\beta _{\rm{I}}}$/ms–10.181
    DownLoad: CSV
  • [1]

    Boccaletti S, Kurths J, Osipov G, Valladares D L, Zhou C S 2002 Phys. Rep. 366 1Google Scholar

    [2]

    Izhikevich E M 2007 Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Cambridge: The MIT Press) pp301−348

    [3]

    Voss H U 2000 Phys. Rev. E 61 5115Google Scholar

    [4]

    Yao C G, He Z W, Nakano T, Qian Y, Shuai J W 2019 Nonlinear Dyn. 97 1425Google Scholar

    [5]

    丁学利, 贾冰, 李玉叶 2019 物理学报 68 180502Google Scholar

    Ding X L, Jia B, Li Y Y 2019 Acta Phys. Sin. 68 180502Google Scholar

    [6]

    He Z W, Yao C G, Shuai J W, Nakano T 2020 Chin. Phys. B 29 128702Google Scholar

    [7]

    Wu F, Gu H 2020 Int. J. Bifurcat. Chaos 30 2030009Google Scholar

    [8]

    Zhao Z G, Li L, Gu H G 2020 Commun. Nonlinear Sci. Numer. Simulat. 85 105250Google Scholar

    [9]

    Voss H U 2001 Phys. Rev. Lett. 87 014102Google Scholar

    [10]

    Voss H U 2001 Phys. Rev. E 64 039904Google Scholar

    [11]

    Voss H U 2016 Phys. Rev. E 93 030201Google Scholar

    [12]

    Voss H U 2018 Chaos 28 113113Google Scholar

    [13]

    Tang S, Liu J M 2003 Phys. Rev. Lett. 90 194101Google Scholar

    [14]

    Ciszak M, Calvo O, Masoller C, Mirasso C R, Toral R 2003 Phys. Rev. Lett. 90 204102Google Scholar

    [15]

    Simonov A Y, Gordleeva S Y, Pisarchik A, Kazantsev V 2014 JETP Lett. 98 632Google Scholar

    [16]

    Matias F S, Carelli P V, Mirasso C R, Copelli M 2011 Phys. Rev. E 84 021922Google Scholar

    [17]

    Matias F S, Gollo L L, Carelli P V, Mirasso C R, Copelli M 2016 Phys. Rev. E 94 042411Google Scholar

    [18]

    Matias F S, Carelli P V, Mirasso C R, Copelli M 2015 PLoS One 10 e0140504Google Scholar

    [19]

    Sausedo-Solorio J M, Pisarchik A N 2014 Phys. Lett. A 378 2108Google Scholar

    [20]

    Pyragienè T, Pyragas K 2013 Nonlinear Dyn. 74 297Google Scholar

    [21]

    Pinto M A, Rosso O A, Matias F S 2019 Phys. Rev. E 99 062411Google Scholar

    [22]

    Matias F S, Gollo L L, Carelli P V, Bressler S L, Copelli M, Mirasso C R 2014 NeuroImage 99 411Google Scholar

    [23]

    Carlos F L P, Ubirakitan M M, Rodrigues M C A, Aguilar-Domingo M, Herrera-Gutiérrez E, Gómez-Amor J, Copelli M, Carelli P V, Matias F S 2020 Phys. Rev. E 102 032216Google Scholar

    [24]

    Salazar R F, Dotson N M, Bressler S L, Gray C M 2012 Science 338 1097Google Scholar

    [25]

    Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler S L 2004 Proc. Natl. Acad. Sci. USA 101 9849Google Scholar

    [26]

    Matias F S, Carelli P V, Mirasso C R, Mirasso C R, Copelli M 2017 Phys. Rev. E 95 052410Google Scholar

    [27]

    Porta L D, Matias F S, Santos A, Santos A J, Alonso A, Carelli P V, Copelli M, Mirasso C R 2019 Front. Syst. Neurosci. 13 41Google Scholar

    [28]

    Dima G C, Copelli M, Mindlin G B 2018 Int. J. Bifurcat. Chaos 28 1830025Google Scholar

    [29]

    Ciszak M, Marino F, Toral R, Balle S 2004 Phys. Rev. Lett. 93 114102Google Scholar

    [30]

    Montani F, Rosso O A, Matias F S, Bressler S L, Mirasso C R 2015 Philos. Trans. A Math. Phys. Eng. Sci. 373 20150110Google Scholar

    [31]

    Mayol C, Mirasso C R, Toral R 2012 Phys. Rev. E 85 056216Google Scholar

    [32]

    Masoller C, Zanette D H 2001 Physica A 300 359Google Scholar

    [33]

    Hernández-García E, Masoller C, Mirasso C 2002 Phys. Lett. A 295 39Google Scholar

    [34]

    Kostur M, Hänggi P, Talkner P, Mateos J L 2005 Phys. Rev. E 72 036210Google Scholar

    [35]

    Sun Z K, Wei X, Yang X L 2007 Chin. Phys. 16 3226Google Scholar

    [36]

    Hayashi Y, Nasuto S J, Eberle H 2016 Phys. Rev. E 93 052229Google Scholar

    [37]

    Sivaprakasam S, Shahverdiev E M, Spencer P S, Shore K A 2001 Phys. Rev. Lett. 87 154101Google Scholar

    [38]

    Ciszak M, Mirasso C R, Toral R, Calvo O 2009 Phys. Rev. E 79 046203Google Scholar

    [39]

    Stepp N, Turvey M T 2017 J. Exp. Psychol. Hum. Percept. Perform. 43 914Google Scholar

    [40]

    Morris C, Lecar H 1981 Biophys. J. 35 193Google Scholar

    [41]

    谢勇, 程建慧 2017 物理学报 66 090501Google Scholar

    Xie Y, Cheng J H 2017 Acta Phys. Sin. 66 090501Google Scholar

    [42]

    Ermentrout B 1996 Neural. Comput. 8 979Google Scholar

    [43]

    Smeal R M, Ermentrout G B, White J A 2010 Philos. Trans. R. Soc. Lond. B:Biol. Sci. 365 2407Google Scholar

    [44]

    Qian Y, Gao H Y, Yao C G, Cui X H, Ma J 2018 Chin. Phys. B 27 108902Google Scholar

    [45]

    Yang C, Liu Z, Wang Q, Luan G, Zhai F 2021 Cogn. Neurodyn. 15 43Google Scholar

    [46]

    Zhang X H, Liu S Q 2018 Chin. Phys. B 27 040501Google Scholar

    [47]

    Cao B, Gu H G, Li Y Y 2021 Chin. Phys. B 30 050502Google Scholar

    [48]

    李国芳, 孙晓娟 2017 物理学报 66 240501Google Scholar

    Li G F, Sun X J 2017 Acta Phys. Sin. 66 240501Google Scholar

    [49]

    杨永霞, 李玉叶, 古华光 2020 物理学报 67 040501Google Scholar

    Yang Y X, Li Y Y, Gu H G 2020 Acta Phys. Sin. 67 040501Google Scholar

    [50]

    Jia Y B, Gu H G, Li Y Y, Ding X L 2021 Commun. Nonlinear Sci. Numer. Simulat. 95 105643Google Scholar

    [51]

    Deleuze C, Bhumbra G S, Pazienti A, Lourenco J, Mailhes C, Aguirre A, Beato M, Bacci A 2019 PLoS Biol. 17 e3000419Google Scholar

    [52]

    Yin L P, Zheng R, Ke W, He Q, Zhang Y, Li J, Wang B, Mi Z, Long Y S, Rasch M J, Li T, Luan G, Shu Y 2018 Nat. Commun. 9 4890Google Scholar

  • [1] Li Li, Zhao Zhi-Guo, Gu Hua-Guang. Suppression effects of excitatory and inhibitory self-feedbacks on neuronal spiking near Hopf bifurcation. Acta Physica Sinica, 2022, 71(5): 050504. doi: 10.7498/aps.71.20211829
    [2] Jiang Yi-Lan, Lu Bo, Zhang Wan-Qin, Gu Hua-Guang. Fast autaptic feedback induced-paradoxical changes of mixed-mode bursting and bifurcation mechanism. Acta Physica Sinica, 2021, 70(17): 170501. doi: 10.7498/aps.70.20210208
    [3] Zheng Zhi-Gang, Zhai Yun, Wang Xue-Bin, Chen Hong-Bin, Xu Can. Synchronization of coupled phase oscillators: Order parameter theory. Acta Physica Sinica, 2020, 69(8): 080502. doi: 10.7498/aps.69.20191968
    [4] Qu Liang-Hui, Du Lin, Cao Zi-Lu, Hu Hai-Wei, Deng Zi-Chen. Coherent or stochastic bi-resonance induced by conductance disturbance of chemical autapse. Acta Physica Sinica, 2020, 69(23): 230501. doi: 10.7498/aps.69.20200856
    [5] Yang Yong-Xia, Li Yu-Ye, Gu Hua-Guang. Synchronization transition from bursting to spiking and bifurcation mechanism of the pre-Bötzinger complex. Acta Physica Sinica, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [6] Hua Hong-Tao, Lu Bo, Gu Hua-Guang. Nonlinear mechanism of excitatory autapse-induced reduction or enhancement of firing frequency of neuronal bursting. Acta Physica Sinica, 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [7] Ding Xue-Li, Jia Bing, Li Yu-Ye. Explanation to negative feedback induced-enhancement of neural electronic activities with phase response curve. Acta Physica Sinica, 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
    [8] Cao Ben,  Guan Li-Nan,  Gu Hua-Guang. Bifurcation mechanism of not increase but decrease of spike number within a neural burst induced by excitatory effect. Acta Physica Sinica, 2018, 67(24): 240502. doi: 10.7498/aps.67.20181675
    [9] Ding Xue-Li, Li Yu-Ye. Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay. Acta Physica Sinica, 2016, 65(21): 210502. doi: 10.7498/aps.65.210502
    [10] Xiang Jun-Jie, Bi Chuang, Xiang Yong, Zhang Qian, Wang Jing-Mei. Dynamical study of peak-current-mode controlled synchronous switching Z-source converter. Acta Physica Sinica, 2014, 63(12): 120507. doi: 10.7498/aps.63.120507
    [11] Liu Hong-Chen, Wang Yun, Su Zhen-Xia. Bifurcation phenomena in single-phase three-level inverters. Acta Physica Sinica, 2013, 62(24): 240506. doi: 10.7498/aps.62.240506
    [12] Huang Chen, Chen Long, Bi Qin-Sheng, Jiang Hao-Bin. Vehicle negotiation model and bifurcation dynamic characteristics research. Acta Physica Sinica, 2013, 62(21): 210507. doi: 10.7498/aps.62.210507
    [13] Wang Fu-Xia, Xie Yong. Synchronization of "Hopf/homoclinic" bursting with "SubHopf/homoclinic" bursting. Acta Physica Sinica, 2013, 62(2): 020509. doi: 10.7498/aps.62.020509
    [14] Liu Hong-Chen, Li Fei, Yang Shuang. Study on nonlinear phenomena in single phase H bridge inverter based on the periodic spread spectrum. Acta Physica Sinica, 2013, 62(11): 110504. doi: 10.7498/aps.62.110504
    [15] Li Qun-Hong, Yan Yu-Long, Yang Dan. Bifurcations in coupled electrical circuit systems. Acta Physica Sinica, 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [16] Chen Zhang-Yao, Bi Qin-Sheng. Bifurcations and chaos of coupled Jerk systems. Acta Physica Sinica, 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [17] Bao Bo-Cheng, Kang Zhu-Sheng, Xu Jian-Ping, Hu Wen. Bifurcation and attractor of generalized square map with exponential term. Acta Physica Sinica, 2009, 58(3): 1420-1431. doi: 10.7498/aps.58.1420
    [18] Zhang Wei, Zhou Shu-Hua, Ren Yong, Shan Xiu-Ming. Bifurcation analysis and control in Turbo decoding algorithm. Acta Physica Sinica, 2006, 55(2): 622-627. doi: 10.7498/aps.55.622
    [19] Li Ming, Ma Xi-Kui, Dai Dong, Zhang Hao. Analysis of bifurcation and chaos in a class of piecewise smooth systems based on symbolic sequence. Acta Physica Sinica, 2005, 54(3): 1084-1091. doi: 10.7498/aps.54.1084
    [20] Song Xiao-Hong, Lin Sheng-Lu. A study of the bifurcation effect of closed orbits on the recurrence spectra of Li Rydberg atoms in an external electric field. Acta Physica Sinica, 2003, 52(7): 1611-1616. doi: 10.7498/aps.52.1611
Metrics
  • Abstract views:  4212
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2021
  • Accepted Date:  18 June 2021
  • Available Online:  15 August 2021
  • Published Online:  05 November 2021

/

返回文章
返回