-
For realizing the effective broadband insulation of sound at low frequencies, a novel local resonant acoustic metamaterial plate having quasi-zero stiffness is proposed. Based on the classical mass-spring local resonance model, a metastructure is constructed by introducing additional inclined springs with negative stiffness. First, the normalized equivalent stiffness of the quasi-zero stiffness structure is derived from the perspective of dynamics. Then, by employing the method of equivalent medium, a sound insulation model of the metastructure is established theoretically. For validation, numerical simulations as well as experimental measurements are carried out. It is demonstrated that in the positive (equivalent) stiffness regime, increasing either the stiffness ratio or pre-compression can significantly reduce the local resonance frequency of the metastructure, which exhibits the great insulation performance around the local resonance frequency. For a typical example, the proposed metastructure can achieve a transmission loss of 30 dB around 10 Hz. In contrast, within the negative stiffness regime, the metastructure does not exhibit local resonance, thus avoiding sound insulation valley caused by the “coincidence effect”. Compared with traditional materials or similar metamaterials, the proposed metastructure has significant advantages in sound insulation (e.g. more than 30 dB drop over a wide frequency band of 53-1500 Hz). By analyzing the equivalent mass density, reflection coefficient, and acoustic impedance ratio of the metastructure, the physical mechanism behind its superior insulation performance is further explored. The equivalent mass density changes from positive to negative and tends to infinity at the insulation peak. The insulation peak is attributed to a nearly perfect total reflection of sound wave caused by impedance mismatch, while the insulation valley is caused by low-frequency “coincidence effect” originating from the local resonance band gap. The using of the quasi-zero stiffness local resonance to achieve low-frequency broadband sound insulation overcomes the disadvantages of traditional metamaterials such as reduced stiffness or additional mass, thus becoming vastly attractive for constructing low-frequency broad band sound insulation structures.
-
Keywords:
- metamaterial /
- local resonance /
- quasi-zero stiffness /
- low frequency range /
- sound insulation
[1] 田源, 葛浩, 卢明辉, 陈延锋 2019 物理学报 68 194301Google Scholar
Tian Y, Ge H, Lu M H, Chen Y F 2019 Acta Phys. Sin. 68 194301Google Scholar
[2] Ma G C, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar
[3] 丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar
Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 194301Google Scholar
[4] Liu Z Y, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103Google Scholar
[5] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar
[6] Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 188505Google Scholar
[7] Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301Google Scholar
[8] Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502Google Scholar
[9] Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nat. Commun. 3 756Google Scholar
[10] Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar
[11] Liu Z Y, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar
[12] 张佳龙, 姚宏, 杜军, 赵静波, 董亚科, 祁鹏山 2016 硅酸盐学报 44 1440Google Scholar
Zhang J L, Yao H, Du J, Zhao J B, Dong Y K, Qi P S 2016 J. Chin. Ceramic Soc. 44 1440Google Scholar
[13] 张思文, 吴九汇 2013 物理学报 62 134302Google Scholar
Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302Google Scholar
[14] 张永燕, 吴九汇, 钟宏民 2017 物理学报 66 094301Google Scholar
Zhang Y Y, Wu J H, Zhong H M 2017 Acta Phys. Sin. 66 094301Google Scholar
[15] 张若军, 肖勇, 温激鸿, 郁殿龙 2016 振动工程学报 29 905Google Scholar
Zhang R J, Xiao Y, Wen J H, Yu D L 2016 J. Vib. Eng. 29 905Google Scholar
[16] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯 2019 物理学报 68 128101Google Scholar
Qiao H, He Z, Zhang H K, Peng W C, Jiang W 2019 Acta Phys. Sin. 68 128101Google Scholar
[17] 梅军, 杨旻, 杨志宇, 陈傲轩, 沈平 2010 物理 39 243
Mei J, Yang M, Yang Z Y, Chen A X, Shen P 2010 Physics 39 243
[18] 贺子厚, 赵静波, 姚宏, 陈鑫 2019 物理学报 68 214302Google Scholar
He Z H, Zhao J B, Yao H, Chen X 2019 Acta Phys. Sin. 68 214302Google Scholar
[19] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫 2019 物理学报 68 134302Google Scholar
He Z H, Zhao J B, Yao H, Jiang J N, Chen X 2019 Acta Phys. Sin. 68 134302Google Scholar
[20] Xiao Y, Wen J H, Wen X S 2012 J. Phys. D:Appl. Phys. 45 195401Google Scholar
[21] Xiao Y, Wen J H, Wen X S 2012 J. Sound Vib. 331 5408Google Scholar
[22] Huang X C, Liu X T, Sun J Y, Zhang Z Y, Hua H X 2014 J. Sound Vib. 333 1132Google Scholar
[23] Carrella A, Brennan M J, Waters T P 2007 J. Sound Vib. 301 678Google Scholar
[24] Zheng Y S, Zhang X N, Luo Y J, Zhang Y H, Xie S L 2018 Mech. Syst. Sig. Process. 100 135Google Scholar
[25] Wang K, Zhou J X, Cai C Q, Xu D L, Ouyang H J 2019 Appl. Math. Modell. 73 581Google Scholar
[26] 张浩 2016 博士学位论文 (长沙: 国防科技大学)
Zhang H 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[27] 杜功焕, 朱哲民, 龚秀芬 2012 声学基础 (南京: 南京大学出版社) 第71页
Du G H, Zhu Z M, Gong X F 2012 Acoustic Basis (Nanjing: Nanjing University Press) p71 (in Chinese)
[28] 李佩 2014 博士学位论文 (北京: 北京理工大学)
Li P 2014 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese)
[29] 何琳, 朱海潮, 邱小军, 杜功焕 2006 声学理论与工程应用 (北京: 科学出版社) 第177页
He L, Zhu H C, Qiu X J, Du G H 2006 Acoustic Theory and Engineering Application (Beijing: Science Press) p177 (in Chinese)
-
图 2 弹簧刚度比保持不变(
$\gamma = 0.4$ ), (a)归一化恢复力和(b)等效刚度随弹簧预压缩量的变化趋势; 弹簧预压缩量保持不变($\bar \delta = 0.2$ ), (c)归一化恢复力和(d)等效刚度随弹簧刚度比的变化趋势Figure 2. (a) Normalized reacting force and (b) equivalent stiffness plotted as functions of pre-compression of springs for
$\gamma = 0.4$ ; (c) normalized reacting force and (d) equivalent stiffness plotted as functions of spring stiffness ratio for$\bar \delta = 0.2$ .图 9 正/负等效刚度区超材料板和无振子板对比 (a)传输损失; (b)等效阻抗和反射系数
Figure 9. Metamaterial plate compared with non-oscillator plate in both positive regime (
$\bar \delta = 0.2$ and$\gamma = 0.8$ ) and negative regime ($\bar \delta = 0.8$ and$\gamma = 0.8$ ) of equivalent stiffness: (a) Transmission loss; (b) equivalent impedance and reflection coefficient.表 1 材料参数
Table 1. Material parameters.
Material $\rho $/(kg⋅m–3) E /(1010 Pa) Possion ratio Aluminum 2700 7 0.33 Steel 7780 21.06 0.3 Epoxy resin 1150 0.435 0.38 Plumbum 11600 40.8 0.369 表 2 三种声学板结构的结构参数
Table 2. Structural parameters of the three structures.
Model a/mm h/mm k1/(N⋅m–1) Stiffness ratio Pre-compression m/kg QZS 25 4 10000 0.8 0.2 0.1 MSP 25 4 10000 0 0 0.1 NOP 25 4 0 0 0 0 表 3 准零刚度单元在正等效刚度区的调节参数
Table 3. Selected values of spring stiffness and pre-compression in the regime of positive equivalent stiffness.
Group k1 /(N⋅m–1) Stiffness ratio Pre-compression Case1 10000 0.4 0.2 Case2 10000 0.6 0.2 Case3 10000 0.8 0.2 Case4
Case510000
100000.4
0.40.3
0.376表 4 准零刚度单元在负等效刚度区的调节参数
Table 4. Selected values of spring stiffness and pre-compression in the regime of negative equivalent stiffness.
Group k1/(N⋅m–1) Stiffness ratio Pre-compression Case1 10000 2.0 0.2 Case2 10000 3.0 0.2 Case3
Case410000
100000.8
0.80.4
0.8表 5 有限大四振子超材料板的力学参数及局域共振频率
Table 5. Mechanical parameters and local resonance frequencies of finite four-oscillator metamaterial plate.
k1/(N·m–1) k2/(N·m–1) Pre-compression m/g Experiment f0/Hz FEM f0/ Hz A 35137.8 11322.1 0.2 19.14 178 176 B 35137.8 1093.16 0.2 19.14 211 210 C 35137.8 11322.1 0.2 10.17 254 242 D 35137.8 11322.1 0.02 10.17 300 289 -
[1] 田源, 葛浩, 卢明辉, 陈延锋 2019 物理学报 68 194301Google Scholar
Tian Y, Ge H, Lu M H, Chen Y F 2019 Acta Phys. Sin. 68 194301Google Scholar
[2] Ma G C, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar
[3] 丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar
Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 194301Google Scholar
[4] Liu Z Y, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103Google Scholar
[5] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar
[6] Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 188505Google Scholar
[7] Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301Google Scholar
[8] Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502Google Scholar
[9] Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nat. Commun. 3 756Google Scholar
[10] Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar
[11] Liu Z Y, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar
[12] 张佳龙, 姚宏, 杜军, 赵静波, 董亚科, 祁鹏山 2016 硅酸盐学报 44 1440Google Scholar
Zhang J L, Yao H, Du J, Zhao J B, Dong Y K, Qi P S 2016 J. Chin. Ceramic Soc. 44 1440Google Scholar
[13] 张思文, 吴九汇 2013 物理学报 62 134302Google Scholar
Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302Google Scholar
[14] 张永燕, 吴九汇, 钟宏民 2017 物理学报 66 094301Google Scholar
Zhang Y Y, Wu J H, Zhong H M 2017 Acta Phys. Sin. 66 094301Google Scholar
[15] 张若军, 肖勇, 温激鸿, 郁殿龙 2016 振动工程学报 29 905Google Scholar
Zhang R J, Xiao Y, Wen J H, Yu D L 2016 J. Vib. Eng. 29 905Google Scholar
[16] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯 2019 物理学报 68 128101Google Scholar
Qiao H, He Z, Zhang H K, Peng W C, Jiang W 2019 Acta Phys. Sin. 68 128101Google Scholar
[17] 梅军, 杨旻, 杨志宇, 陈傲轩, 沈平 2010 物理 39 243
Mei J, Yang M, Yang Z Y, Chen A X, Shen P 2010 Physics 39 243
[18] 贺子厚, 赵静波, 姚宏, 陈鑫 2019 物理学报 68 214302Google Scholar
He Z H, Zhao J B, Yao H, Chen X 2019 Acta Phys. Sin. 68 214302Google Scholar
[19] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫 2019 物理学报 68 134302Google Scholar
He Z H, Zhao J B, Yao H, Jiang J N, Chen X 2019 Acta Phys. Sin. 68 134302Google Scholar
[20] Xiao Y, Wen J H, Wen X S 2012 J. Phys. D:Appl. Phys. 45 195401Google Scholar
[21] Xiao Y, Wen J H, Wen X S 2012 J. Sound Vib. 331 5408Google Scholar
[22] Huang X C, Liu X T, Sun J Y, Zhang Z Y, Hua H X 2014 J. Sound Vib. 333 1132Google Scholar
[23] Carrella A, Brennan M J, Waters T P 2007 J. Sound Vib. 301 678Google Scholar
[24] Zheng Y S, Zhang X N, Luo Y J, Zhang Y H, Xie S L 2018 Mech. Syst. Sig. Process. 100 135Google Scholar
[25] Wang K, Zhou J X, Cai C Q, Xu D L, Ouyang H J 2019 Appl. Math. Modell. 73 581Google Scholar
[26] 张浩 2016 博士学位论文 (长沙: 国防科技大学)
Zhang H 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[27] 杜功焕, 朱哲民, 龚秀芬 2012 声学基础 (南京: 南京大学出版社) 第71页
Du G H, Zhu Z M, Gong X F 2012 Acoustic Basis (Nanjing: Nanjing University Press) p71 (in Chinese)
[28] 李佩 2014 博士学位论文 (北京: 北京理工大学)
Li P 2014 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese)
[29] 何琳, 朱海潮, 邱小军, 杜功焕 2006 声学理论与工程应用 (北京: 科学出版社) 第177页
He L, Zhu H C, Qiu X J, Du G H 2006 Acoustic Theory and Engineering Application (Beijing: Science Press) p177 (in Chinese)
Catalog
Metrics
- Abstract views: 7670
- PDF Downloads: 294
- Cited By: 0