Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Steady-state and transient optoelectronic characteristics of styrene-and quinoline-based derivative

Cheng Yan-Qin Xu Juan-Juan Wang You-Di Li Zhuo-Xi Chen Jiang-Shan

Citation:

Steady-state and transient optoelectronic characteristics of styrene-and quinoline-based derivative

Cheng Yan-Qin, Xu Juan-Juan, Wang You-Di, Li Zhuo-Xi, Chen Jiang-Shan
PDF
HTML
Get Citation
  • Styrene and quinoline groups are commonly incorporated into the organic fluorescent materials for organic light-emitting diodes (OLEDs). In this work, a type of small molecule derived from styrene and quinoline, with a chemical structure of 2,2'-(2,5-dimethoxy-1,4-phylenedivinylene)bis-8- acetoxyquinoline (MPV-AQ), is employed as the emitter and electron transporting material in the OLEDs, and its optoelectronic characteristics such as charge-carrier injection, transporting and recombination are investigated by the steady-state and transient technologies. It is found that the electron injection from the cathode into the MPV-AQ layer shows the Fowler-Nordheim (FN) tunneling characteristic in the N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB)/MPV-AQ bilayer OLED, which is different from the Richardson-Schottky (RS) thermionic emission in the electron-only device based on the MPV-AQ single-layer. The difference in electron injection is attributed to the bend of energy bands of MPV-AQ in the NPB/MPV-AQ device, which can be caused by the charge accumulation at the NPB/MPV-AQ interface. The accumulated charges should mainly be the holes on the side of NPB layer because the electron mobility of MPV-AQ is much lower than the hole mobility of NPB. Owing to the bending of lowest unoccupied molecular orbital (LUMO) of MPV-AQ, the tunneling distance for electrons is significantly reduced, which is favorable for the FN tunneling. The barrier height for electron injection is calculated to be 0.23 eV by fitting the current-voltage curve of the NPB/MPV-AQ bilayer OLED. And the electron mobility of MPV-AQ is determined by the delay time of transient electroluminescence (EL) and shows field-dependence with the value on the order of 10–6 cm2/(V·s). In addition, the electron-hole recombination coefficient is obtained from the long time component of the temporal decay of the EL intensity, and the coefficient is found to decrease with the applied voltage increasing, which is consistent with the efficiency roll-off in this bilayer OLED. This study may provide a foundation for understanding the electronic processes of carrier injection, transport and recombination in the OLEDs, which is helpful in improving the device performance.
      Corresponding author: Cheng Yan-Qin, 10602511@qq.com ; Chen Jiang-Shan, msjschen@scut.edu.cn
    • Funds: Project supported by the Department of Education of Guangdong Province, China (Grant No. 2018KTSCX318) and the State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, China (Grant No. skllmd-2021-03)
    [1]

    Tang C W, VanSlyke S A 1987 Appl. Phys. Lett. 51 913Google Scholar

    [2]

    Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R 2006 Nature 440 908Google Scholar

    [3]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [4]

    Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C 2016 Adv. Mater. 28 6976Google Scholar

    [5]

    Fung M K, Li Y Q, Liao L S 2016 Adv. Mater. 28 10381Google Scholar

    [6]

    Ai X, Evans E W, Dong S Z, Gillett A J, Guo H Q, Chen Y X, Hele T J H, Friend R H, Li F 2018 Nature 563 536Google Scholar

    [7]

    Wu T L, Huang M J, Lin C C, Huang P Y, Chou T Y, Chen-Cheng R W, Lin H W, Liu R S, Cheng C H 2018 Nat. Photonics 12 235Google Scholar

    [8]

    Liu Y C, Li C S, Ren Z J, Yan S K, Bryce M R 2018 Nat. Rev. Mater. 3 18020Google Scholar

    [9]

    Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T 2019 Nat. Photonics 13 678Google Scholar

    [10]

    Chan C Y, Tanaka M, Lee Y T, Wong Y W, Nakanotani H, Hatakeyama T, Adachi C 2021 Nat. Photonics 15 6Google Scholar

    [11]

    Jeon S O, Lee K H, Kim J S, Ihn S G, Chung Y S, Kim J W, Lee H, Kim S, Choi H, Lee J Y 2021 Nat. Photonics 15 9

    [12]

    Xu Y W, Xu P, Hu D H, Ma Y G 2021 Chem. Soc. Rev. 50 1030Google Scholar

    [13]

    Ma D, Hummelgen I A, Jing X B, Hong Z Y, Wang L X, Zhao X J, Wang F S, Karasz F E 2000 J. Appl. Phys. 87 312Google Scholar

    [14]

    Baldo M A, Forrest S R 2001 Phys. Rev. B 64 085201Google Scholar

    [15]

    Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photonics 6 253Google Scholar

    [16]

    Tang X, Cui L S, Li H C, Gillett A J, Auras F, Qu Y K, Zhong C, Jones S T E, Jiang Z Q, Friend R H, Liao L S 2020 Nat. Mater. 19 1332Google Scholar

    [17]

    Lee J, Jeong C, Batagoda T, Coburn C, Thompson M E, Forrest S R 2017 Nat. Commun. 8 9Google Scholar

    [18]

    Ostroverkhova O 2016 Chem. Rev. 116 13279Google Scholar

    [19]

    Matsumura M, Jinde Y, Akai T, Kimura T 1996 Jpn. J. Appl. Phys., Part 1 35 5735Google Scholar

    [20]

    Matsumura M, Akai T, Saito M, Kimura T 1996 J. Appl. Phys. 79 264Google Scholar

    [21]

    Matsumura M, Jinde Y 1998 Appl. Phys. Lett. 73 2872Google Scholar

    [22]

    Koehler M, Roman L S, Inganas O, da Luz M G E 2002 J. Appl. Phys. 92 5575Google Scholar

    [23]

    Crone B K, Davids P S, Campbell I H, Smith D L 2000 J. Appl. Phys. 87 1974Google Scholar

    [24]

    Yang J, Shen J 2000 J. Phys. D:Appl. Phys. 33 1768Google Scholar

    [25]

    Tutis E, Bussac M N, Masenelli B, Carrard M, Zuppiroli L 2001 J. Appl. Phys. 89 430Google Scholar

    [26]

    Cai M, Zhang D, Xu J, Hong X, Zhao C, Song X, Qiu Y, Kaji H, Duan L 2019 ACS Appl. Mater. Interfaces 11 1096Google Scholar

    [27]

    Nabha-Barnea S, Gotleyb D, Yonish A, Shikler R 2021 J. Mater. Chem. C 9 719Google Scholar

    [28]

    Lee J H, Lee S, Yoo S J, Kim K H, Kim J J 2014 Adv. Funct. Mater. 24 4681Google Scholar

    [29]

    Tak Y H, Pommerehne J, Vestweber H, Sander R, Bässler H, Hörhold H H 1996 Appl. Phys. Lett. 69 1291Google Scholar

    [30]

    Weichsel C, Burtone L, Reineke S, Hintschich S I, Gather M C, Leo K, Lüssem B 2012 Phys. Rev. B 86 075204Google Scholar

    [31]

    Liu R, Gan Z, Shinar R, Shinar J 2011 Phys. Rev. B 83 245302Google Scholar

    [32]

    Barth S, Muller P, Riel H, Seidler P F, Riess W, Vestweber H, Bassler H 2001 J. Appl. Phys. 89 3711Google Scholar

    [33]

    Kalinowski J, Camaioni N, Di Marco P, Fattori V, Martelli A 1998 Appl. Phys. Lett. 72 513Google Scholar

    [34]

    Grüne J, Bunzmann N, Meinecke M, Dyakonov V, Sperlich A 2020 J. Phys. Chem. C 124 25667Google Scholar

    [35]

    Dong Q, Mendes J, Lei L, Seyitliyev D, Zhu L, He S, Gundogdu K, So F 2020 ACS Appl. Mater. Interfaces 12 48845Google Scholar

    [36]

    Yuan Q, Wang T, Wang R, Zhao J, Zhang H, Ji W 2020 Opt. Lett. 45 6370Google Scholar

    [37]

    Elkhouly K, Gehlhaar R, Genoe J, Heremans P, Qiu W 2020 Adv. Opt. Mater. 8 2000941Google Scholar

    [38]

    Xu M, Peng Q, Zou W, Gu L, Xu L, Cheng L, He Y, Yang M, Wang N, Huang W, Wang J 2019 Appl. Phys. Lett. 115 041102Google Scholar

    [39]

    Liang F, Chen J, Cheng Y, Wang L, Ma D, Jing X, Wang F 2003 J. Mater. Chem. 13 1392Google Scholar

    [40]

    Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: Wiley)

  • 图 1  MPV-AQ和NPB的分子结构式

    Figure 1.  Molecular structures of MPV-AQ and NPB.

    图 2  单载流子器件的电流-电压特性 (a) J-V曲线; (b) ln$J\text{-}F^{1/2}$曲线

    Figure 2.  Characteristics of current density and voltage in the electron-only and hole-only devices: (a) J-V curves; (b) ln$J\text{-}F^{1/2}$ curves

    图 3  (a) 不同MPV-AQ厚度时双层OLED的电流-电压特性; (b) 外加电压与MPV-AQ厚度的关系; (c) NPB和MPV-AQ层中平均电场(FhFe)与电流的关系; (d) 双层OLED的能级结构示意图

    Figure 3.  (a) Characteristics of current density and voltage in the bilayer OLEDs with different MPV-AQ thickness; (b) relationship of applied voltage and MPV-AQ thickness; (c) relationship of average electric field (Fh and Fe) and current density in the NPB and MPV-AQ layers; (d) diagram of energy levels in the bilayer OLEDs.

    图 4  NPB和MPV-AQ层中电流与电场(FhFe)的关系 (a), (c) lnJ-F1/2曲线; (b), (d) lnJ-F–1曲线

    Figure 4.  Relationship of current density and electric field in the NPB and MPV-AQ layers (Fh and Fe): (a), (c) lnJ-F1/2 curves; (b), (d) lnJ-F–1 curves.

    图 5  (a) 双层OLED中瞬态EL随电压的变化, 其中NPB和MPV-AQ的厚度都等于50 nm; (b) MPV-AQ电子迁移率与电场平方根的关系

    Figure 5.  (a) Voltage dependence of the transient EL from the bilayer OLED with the same thickness of 50 nm for NPB and MPV-AQ; (b) electron mobility of MPV-AQ as a function of the square root of electric field.

    图 6  (a) 脉冲电压15 V时(ΦEL)–1/2与时间的关系, 插图为对应EL的衰减曲线; (b) 不同电压下的复合系数, 插图为不同电压下OLED的外量子效率

    Figure 6.  (a) EL decay at the falling edge of a 15 V pulse plotted in (ΦEL)–1/2 vs time scale. The inset shows the corresponding EL decay curve; (b) dependence of recombination coefficient on the voltage. The insert shows the external quantum efficiencies (EQEs) at various voltages in the OLED.

  • [1]

    Tang C W, VanSlyke S A 1987 Appl. Phys. Lett. 51 913Google Scholar

    [2]

    Sun Y R, Giebink N C, Kanno H, Ma B W, Thompson M E, Forrest S R 2006 Nature 440 908Google Scholar

    [3]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [4]

    Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C 2016 Adv. Mater. 28 6976Google Scholar

    [5]

    Fung M K, Li Y Q, Liao L S 2016 Adv. Mater. 28 10381Google Scholar

    [6]

    Ai X, Evans E W, Dong S Z, Gillett A J, Guo H Q, Chen Y X, Hele T J H, Friend R H, Li F 2018 Nature 563 536Google Scholar

    [7]

    Wu T L, Huang M J, Lin C C, Huang P Y, Chou T Y, Chen-Cheng R W, Lin H W, Liu R S, Cheng C H 2018 Nat. Photonics 12 235Google Scholar

    [8]

    Liu Y C, Li C S, Ren Z J, Yan S K, Bryce M R 2018 Nat. Rev. Mater. 3 18020Google Scholar

    [9]

    Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T 2019 Nat. Photonics 13 678Google Scholar

    [10]

    Chan C Y, Tanaka M, Lee Y T, Wong Y W, Nakanotani H, Hatakeyama T, Adachi C 2021 Nat. Photonics 15 6Google Scholar

    [11]

    Jeon S O, Lee K H, Kim J S, Ihn S G, Chung Y S, Kim J W, Lee H, Kim S, Choi H, Lee J Y 2021 Nat. Photonics 15 9

    [12]

    Xu Y W, Xu P, Hu D H, Ma Y G 2021 Chem. Soc. Rev. 50 1030Google Scholar

    [13]

    Ma D, Hummelgen I A, Jing X B, Hong Z Y, Wang L X, Zhao X J, Wang F S, Karasz F E 2000 J. Appl. Phys. 87 312Google Scholar

    [14]

    Baldo M A, Forrest S R 2001 Phys. Rev. B 64 085201Google Scholar

    [15]

    Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photonics 6 253Google Scholar

    [16]

    Tang X, Cui L S, Li H C, Gillett A J, Auras F, Qu Y K, Zhong C, Jones S T E, Jiang Z Q, Friend R H, Liao L S 2020 Nat. Mater. 19 1332Google Scholar

    [17]

    Lee J, Jeong C, Batagoda T, Coburn C, Thompson M E, Forrest S R 2017 Nat. Commun. 8 9Google Scholar

    [18]

    Ostroverkhova O 2016 Chem. Rev. 116 13279Google Scholar

    [19]

    Matsumura M, Jinde Y, Akai T, Kimura T 1996 Jpn. J. Appl. Phys., Part 1 35 5735Google Scholar

    [20]

    Matsumura M, Akai T, Saito M, Kimura T 1996 J. Appl. Phys. 79 264Google Scholar

    [21]

    Matsumura M, Jinde Y 1998 Appl. Phys. Lett. 73 2872Google Scholar

    [22]

    Koehler M, Roman L S, Inganas O, da Luz M G E 2002 J. Appl. Phys. 92 5575Google Scholar

    [23]

    Crone B K, Davids P S, Campbell I H, Smith D L 2000 J. Appl. Phys. 87 1974Google Scholar

    [24]

    Yang J, Shen J 2000 J. Phys. D:Appl. Phys. 33 1768Google Scholar

    [25]

    Tutis E, Bussac M N, Masenelli B, Carrard M, Zuppiroli L 2001 J. Appl. Phys. 89 430Google Scholar

    [26]

    Cai M, Zhang D, Xu J, Hong X, Zhao C, Song X, Qiu Y, Kaji H, Duan L 2019 ACS Appl. Mater. Interfaces 11 1096Google Scholar

    [27]

    Nabha-Barnea S, Gotleyb D, Yonish A, Shikler R 2021 J. Mater. Chem. C 9 719Google Scholar

    [28]

    Lee J H, Lee S, Yoo S J, Kim K H, Kim J J 2014 Adv. Funct. Mater. 24 4681Google Scholar

    [29]

    Tak Y H, Pommerehne J, Vestweber H, Sander R, Bässler H, Hörhold H H 1996 Appl. Phys. Lett. 69 1291Google Scholar

    [30]

    Weichsel C, Burtone L, Reineke S, Hintschich S I, Gather M C, Leo K, Lüssem B 2012 Phys. Rev. B 86 075204Google Scholar

    [31]

    Liu R, Gan Z, Shinar R, Shinar J 2011 Phys. Rev. B 83 245302Google Scholar

    [32]

    Barth S, Muller P, Riel H, Seidler P F, Riess W, Vestweber H, Bassler H 2001 J. Appl. Phys. 89 3711Google Scholar

    [33]

    Kalinowski J, Camaioni N, Di Marco P, Fattori V, Martelli A 1998 Appl. Phys. Lett. 72 513Google Scholar

    [34]

    Grüne J, Bunzmann N, Meinecke M, Dyakonov V, Sperlich A 2020 J. Phys. Chem. C 124 25667Google Scholar

    [35]

    Dong Q, Mendes J, Lei L, Seyitliyev D, Zhu L, He S, Gundogdu K, So F 2020 ACS Appl. Mater. Interfaces 12 48845Google Scholar

    [36]

    Yuan Q, Wang T, Wang R, Zhao J, Zhang H, Ji W 2020 Opt. Lett. 45 6370Google Scholar

    [37]

    Elkhouly K, Gehlhaar R, Genoe J, Heremans P, Qiu W 2020 Adv. Opt. Mater. 8 2000941Google Scholar

    [38]

    Xu M, Peng Q, Zou W, Gu L, Xu L, Cheng L, He Y, Yang M, Wang N, Huang W, Wang J 2019 Appl. Phys. Lett. 115 041102Google Scholar

    [39]

    Liang F, Chen J, Cheng Y, Wang L, Ma D, Jing X, Wang F 2003 J. Mater. Chem. 13 1392Google Scholar

    [40]

    Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: Wiley)

  • [1] Ren Xing, Yu Hong-Yu, Zhang Yong. Electroluminescence efficiency and stability of near ultraviolet organic light-emitting diodes based on BCPO luminous materials. Acta Physica Sinica, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [2] Peng Teng, Wang Hui-Yao, Zhao Xi, Liu Jun-Hong, Wang Bo, Wang Jing-Jing, Zhou Yin-Qiong, Zhang Ke-Yi, Yang Jun, Xiong Zu-Hong. Modulation of half-band-gap turn-on electroluminescence in Rubrene/C60 based OLEDs by electron injection layer mobility. Acta Physica Sinica, 2024, 73(21): 217202. doi: 10.7498/aps.73.20240864
    [3] Zhao Jian-Cheng, Wu Chao-Xing, Guo Tai-Liang. Carrier transport model of non-carrier-injection light-emitting diode. Acta Physica Sinica, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [4] Wang Hui-Yao, Wei Fu-Xian, Wu Yu-Ting, Peng Teng, Liu Jun-Hong, Wang Bo, Xiong Zu-Hong. Enhanced reverse inter-system crossing process of charge-transfer stated induced by carrier balance in exciplex-type OLEDs. Acta Physica Sinica, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [5] Bao Xi, Guan Yun-Xia, Li Wan-Jiao, Song Jia-Yi, Chen Li-Jia, Xu Shuang, Peng Ke-Ao, Niu Lian-Bin. Carrier ladder effect regulated dissociation and scattering of triplet excitons in OLED. Acta Physica Sinica, 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [6] Steady-State and Transient Optoelectronic Characteristics of a Styrene- and Quinoline-Based Derivative. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211171
    [7] Liu Meng-Jiao, Zhang Xin-Wen, Wang Jiong, Qin Ya-Bo, Chen Yue-Hua, Huang Wei. Research progress of light out-coupling in organic light-emitting diodes with non-period micro/nanostructures. Acta Physica Sinica, 2018, 67(20): 207801. doi: 10.7498/aps.67.20181209
    [8] Zhang Ya-Nan, Wang Jun-Feng. Improvement of the color-stability in top-emitting white organic light-emitting diodes by utilizing step-doping in emission layers. Acta Physica Sinica, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [9] Huang Di, Xu Zheng, Zhao Su-Ling. Enhanced performance of organic light-emitting diodes by using PTB7 as anode modification layer. Acta Physica Sinica, 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [10] Liu Bai-Quan, Lan Lin-Feng, Zou Jian-Hua, Peng Jun-Biao. A novel organic light-emitting diode by utilizing double hole injection layer. Acta Physica Sinica, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [11] Zhang Yong, Liu Ya-Li, Jiao Wei, Chen Lin, Xiong Zu-Hong. Magnetoconductance effect in organic light-emitting devices. Acta Physica Sinica, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [12] Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong. Light-induced magnetoconductance effect in organic light-emitting diodes. Acta Physica Sinica, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [13] Liu Nan-Liu, Ai Na, Hu Dian-Gang, Yu Shu-Fu, Peng Jun-Biao, Cao Yong, Wang Jian. Effect of spin-coating process on the performance of passive-matrix organic light-emitting display. Acta Physica Sinica, 2011, 60(8): 087805. doi: 10.7498/aps.60.087805
    [14] Yang Yang, Chen Shu-Fen, Xie Jun, Chen Chun-Yan, Shao Ming, Guo Xu, Huang Wei. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [15] Zhang Yong, Liu Rong, Lei Yan-Lian, Chen Ping, Zhang Qiao-Ming, Xiong Zu-Hong. Magnetoconductance in Alq3-based organic light-emitting diodes. Acta Physica Sinica, 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [16] Zhang Xiu-Long, Yang Sheng-Yi, Lou Zhi-Dong, Hou Yan-Bing. Dynamic electrical characteristics of organic light-emitting diodes. Acta Physica Sinica, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [17] Wang Jun, Wei Xiao-Qiang, Rao Hai-Bo, Cheng Jian-Bo, Jiang Ya-Dong. High-efficiency and high-stability phosphorescent OLED based on new Ir complex. Acta Physica Sinica, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [18] Huang Wen-Bo, Peng Jun-Biao. Carrier injection process of polymer light-emitting diodes. Acta Physica Sinica, 2007, 56(5): 2974-2978. doi: 10.7498/aps.56.2974
    [19] Xu Xue-Mei, Peng Jing-Cui, Li Hong-Jian, Qu Shu, Zhao Chu-Jun, Luo Xiao-Hua. Effects of organic/organic interface on recombination efficiency in double-layer organic diodes. Acta Physica Sinica, 2004, 53(1): 286-290. doi: 10.7498/aps.53.286
    [20] Xu Xue-Mei, Peng Jing-Cui, Li Hong-Jian, Qu Shu, Luo Xiao-Hua. . Acta Physica Sinica, 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
Metrics
  • Abstract views:  4750
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  22 June 2021
  • Accepted Date:  07 September 2021
  • Available Online:  27 December 2021
  • Published Online:  05 January 2022

/

返回文章
返回