Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of photonic crystal fiber amplifier based on stimulated Brillouin amplification for orbital angular momentum

Zhao Li-Juan Zhao Hai-Ying Xu Zhi-Niu

Citation:

Design of photonic crystal fiber amplifier based on stimulated Brillouin amplification for orbital angular momentum

Zhao Li-Juan, Zhao Hai-Ying, Xu Zhi-Niu
PDF
HTML
Get Citation
  • A probe made of amino acids is arranged in a linear chain and joined together by peptide bonds between the carboxyl and amino groups of adjacent amino acid residues. The sequence of amino acids in a protein is determined by a gene and encoded in the genetic code. This can happen either before the protein is used in the cell, or as part of control mechanisms. In order to transmit and amplify high-purity orbital angular momentum mode, a photonic crystal fiber amplifier based on stimulated Brillouin amplification is proposed and designed in this paper. The transmission properties of the photonic crystal fiber amplifier are systematically analyzed by using the finite element method in the C-band. The results show that this photonic crystal fiber amplifier can support the transmission and amplification of 66 orbital angular momentum modes, and all values of the purity of the orbital angular momentum modes supported by this amplifier are higher than 99.4%. By systematically analyzing the Brillouin gain spectra of orbital angular momentum modes with different topological charges, it is found that they have all high Brillouin gain coefficients (> 7 × 10–9 m/W) which are 4–5 orders of magnitude higher than the existing OAM amplifiers with the best performance, thus higher signal gain can be obtained. The comprehensive performance of the proposed photonic crystal fiber amplifier is superior to that of the existing optical fiber amplifiers based on stimulated Brillouin amplification and the optical fiber amplifiers doped with rare-earth ions. This makes the amplification and long-distance transmission of OAM mode stable and accurate and provides a possibility for designing the orbital angular momentum mode laser system.
      Corresponding author: Xu Zhi-Niu, wzcnjxx@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171185, 61775057), the Natural Science Foundation of Hebei Province, China (Grant Nos. E2019502177, E2020502010), the Fundamental Research Fund for the Central Universities, China (Grant No. 2021MS072), and the Science and Technology Program of Hebei Province, China (Grant No. SZX2020034)
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Fujisawa T, Saitoh K 2020 Photosynth. Res. 2020 1278

    [3]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [4]

    Heckenberg N R, Mcduff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar

    [5]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F 2011 J. Opt. 13 064001Google Scholar

    [6]

    Bozinovic N, Golowich S, Kristensen P, Ramachandran S 2012 Opt. Lett. 37 2451Google Scholar

    [7]

    Willner A E, Huang H, Yan Y, Ren Y, Ashrafi S 2015 Adv. Opt. Photonics 7 66Google Scholar

    [8]

    Heng X B, Gan J L, Zhang Z S, Qian Q, Yang Z M 2019 Opt. Commun. 433 132Google Scholar

    [9]

    Gao W, Mu C, Li H, Yang Y, Zhu Z 2015 Appl. Phys. Lett. 107 041119Google Scholar

    [10]

    Devaux F, Passier R 2007 Eur. Phys. J. D 42 133Google Scholar

    [11]

    Prabhakar G, Liu X, Demas J, Gregg P, Ramachandran S 2018 Conference on Lasers and Electro-Optics, OSA Technical Digest

    [12]

    Sheng L W, Ba D X, Lu Z W 2019 Appl. Opt. 58 147Google Scholar

    [13]

    Li H W, Zhao B, Jin L W, Wang D M, Gao W 2019 Photosynth. Res. 7 07000748

    [14]

    Mu C, Wei G, Zhu Z, Zhang H, Pu S 2014 Asia Communications and Photonics Conference

    [15]

    Kabir M A, Ahmed K, Hassan M M, Hossain M M, Paul B K 2020 Opt. Commun. 475 126192Google Scholar

    [16]

    Kang Q, Gregg P, Jung Y, Lim E, Alam S 2015 Opt. Express 23 28341Google Scholar

    [17]

    Kumar C, Kumar G 2020 J. Opt. 49 178Google Scholar

    [18]

    曹介元, 扬开宇 1995 光通信技术 1 30

    Cao J Y, Yang K Y 1995 Optical Communication Technology 1 30

    [19]

    Liu J, Chen S, Wang H Y, Zheng S, Zhu L, Wang A, Wang L L, Du C, Wang J 2020 Research 2020 7623751

    [20]

    Pakarzadeh H, Sharif V 2019 Opt. Commun. 438 18Google Scholar

    [21]

    Zhao L J, Zhao H Y, Xu Z N, Liang R Y 2021 Commun. Theor. Phys. 73 085501

    [22]

    Chen X, Xia L, Li W, Li C 2017 Chin. Opt. Lett. 15 69Google Scholar

    [23]

    Israk M F, Razzak M A, Ahmed K, Hassan M M, Kabir M A, Hossain M N, Paula B K, Dhasarathan V 2020 Opt. Commun. 473 126003Google Scholar

    [24]

    Ghazanfari A, Li W B, Leu M C, Hilmas G E 2017 Addit. Manuf. 15 102

    [25]

    Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629Google Scholar

    [26]

    Ebendorff-Heidepriem H, Schuppich J, Dowler A, Lima-Marques L, Monro T M 2014 Opt. Mater. Express 4 1494Google Scholar

    [27]

    Hicham El H, Youcef O, Laurent B, Géraud B, Bruno C, Aziz B, Sylvain G, Mohamed B 2012 Opt. Express 20 29751Google Scholar

    [28]

    Vienne G, Xu Y, Jakobsen C, Deyerl H, Jensen J B, Sørensen T, Hansen T P, Huang Y, Terrel M, Lee R K, Mortensen N A, Broeng J, Simonsen H, Bjarklev A, Yariv A 2004 Opt. Express 12 3500Google Scholar

    [29]

    Issa N A, Eijkelenborg M A V, Fellew M, Cox F, Henry G, Large M C J 2004 Opt. Express 29 1336

    [30]

    Baek J H, Song D S, Hwang I, Lee K H, Lee Y H, Ju Y G, Kondo T, Miyamoto T, Koyama F 2004 Opt. Express 12 859Google Scholar

    [31]

    Sun C, Wang W, Jia H 2020 Opt. Commun. 458 124757Google Scholar

  • 图 1  光子晶体光纤横截面示意图

    Figure 1.  Schematic diagram of the proposed PCF.

    图 2  PCF放大器支持的OAM模式数量随r的变化

    Figure 2.  Number of OAM modes supported by the SBA-PCFA varies with r.

    图 3  不同拓扑荷的OAM模式的BGS随纤芯半径变化 (a) l = 1; (b) l = 4; (c) l = 8 (d) l = 12; (e) l = 14; (f) g0r的变化

    Figure 3.  The BGS of OAM modes with different topological charges varies with r: (a) l = 1; (b) l = 4; (c) l = 8; (d) l = 12; (e) l = 14; (f) g0 varies with r.

    图 4  (a)支持的OAM模式数量随a的变化; (b) g0a的变化

    Figure 4.  (a) Number of supported OAM modes varies with a; (b) g0 varies with a.

    图 5  模场分布 (a) EH2,1; (b) HE5,1; (c) HE10,1; (d) EH14,1

    Figure 5.  Intensity of the electric field: (a) EH2,1; (b) HE5,1; (c) HE10,1; (d) EH14,1.

    图 6  有效折射率差与波长的关系

    Figure 6.  Relationship between the differences in effective refractive index of different modes with wavelength.

    图 7  不同模式的纯度与波长的关系

    Figure 7.  Relationship between the mode purity and wavelength for different modes.

    图 8  (a) 有效模场面积和(b) 非线性系数随波长的变化

    Figure 8.  Relationship between wavelength and (a) the effective mode area, (b) nonlinear coefficient for different modes.

    图 9  不同模式的色散与波长的关系

    Figure 9.  Relationship between dispersion and wavelength for different modes.

    图 10  不同模式的限制性损耗与波长的关系

    Figure 10.  The relationship between confinement and wavelength for different modes.

    图 11  不同拓扑荷数的OAM模式的BGS (a) 1530 nm; (b) 1540 nm; (c) 1550 nm; (d) 1560 nm

    Figure 11.  BGS of OAM modes with different topological charge: (a) 1530 nm; (b) 1540 nm; (c) 1550 nm; (d) 1560 nm.

    图 12  布里渊增益谱特征参数随拓扑荷数的变化 (a) 最大布里渊增益系数; (b) 布里渊频移; (c) 线宽

    Figure 12.  Change of the characteristic parameters of BGS with topological charge: (a) g0; (b) υB; (c) ГB.

    图 13  阈值随拓扑荷数的变化 (a) Leff = 0.4 m; (b) Leff = 10 m

    Figure 13.  Values of threshold change with topological charge when (a) Leff = 0.4 m, (b) Leff = 10 m.

    图 14  光纤有效长度为 (a) 0.4 m和 (b) 10 m时信号增益随泵浦光能量的变化

    Figure 14.  Gain changes with the pump energy in the SBA-PCFA with an effective optical fiber length of (a) 0.4 m and (b) 10 m.

    图 15  制造误差的影响 (a) 支持的OAM模式数量; (b) 最大布里渊增益系数

    Figure 15.  Influence of manufacturing error on (a) the number of supported OAM modes, and (b) the max Brillouin gain.

    表 1  Schott SF2的Sellmeier系数

    Table 1.  Sellmeier coefficients of Schott SF2.

    CoefficientB1C1/µm2B2C2/µm2B3C3/µm2
    Value1.47343130.01090190.163681850.0585683691.36920899127.404933
    DownLoad: CSV

    表 2  本文提出的SBA-PCFA的性能

    Table 2.  Properties of the proposed SBA-PCFA in this work.

    Number of supported
    OAM modes
    η/%γ/(W–1·km–1)D/(ps·km–1·nm–1)LC/(dB·cm)g0/(m·W–1)Pth/mWυB/GHzГB/MHzGain/dB
    66 > 99.4 > 25 < 45 < 10–5 > 7 × 10–9 < 14.18—8.712.6—14.4 < 1697.5
    DownLoad: CSV

    表 3  本文提出的SBA-PCFA与现有光纤放大器的比较

    Table 3.  Comparison between the SBA-PCFA and the existing fiber amplifier.

    Ref. [12]Ref. [13]Ref. [8]Ref. [19]Proposed
    Gain45 dB32 dB20 dB20 dB1697.5 dB
    Number of modes6386266
    DownLoad: CSV
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Fujisawa T, Saitoh K 2020 Photosynth. Res. 2020 1278

    [3]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [4]

    Heckenberg N R, Mcduff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar

    [5]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F 2011 J. Opt. 13 064001Google Scholar

    [6]

    Bozinovic N, Golowich S, Kristensen P, Ramachandran S 2012 Opt. Lett. 37 2451Google Scholar

    [7]

    Willner A E, Huang H, Yan Y, Ren Y, Ashrafi S 2015 Adv. Opt. Photonics 7 66Google Scholar

    [8]

    Heng X B, Gan J L, Zhang Z S, Qian Q, Yang Z M 2019 Opt. Commun. 433 132Google Scholar

    [9]

    Gao W, Mu C, Li H, Yang Y, Zhu Z 2015 Appl. Phys. Lett. 107 041119Google Scholar

    [10]

    Devaux F, Passier R 2007 Eur. Phys. J. D 42 133Google Scholar

    [11]

    Prabhakar G, Liu X, Demas J, Gregg P, Ramachandran S 2018 Conference on Lasers and Electro-Optics, OSA Technical Digest

    [12]

    Sheng L W, Ba D X, Lu Z W 2019 Appl. Opt. 58 147Google Scholar

    [13]

    Li H W, Zhao B, Jin L W, Wang D M, Gao W 2019 Photosynth. Res. 7 07000748

    [14]

    Mu C, Wei G, Zhu Z, Zhang H, Pu S 2014 Asia Communications and Photonics Conference

    [15]

    Kabir M A, Ahmed K, Hassan M M, Hossain M M, Paul B K 2020 Opt. Commun. 475 126192Google Scholar

    [16]

    Kang Q, Gregg P, Jung Y, Lim E, Alam S 2015 Opt. Express 23 28341Google Scholar

    [17]

    Kumar C, Kumar G 2020 J. Opt. 49 178Google Scholar

    [18]

    曹介元, 扬开宇 1995 光通信技术 1 30

    Cao J Y, Yang K Y 1995 Optical Communication Technology 1 30

    [19]

    Liu J, Chen S, Wang H Y, Zheng S, Zhu L, Wang A, Wang L L, Du C, Wang J 2020 Research 2020 7623751

    [20]

    Pakarzadeh H, Sharif V 2019 Opt. Commun. 438 18Google Scholar

    [21]

    Zhao L J, Zhao H Y, Xu Z N, Liang R Y 2021 Commun. Theor. Phys. 73 085501

    [22]

    Chen X, Xia L, Li W, Li C 2017 Chin. Opt. Lett. 15 69Google Scholar

    [23]

    Israk M F, Razzak M A, Ahmed K, Hassan M M, Kabir M A, Hossain M N, Paula B K, Dhasarathan V 2020 Opt. Commun. 473 126003Google Scholar

    [24]

    Ghazanfari A, Li W B, Leu M C, Hilmas G E 2017 Addit. Manuf. 15 102

    [25]

    Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629Google Scholar

    [26]

    Ebendorff-Heidepriem H, Schuppich J, Dowler A, Lima-Marques L, Monro T M 2014 Opt. Mater. Express 4 1494Google Scholar

    [27]

    Hicham El H, Youcef O, Laurent B, Géraud B, Bruno C, Aziz B, Sylvain G, Mohamed B 2012 Opt. Express 20 29751Google Scholar

    [28]

    Vienne G, Xu Y, Jakobsen C, Deyerl H, Jensen J B, Sørensen T, Hansen T P, Huang Y, Terrel M, Lee R K, Mortensen N A, Broeng J, Simonsen H, Bjarklev A, Yariv A 2004 Opt. Express 12 3500Google Scholar

    [29]

    Issa N A, Eijkelenborg M A V, Fellew M, Cox F, Henry G, Large M C J 2004 Opt. Express 29 1336

    [30]

    Baek J H, Song D S, Hwang I, Lee K H, Lee Y H, Ju Y G, Kondo T, Miyamoto T, Koyama F 2004 Opt. Express 12 859Google Scholar

    [31]

    Sun C, Wang W, Jia H 2020 Opt. Commun. 458 124757Google Scholar

  • [1] Wu Hang, Chen Liao, Li Shuai, Du Yu-Fan, Zhang Chi, Zhang Xin-Liang. Orbital angular momentum mode femtosecond fiber laser with over 100 MHz repetition rate. Acta Physica Sinica, 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [2] Wu Hang, Chen Liao, Shu Xue-Wen, Zhang Xin-Liang. Generation of all-fiber third-order orbital angular momentum modes based on femtosecond laser processing of long-period grating. Acta Physica Sinica, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [3] Zhao Li-Juan, Jiang Huan-Qiu, Xu Zhi-Niu. Helically twisted double-cladding-three-core photonic crystal fiber for generation of orbital angular momentum. Acta Physica Sinica, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [4] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [5] Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian. Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber. Acta Physica Sinica, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [6] Fu Dong-Zhi, Jia Jun-Liang, Zhou Ying-Nan, Chen Dong-Xu, Gao Hong, Li Fu-Li, Zhang Pei. Realisation of orbital angular momentum sorter of photons based on sagnac interferometer. Acta Physica Sinica, 2015, 64(13): 130704. doi: 10.7498/aps.64.130704
    [7] Zhao Nan, Chen Gui, Wang Yi-Bo, Peng Jing-Gang, Li Jin-Yan. Double-clad large-mode-area polarization-maintaining ytterbium doped photonic crystal fiber. Acta Physica Sinica, 2014, 63(2): 024202. doi: 10.7498/aps.63.024202
    [8] Wang Xin, Lou Shu-Qin, Lu Wen-Liang. Novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Acta Physica Sinica, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [9] Lou Shu-Qin, Lu Wen-Liang, Wang Xin. A novel bend-resistant large-mode-area photonic crystal fiber. Acta Physica Sinica, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [10] Chen Gui, Jiang Zuo-Wen, Peng Jing-Gang, Li Hai-Qing, Dai Neng-Li, Li Jin-Yan. Study of air-clad large-mode-area ytterbium doped photonic crystal fiber. Acta Physica Sinica, 2012, 61(14): 144206. doi: 10.7498/aps.61.144206
    [11] Qi Xiao-Qing, Gao Chun-Qing, Xin Jing-Tao, Zhang Ge. Experimental study of 8-bits information transmission system based on orbital angular momentum of light beams. Acta Physica Sinica, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [12] Li Tie, Chen Juan, Ke Xi-Zheng. Study of orbital angular momentum entangled photons entanglement in atmospheric channel. Acta Physica Sinica, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [13] Qi Yue-Feng, Qiao Han-Ping, Bi Wei-Hong, Liu Yan-Yan. Heat transfer characteristics in fabrication of heat method in photonic crystal fiber grating. Acta Physica Sinica, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [14] Guo Yan-Yan, Hou Lan-Tian. Design of all-solid octagon photonic crystal fiber with large mode area. Acta Physica Sinica, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [15] Zhang Xin, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Dissipative-soliton mode locked laser based on large-mode-area photonic crystal fiber. Acta Physica Sinica, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [16] Ke Xi-Zheng, Nu Ning, Yang Qin-Ling. Research of transmission characteristics of single-photon orbital angular momentum. Acta Physica Sinica, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [17] Zhang Chi, Hu Ming-Lie, Song You-Jian, Zhang Xin, Chai Lu, Wang Qing-Yue. An Yb-doped large-mode-area photonic crystal fiber mode-locking laser with free output coupler. Acta Physica Sinica, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [18] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [19] Liu Bo-Wen, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Sub-100 fs high power Yb-doped single polarization large-mode-area photonic crystal fiber laser amplifier. Acta Physica Sinica, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [20] Su Zhi-Kun, Wang Fa-Qiang, Lu Yi-Qun, Jin Rui-Bo, Liang Rui-Sheng, Liu Song-Hao. Study on quantum cryptography using orbital angular momentum states of photons. Acta Physica Sinica, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
Metrics
  • Abstract views:  4792
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2021
  • Accepted Date:  16 November 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回