Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gamma-ray generation optimized by long and short pulses jointly driving double-layer target

Xiong Jun An Hong-Hai Wang Chen Zhang Zhen-Chi Jiao Jin-Long Lei An-Le Wang Rui-Rong Hu Guang-Yue Wang Wei Sun Jin-Ren

Citation:

Gamma-ray generation optimized by long and short pulses jointly driving double-layer target

Xiong Jun, An Hong-Hai, Wang Chen, Zhang Zhen-Chi, Jiao Jin-Long, Lei An-Le, Wang Rui-Rong, Hu Guang-Yue, Wang Wei, Sun Jin-Ren
PDF
HTML
Get Citation
  • In order to verify that the large-scale low-density plasma has a significant gain effect on the quality of the ultra-hot electron beam in ultra-strong ultra-short pulse laser interactions with matter, on the Shenguang-II upgraded laser facility, we carry out an experimental study on the optimization of relativistic electron beams that combine long and short pulse lasers to generate large-scale low-density pre-plasma. A nanosecond laser is used to ablate the thin hydrocarbon film. After a period of time, a large-scale low-density plasma is formed. The second picosecond short pulse laser then interacts with the formed low-density plasma, and accelerates the electrons to the relativity magnitude. Through the comparative analysis between different experimental conditions in the experiment, it is found that the existence of large-scale low-density plasma significantly increases the intensity of the relativistic electron beam along the laser propagation direction. In the comparative test of three shooting methods (long and short pulse combined driving double-layer target, short pulse driving double-layer target, short pulse driving single-layer target), we find that the energy bands above 1 MeV can be produced by the long pulse and the short pulse jointly driving double-layer target. The gamma-ray intensity is nearly twice that of the other two schemes. In addition, we also find in the experiment that when the time interval between nanosecond-picosecond pulses changes, the pre-plasma electron density and density scale length of the CH film irradiated by the nanosecond laser will be different. When the time interval is 0 ns, the expansion of the plasma is still insufficient, and the density distribution of the pre-plasma is steep. Part of the picosecond laser energy will be reflected at the critical density surface. Insufficient absorption of picosecond laser energy reduces the generation of relativistic electrons.When the time interval is 1 ns, the plasma state is more appropriate. The picosecond laser will form a self-focusing plasma channel in the plasma, thereby efficiently depositing energy, breaking through the energy limit of ponderomotive force acceleration, and obtaining more higher energy relativistic electrons. When the time interval is longer, such as 1.5 ns or more, the plasma can be fully expanded, the electron density becoming too low. Most of the picosecond laser will pass through the pre-plasma, affecting energy deposition and failing to generate more relativistic electrons.
      Corresponding author: Wang Chen, wch11@163.com
    • Funds: Project supported by the Science Challenge Project of China (Grant No. TZ2018005).
    [1]

    Glinec Y, Faure J, Dain L L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F, Mercier B, Malka V 2005 Phys. Rev. Lett. 94 025003Google Scholar

    [2]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A D, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [3]

    Ben-Ismail A, Lundh O, Rechatin C, Lim J K, Faure J, Corde S, Malka V 2011 Appl. Phys. Lett. 98 264101Google Scholar

    [4]

    Sarri G, Schumaker W, Piazza A D, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V, He Z H, Hou B X, Nees J A, Thomas A G R, Keitel C H, Zepf M, Krushelnick K 2013 Phys. Rev. Lett. 110 255002Google Scholar

    [5]

    Schlenvoigt H P, Haupt K, Debus A, Budde F, Jaroszynski D A 2008 Nat. Phys. 4 130Google Scholar

    [6]

    Giulietti A, Bourgeois N, Ceccotti T, Davoine X, Dobosz S, D’Oliveira P, Galimberti M, Galy J, Gamucci A, Giulietti D, Gizzi L A, Hamilton D J, Lefebvre E, Labate L, Marquès J R, Monot P, Popescu H, Réau F, Sarri G, Tomassini P, Martin P 2008 Phys. Rev. Lett. 101 105002Google Scholar

    [7]

    Pomerantz I, McCary E, Meadows A R, Arefiev A, Bernstein A C, Chester C, Cortez J, Donovan M E, Dyer G, Gaul E W, Hamilton D, Kuk D, Lestrade A C, Wang C, Ditmire T, Hegelich B M 2014 Phys. Rev. Lett. 113 184801Google Scholar

    [8]

    Cowan T E, Hunt A W, Phillips T W, Wilks S C, Perry M D, Brown C, Fountain W, Hatchett S, Johnson J, Key M H, Parnell T, Pennington D M, Snavely R A, Takahashi Y 2000 Phys. Rev. Lett. 84 903Google Scholar

    [9]

    Sorokovikova A, Arefiev AV, Mcguffey C, Qiao B, Robinson A P L, Wei H S, Mclean H S, Beg F N 2016 Phys. Rev. Lett. 116 155001Google Scholar

    [10]

    Malka G, Miquel J L 1996 Phys. Rev. Lett. 77 75Google Scholar

    [11]

    Pukhov A, Meyer-ter-Vehn J 1998 Phys. Plasmas 5 1880Google Scholar

    [12]

    Culfa O, Tallents G J, Wagenaars E, Ridgers C P, Dance R J, Rossall A K, Gray R J, McKenna P, Brown C D R, James S F, Hoarty D J, Booth N, Robinson A P L, Lancaster K L, Pikuz S A, Faenov A Y, Kampfer T, Schulze K S, Uschmann I, Woolsey N S 2014 Phys. Plasmas 21 043106Google Scholar

    [13]

    Ting A, Moore C I, Krushelnick K, Manka C, Esarey E, Sprangle P, Hubbard R, Burris H R, Fischer R, Baine M 1997 Phys. Plasmas 4 1889Google Scholar

    [14]

    Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Phys. Control. Fusion 57 113001Google Scholar

    [15]

    Gibbon P, Andreev A A, Platonov K Y 2012 Plasma Phys. Control. Fusion 54 045001Google Scholar

    [16]

    Young P E, Hammer J H, Wilks S C, Kruer W L 1995 Phys. Plasmas 2 2825Google Scholar

    [17]

    Sarri G, Dieckmann M E, Brown C R D, Cecchetti C A, Hoarty D J, James S F, Jung R, Kourakis I, Schamel H, Willi O, Borghesi M 2010 Phys. Plasmas 17 010701Google Scholar

    [18]

    Friou A, Lefebvre E, Gremillet L 2012 Phys. Plasmas 19 022704Google Scholar

    [19]

    Pukhov A, Meyer-Ter-Vehn J N 1996 Phys. Rev. Lett. 76 3975Google Scholar

    [20]

    Lasinski B F, Langdon A B, Hatchett S P, Key M H, Tabak M 1999 Phys. Plasmas 6 2041Google Scholar

    [21]

    Li G, Yan R, Ren C, Wang T L, Tonge J, Mori W B 2008 Phys. Rev. Lett. 100 125002Google Scholar

    [22]

    Arefiev A V, Robinson A, Khudik V N 2015 Phys. Plasmas 81 475810404Google Scholar

    [23]

    Arefiev A V, Khudik VN, Robinson A, Shvets G, Willingale L, Schollmeier M 2016 Phys. Plasmas 23 056309Google Scholar

  • 图 1  针对出射电子束测量的实验方案示意图 (a)单皮秒激光驱动平面薄膜靶方式; (b)纳秒、皮秒长短脉冲联合驱动平面薄膜靶方式

    Figure 1.  Experimental scheme for the measurement of outgoing electron beams: (a) A film target driven by a single ps laser; (b) a film target jointly driven by long ps and short ns pulse lasers.

    图 2  由EMS1测量得到的单发次激光入射方向的电子能谱图像 (a)单皮秒激光驱动平面靶; (b) 纳秒、皮秒长短脉冲联合驱动平面靶

    Figure 2.  Electron energy spectrum image of the laser incident direction measured by EMS1: (a) A film target driven by a single ps laser; (b) a film target driven by ns and ps lasers.

    图 3  由EMS1与EMS2记录图像处理之后的电子能谱分布曲线

    Figure 3.  Electronic spectrum distribution curves recorded by EMS1 and EMS2.

    图 4  针对带陡峭分布预等离子体层固体靶进行数值模拟的结果 (a)激光场分布; (b)电子密度分布

    Figure 4.  Numerical simulation results of a solid target with a steeply distributed pre-plasma: (a) Laser field distribution; (b) electron density distribution.

    图 5  针对低密度均匀等离子体进行数值模拟的结果 (a)激光场分布; (b)电子密度分布

    Figure 5.  Numerical simulation results for low-density uniform plasma: (a) Laser field distribution; (b) electron density distribution.

    图 6  两种情况对应的前向电子能谱模拟结果

    Figure 6.  Simulation results of the forward electron spectrum corresponding to the two cases.

    图 7  三种产生伽马射线的实验方案示意图 (a)长短脉冲联合驱动双靶; (b)单脉冲驱动双靶; (c)单脉冲驱动单靶

    Figure 7.  Experimental schemes for generating gamma rays: (a) Dual targets driven by ns and ps lasers; (b) dual targets driven by a ps laser; (c) a target driven by a ps laser.

    图 8  双靶结构示意图(a)及实物照片(b)

    Figure 8.  Schematic diagram of dual target structure (a) and actual photo (b).

    图 9  三种条件对应的单发次实验伽马射线的能谱分布, 其中a-1, b-1, c-1对应γ-1测量的数据, a-2, b-2, c-2对应γ-2测量的数据

    Figure 9.  Spectrum distribution of gamma rays corresponding to the three conditions. a-1, b-1, and c-1 correspond to the data from γ-1, and a-2, b-2, and c-2 correspond to the data from γ-2.

    图 10  伽马射线角分布的测量方案示意图

    Figure 10.  Experimental schemes for measuring spatial distribution of gamma-ray.

    图 11  不同方向测量得到的伽马射线能谱分布 (a)长短脉冲联合驱动双靶; (b)单脉冲驱动单靶

    Figure 11.  Spatial distributions of gamma-ray energy spectra: (a) Dual targets driven by ns and ps lasers; (b) a target driven by a ps laser.

    图 12  方案(a)与方案(c)的伽马射线能谱空间分布对比

    Figure 12.  Comparison of spatial distributions of gamma-ray energy spectra between scheme-(a) and scheme-(c).

    图 13  不同时间间隔条件下对应的伽马射线的能谱分布

    Figure 13.  Spectrum distribution of gamma rays under different time interval.

    表 1  不同能量处3种方案获得的伽马射线强度

    Table 1.  Gamma ray intensity obtained by the three schemes at different energies.

    能量/MeV伽马射线强度/108
    a-1b-1c-1(a c)/c(b c)/c
    0.555.638.640.139%–3.7%
    1.015.39.347.7996%20%
    1.57.564.583.78100%21%
    2.05.603.422.80100%22%
    DownLoad: CSV
  • [1]

    Glinec Y, Faure J, Dain L L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F, Mercier B, Malka V 2005 Phys. Rev. Lett. 94 025003Google Scholar

    [2]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A D, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [3]

    Ben-Ismail A, Lundh O, Rechatin C, Lim J K, Faure J, Corde S, Malka V 2011 Appl. Phys. Lett. 98 264101Google Scholar

    [4]

    Sarri G, Schumaker W, Piazza A D, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V, He Z H, Hou B X, Nees J A, Thomas A G R, Keitel C H, Zepf M, Krushelnick K 2013 Phys. Rev. Lett. 110 255002Google Scholar

    [5]

    Schlenvoigt H P, Haupt K, Debus A, Budde F, Jaroszynski D A 2008 Nat. Phys. 4 130Google Scholar

    [6]

    Giulietti A, Bourgeois N, Ceccotti T, Davoine X, Dobosz S, D’Oliveira P, Galimberti M, Galy J, Gamucci A, Giulietti D, Gizzi L A, Hamilton D J, Lefebvre E, Labate L, Marquès J R, Monot P, Popescu H, Réau F, Sarri G, Tomassini P, Martin P 2008 Phys. Rev. Lett. 101 105002Google Scholar

    [7]

    Pomerantz I, McCary E, Meadows A R, Arefiev A, Bernstein A C, Chester C, Cortez J, Donovan M E, Dyer G, Gaul E W, Hamilton D, Kuk D, Lestrade A C, Wang C, Ditmire T, Hegelich B M 2014 Phys. Rev. Lett. 113 184801Google Scholar

    [8]

    Cowan T E, Hunt A W, Phillips T W, Wilks S C, Perry M D, Brown C, Fountain W, Hatchett S, Johnson J, Key M H, Parnell T, Pennington D M, Snavely R A, Takahashi Y 2000 Phys. Rev. Lett. 84 903Google Scholar

    [9]

    Sorokovikova A, Arefiev AV, Mcguffey C, Qiao B, Robinson A P L, Wei H S, Mclean H S, Beg F N 2016 Phys. Rev. Lett. 116 155001Google Scholar

    [10]

    Malka G, Miquel J L 1996 Phys. Rev. Lett. 77 75Google Scholar

    [11]

    Pukhov A, Meyer-ter-Vehn J 1998 Phys. Plasmas 5 1880Google Scholar

    [12]

    Culfa O, Tallents G J, Wagenaars E, Ridgers C P, Dance R J, Rossall A K, Gray R J, McKenna P, Brown C D R, James S F, Hoarty D J, Booth N, Robinson A P L, Lancaster K L, Pikuz S A, Faenov A Y, Kampfer T, Schulze K S, Uschmann I, Woolsey N S 2014 Phys. Plasmas 21 043106Google Scholar

    [13]

    Ting A, Moore C I, Krushelnick K, Manka C, Esarey E, Sprangle P, Hubbard R, Burris H R, Fischer R, Baine M 1997 Phys. Plasmas 4 1889Google Scholar

    [14]

    Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Phys. Control. Fusion 57 113001Google Scholar

    [15]

    Gibbon P, Andreev A A, Platonov K Y 2012 Plasma Phys. Control. Fusion 54 045001Google Scholar

    [16]

    Young P E, Hammer J H, Wilks S C, Kruer W L 1995 Phys. Plasmas 2 2825Google Scholar

    [17]

    Sarri G, Dieckmann M E, Brown C R D, Cecchetti C A, Hoarty D J, James S F, Jung R, Kourakis I, Schamel H, Willi O, Borghesi M 2010 Phys. Plasmas 17 010701Google Scholar

    [18]

    Friou A, Lefebvre E, Gremillet L 2012 Phys. Plasmas 19 022704Google Scholar

    [19]

    Pukhov A, Meyer-Ter-Vehn J N 1996 Phys. Rev. Lett. 76 3975Google Scholar

    [20]

    Lasinski B F, Langdon A B, Hatchett S P, Key M H, Tabak M 1999 Phys. Plasmas 6 2041Google Scholar

    [21]

    Li G, Yan R, Ren C, Wang T L, Tonge J, Mori W B 2008 Phys. Rev. Lett. 100 125002Google Scholar

    [22]

    Arefiev A V, Robinson A, Khudik V N 2015 Phys. Plasmas 81 475810404Google Scholar

    [23]

    Arefiev A V, Khudik VN, Robinson A, Shvets G, Willingale L, Schollmeier M 2016 Phys. Plasmas 23 056309Google Scholar

  • [1] Yan Shao-Qi, Gao Ji-Kun, Chen Yue, Ma Yao, Zhu Xiao-Dong. Low-density plasmas generated by electron beams passing through silicon nitride window. Acta Physica Sinica, 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [2] Sun Ting, Wang Yu, Guo Ren-Tong, Lu Zhi-Wei, Li Jian-Xing. Review on laser-driven high-energy polarized electron and positron beams and γ-rays. Acta Physica Sinica, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [3] Li Yao-Jun, Yue Dong-Ning, Deng Yan-Qing, Zhao Xu, Wei Wen-Qing, Ge Xu-Lei, Yuan Xiao-Hui, Liu Feng, Chen Li-Ming. Proton imaging of relativistic laser-produced near-critical-density plasma. Acta Physica Sinica, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [4] Zhang Xiao-Hui, Dong Ke-Gong, Hua Jian-Fei, Zhu Bin, Tan Fang, Wu Yu-Chi, Lu Wei, Gu Yu-Qiu. Transverse distribution of electron beam produced by relativistic picosecond laser in underdense plasma. Acta Physica Sinica, 2019, 68(19): 195203. doi: 10.7498/aps.68.20191106
    [5] Liu Zhen, Yang Xiao-Chao, Zhang Xiao-Xin, Zhang Shen-Yi, Yu Qing-Long, Zhang Xin, Xue Bing-Sen, Guo Jian-Guang, Zong Wei-Guo, Shen Guo-Hong, Bai Chao-Ping, Zhou Ping, Ji Wen-Tao. On-orbit cross-calibration and assimilation for relativistic electron observations from FengYun 4A and GOES-13. Acta Physica Sinica, 2019, 68(15): 159401. doi: 10.7498/aps.68.20190433
    [6] Su Dong, Tang Chang-Jian. Self-focus and transmission of relativistic electron beam in a dynamically loaded plasma. Acta Physica Sinica, 2012, 61(4): 042501. doi: 10.7498/aps.61.042501
    [7] Liu San-Qiu, Guo Hong-Mei. Transverse dispersion laws in ultra-relativistic plasma with fast electron distribution. Acta Physica Sinica, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [8] Xu Hui, Sheng Zheng-Ming, Zhang Jie. Vlasov simulation of the relativistic effect on the breaking of large amplitude plasma waves. Acta Physica Sinica, 2007, 56(2): 968-976. doi: 10.7498/aps.56.968
    [9] Liu Jiong, Yuan Ye-Fei, Deng Xiao-Long. Characteristics of the synchrotron radiation from relativistic electrons in plasma. Acta Physica Sinica, 2007, 56(2): 1214-1223. doi: 10.7498/aps.56.1214
    [10] Xu Hui, Sheng Zheng-Ming, Zhang Jie. Relativistic effects on resonance absorption in laser-plasma interaction. Acta Physica Sinica, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [11] Wang Chen, Wang Wei, Sun Jin-Ren, Fang Zhi-Heng, Wu Jiang, Fu Si-Zu, Ma Wei-Xin, Gu Yuan, Wang Shi-Ji, Zhang Guo-Ping, Zheng Wu-Di, Zhang Tan-Xin, Peng Hui-Min, Shao Ping, Yi Kui, Lin Zun-Qi, Wang Zhan-Shan, Wang Hong-Chang, Zhou Bin, Chen Ling-Yan. Experimental diagnoses of plasma electron density by interferometry using an x-ray laser as probe. Acta Physica Sinica, 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [12] Duan Wen-Shan, Hong Xue-Ren. Ion acoustic solitary waves in a weakly relativistic plasma under transverse p erturbations. Acta Physica Sinica, 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [13] Fu Xi-Quan, Liu Cheng-Yi, Guo Hong. . Acta Physica Sinica, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [14] Wang Chen, Gu Yuan, Fu Si-Zu, Zhou Guan-Lin, Wu Jiang, Wang Wei, Sun Yu-Qin, Dong Jia-Xin, Sun Jin-Ren, Wang Rui-Rong, Ni Yuan-Long, Wan Bing-Gen, Huang Guang-Long, Zhang Guo-Peng, Lin Zun-Qi, Wang Shi-Ji. . Acta Physica Sinica, 2002, 51(4): 847-851. doi: 10.7498/aps.51.847
    [15] QU YI-ZHI, GONG XIAO-MIN, LI JIA-MING. RELATIVISTIC EFFECT IN INELASTIC COLLISION OF ELECTRON WITH ATOM OR ION. Acta Physica Sinica, 1995, 44(11): 1719-1726. doi: 10.7498/aps.44.1719
    [16] ZHOU XIAO-BING, WANG ZHI-JUN, SHENG GUANG-ZHAO. RELATIVISTICALLY STOCHASTIC ACCELERATION OF ELECTRONS IN PLASMA DRIVEN BY A STANDING WAVE. Acta Physica Sinica, 1995, 44(11): 1776-1782. doi: 10.7498/aps.44.1776
    [17] WU JUN-LING. THE RELATIVISTIC ELECTRON CYCLOTRON WAVE DISPERSION RELATION IN PLASMA. Acta Physica Sinica, 1993, 42(5): 775-784. doi: 10.7498/aps.42.775
    [18] MA JING-XIU, XU ZHI-ZHAN. EXCITATION OF ELECTRON PLASMA WAVES BY BEATING TWO SELF-TRAPPED LASER BEAMS. Acta Physica Sinica, 1988, 37(5): 735-742. doi: 10.7498/aps.37.735
    [19] GUO SHI-CHONG, CAI SHI-DONG. DISPERSION RELATION OF GENERAL MAGNETICALLY CONFINED WEAK RELATIVISTIC PLASMAS. Acta Physica Sinica, 1987, 36(7): 870-880. doi: 10.7498/aps.36.870
    [20] CHEN YAN-PING, ZHOU YU-MEI. ECRH IN NON-THERMAL EQUILIBRIUM PLASMAS IN WEAKLY RELATIVISTIC REGIME. Acta Physica Sinica, 1984, 33(7): 1050-1057. doi: 10.7498/aps.33.1050
Metrics
  • Abstract views:  3689
  • PDF Downloads:  53
  • Cited By: 0
Publishing process
  • Received Date:  03 November 2021
  • Accepted Date:  13 June 2022
  • Available Online:  17 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回