Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A kind of single trench 19-core single-mode heterogeneous fiber with low crosstalk and anti-bending performance

Ma Li-Ling Li Shu-Guang Li Jian-She Meng Xiao-Jian Li Zeng-Hui Wang Lu-Yao Shao Peng-Shuai

Citation:

A kind of single trench 19-core single-mode heterogeneous fiber with low crosstalk and anti-bending performance

Ma Li-Ling, Li Shu-Guang, Li Jian-She, Meng Xiao-Jian, Li Zeng-Hui, Wang Lu-Yao, Shao Peng-Shuai
PDF
HTML
Get Citation
  • The rapid growth of the demand for optical communication capacity promotes optical fiber communication technology. As a method to break through the capacity limitation of conventional single-mode fiber, multi-core fiber based on space division multiplexing technology has attracted extensive attention. In order to respond to the capacity of traditional single-mode fiber positively, we design a scheme of single-mode multi-core fiber combining the arrangement of heterogeneous fiber cores with secondary structure of low refractive index trench. The scheme consists of nineteen fiber cores arranged in a hexagonal closed-packed structure. Heterogeneous trench-assisted multi-core fiber (Hetero-TA-MCF) has low inter-core crosstalk and excellent anti-bending performance. Compared with conventional single-mode fiber, the Hetero-TA-MCF has the large transmission capacity and average effective area of each core of about 80 μm2. The transmission capacity of 19 cores is equivalent to the sum of the transmission capacities of 19 single-core single-mode fibers. We use COMSOL Multiphysics to simulate the fiber structure, finding the parameters that affect the properties of the fiber, selecting parameters and structures for optimal performance. Then we calculate the transmission characteristics by the finite element method,and the results of substantive simulating compute are as follows. The Hetero-TA-MCF achieves a low inter-core crosstalk (XT) of about –39 dB/100 km so that each core can be transmitted as a separate channe. It meets the standard of multi-core fiber long distance transmission. The XT of the heterogeneous 19-core single-mode fiber is suitable for multi-core fiber long distance transmission standards. The bending loss of the outermost fiber core is –7.7×10–5 dB/m when the bending radius is 10 cm, which reflects the low loss characteristics of the structure. The nonlinear coefficients of three kinds of core are 1.28 W–1·km–1, 1.31 W–1·km–1, and 1.30 W–1·km–1 respectively, reducing the nonlinear effect of optical fiber effectively; the dispersions of three kinds of cores are less than 24 ps/(nm·km). In addition, the steady single-mode transmission is achieved in C+L band. Compared with traditional single-mode fiber and single-trench homogeneous fiber, the proposed fiber in this work has low crosstalk, good bending resistance and large mode field area, which is suitable for long distance and large capacity transmission in space division multiplexing system.
      Corresponding author: Li Shu-Guang, shuguangli@ysu.edu.cn
    • Funds: Project is supported by National Key Research and Development Project of China (Grant No. 2019YFB2204001), the National Natural Science Foundation of China (Grant No.12074331).
    [1]

    Saitoh K, Matsuo S 2016 J. Light. Technol. 34 55Google Scholar

    [2]

    Cai J X, Cai Y, Davidson C R, Lucero A, Zhang H, Foursa D G, Sinkin O V, Patterson W W, Pilipetskii A, Mohs G, Bergano N S 2011 Conference on Optical Fiber Communication (OFC)/National Fiber Optic Engineers Conference(NFOEC) Los Angeles, California United States, March 6–10, 2011

    [3]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [4]

    Li Z H, Wang L Y, Wang Y, Li S G, Meng X J, Guo Y, Wang G R, Zhang H, Cheng T L, Xu W W, Qin Y, Zhou H 2021 Opt. Express 29 26418Google Scholar

    [5]

    Sakamoto T, Saitoh K, Saitoh S, Shibahara K, Wada M, Abe Y, Urushibara A, Takenaga K, Mizuno T, Matsui T, Aikawa K, Miyamoto Y, Nakajima K 2018 J. Light. Technol. 36 1226Google Scholar

    [6]

    Ye F H, Tu J J, Saitoh K, Morioka T 2014 Opt. Express 22 23007Google Scholar

    [7]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saitoh K, Koshiba M 2011 Conference on Optical Fiber Communication (OFC)/National Fiber Optic Engineers Conference (NFOEC) Los Angeles, California United States, March 6–10, 2011

    [8]

    靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生 2017 物理学报 66 024210Google Scholar

    Jin W X, Ren G B, Pei L, Jiang Y C, Wu Y, Shen Y, Yang Y G, Ren W H, Jian S S 2017 Acta Phys. Sin. 66 024210Google Scholar

    [9]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photon. Technol. Lett. 24 1914Google Scholar

    [10]

    Egorova O N, Semjonov S L, Senatorov A K, Salganskii M Y, Koklyushkin A V, Nazarov V N, Korolev A E, Kuksenkov D V, Li M J, Dianov E M 2014 Opt. Lett. 39 2168Google Scholar

    [11]

    Tu J J, Saitoh K, Koshiba M, Takenaga K, Matsuo S 2013 J. Light. Technol. 31 2590Google Scholar

    [12]

    Tu J J, Saitoh K, Koshiba M, Takenaga K, Matsuo S 2012 Opt. Express 20 15157Google Scholar

    [13]

    Tu J J, Saitoh K, Takenaga K, Matsuo S 2014 Opt. Express 22 4329Google Scholar

    [14]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2011 Opt. Express 19 102Google Scholar

    [15]

    Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K, Sugizaki R, Kobayashi T, Watanabe M 2012 Optical Fiber Communication Conference Los Angeles, California United States, March 4–8, 2012

    [16]

    Amma Y, Sasaki Y, Takenaga K, Matsuo S, Tu J, Saitoh K, Koshiba M, Morioka T, Miyamoto Y 2015 Optical Fiber Communications Conference and Exhibition (OFC) Los Angeles, California United States, March 22–26, 2015

    [17]

    Xie X Q, Tu J J, Zhou X, Long K P, Saitoh K 2017 Opt. Express 25 5119Google Scholar

    [18]

    Ademgil H, Haxha S 2012 Opt. Commun. 285 1514Google Scholar

    [19]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2012 IEEE. Photon. J. 4 1987Google Scholar

    [20]

    Wang L Y, Li S G, Meng X J, Guo Y, Li Z H 2021 J. Opt. Soc. Am. B 38 3849Google Scholar

    [21]

    李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾 2021 物理学报 70 104208Google Scholar

    Li Z H, Li S G, Li J S, Wang L Y, Wang X K, Wang Y, Gong L, Cheng T L 2021 Acta Phys. Sin. 70 104208Google Scholar

    [22]

    Wang L Y, Li S G, Li J S, Meng X J, Guo Y, Li Z H, Wang X K, Wang Y 2021 Opt. Fiber Technol. 67 102721Google Scholar

    [23]

    Puttnam B J, Luís R S, Klaus W, et al. 2015 European Conference on Optical Communication (ECOC) Valencia, Spain, September 27–October 1, 2015

  • 图 1  单沟槽辅助型异质十九芯光纤

    Figure 1.  Schematic structure of heterogeneous trench-assisted 19-core fiber.

    图 2  纤芯折射率分布

    Figure 2.  Refractive index profile of adjacent fiber-core.

    图 3  芯间串扰与沟槽宽度的关系

    Figure 3.  The relation between crosstalk and trench width.

    图 4  芯间串扰与沟槽相对折射率之间的关系

    Figure 4.  Relation between crosstalk and the relative refractive index of the trench.

    图 5  不同纤芯间的串扰与弯曲半径之间的关系 (a)纤芯1和纤芯2之间的串扰; (b)纤芯1和纤芯3之间的串扰; (c)纤芯2和纤芯3之间的串扰

    Figure 5.  Crosstalk dependence on bending radius of (a) Core 1-Core 2; (b) Core 1-Core 3 and (c) Core 2-Core 3.

    图 6  弯曲半径增加到3000—5000 mm时的芯间串扰

    Figure 6.  Crosstalk dependence on bending radius (Rpk = 3000–5000 mm).

    图 7  芯间串扰与工作波长的关系

    Figure 7.  The relationship between crosstalk and wavelength.

    图 8  有效模场面积与工作波长的关系

    Figure 8.  The relationship between Aeff and wavelength.

    图 9  (a)弯曲损耗与芯间距的关系; (b)芯间串扰与芯间距的关系

    Figure 9.  Bending loss and crosstalk dependence on core pitch: (a) Bending loss; (b)crosstalk.

    图 10  色散与波长的关系

    Figure 10.  The relation between the dispersion and wavelength.

    图 11  非线性系数与波长的关系

    Figure 11.  The relationship between nonlinear coefficient and wavelength.

    图 12  十九芯异质光纤预制棒的制备流程

    Figure 12.  Fabrication process of 19-core heterogeneous fiber preform.

    表 1  光纤的初始参数

    Table 1.  The initial fiber parameters.

    参数纤芯 1纤芯 2纤芯 3
    纤芯半径/μm4.794.874.83
    纤芯与包层的相对折射率差/%0.260.310.29
    沟槽宽度/μm4.5
    沟槽与包层的相对折射率差/%–0.5
    芯间距/μm42
    包层直径 / μm240
    DownLoad: CSV

    表 2  十九芯单模异质光纤的结构参数

    Table 2.  The parameters of the final proposed structure.

    参数纤芯1 /纤芯2 /纤芯3
    纤芯半径/μm4.79/4.87/4.83
    纤芯与包层的相对折射率差/%0.26/0.31/0.29
    芯间距/μm42
    包层直径/μm240
    DownLoad: CSV

    表 3  几种多芯光纤性能对比

    Table 3.  Comparison of performance of several multi-core fibers.

    多芯光纤纤芯数量串扰Aeff/μm2
    沟槽辅助型[7]7–35 dB/100 km70.7
    十九芯同质光纤[15]19–42 dB/ km71.5
    二十二芯光纤[23]22–45 dB/ km~75
    棒辅助型异质结构光纤[17]32–31 dB/100 km74
    沟槽辅助型十九芯异质结构光纤19–39.5 dB/100 km~80
    DownLoad: CSV
  • [1]

    Saitoh K, Matsuo S 2016 J. Light. Technol. 34 55Google Scholar

    [2]

    Cai J X, Cai Y, Davidson C R, Lucero A, Zhang H, Foursa D G, Sinkin O V, Patterson W W, Pilipetskii A, Mohs G, Bergano N S 2011 Conference on Optical Fiber Communication (OFC)/National Fiber Optic Engineers Conference(NFOEC) Los Angeles, California United States, March 6–10, 2011

    [3]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [4]

    Li Z H, Wang L Y, Wang Y, Li S G, Meng X J, Guo Y, Wang G R, Zhang H, Cheng T L, Xu W W, Qin Y, Zhou H 2021 Opt. Express 29 26418Google Scholar

    [5]

    Sakamoto T, Saitoh K, Saitoh S, Shibahara K, Wada M, Abe Y, Urushibara A, Takenaga K, Mizuno T, Matsui T, Aikawa K, Miyamoto Y, Nakajima K 2018 J. Light. Technol. 36 1226Google Scholar

    [6]

    Ye F H, Tu J J, Saitoh K, Morioka T 2014 Opt. Express 22 23007Google Scholar

    [7]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saitoh K, Koshiba M 2011 Conference on Optical Fiber Communication (OFC)/National Fiber Optic Engineers Conference (NFOEC) Los Angeles, California United States, March 6–10, 2011

    [8]

    靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生 2017 物理学报 66 024210Google Scholar

    Jin W X, Ren G B, Pei L, Jiang Y C, Wu Y, Shen Y, Yang Y G, Ren W H, Jian S S 2017 Acta Phys. Sin. 66 024210Google Scholar

    [9]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photon. Technol. Lett. 24 1914Google Scholar

    [10]

    Egorova O N, Semjonov S L, Senatorov A K, Salganskii M Y, Koklyushkin A V, Nazarov V N, Korolev A E, Kuksenkov D V, Li M J, Dianov E M 2014 Opt. Lett. 39 2168Google Scholar

    [11]

    Tu J J, Saitoh K, Koshiba M, Takenaga K, Matsuo S 2013 J. Light. Technol. 31 2590Google Scholar

    [12]

    Tu J J, Saitoh K, Koshiba M, Takenaga K, Matsuo S 2012 Opt. Express 20 15157Google Scholar

    [13]

    Tu J J, Saitoh K, Takenaga K, Matsuo S 2014 Opt. Express 22 4329Google Scholar

    [14]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2011 Opt. Express 19 102Google Scholar

    [15]

    Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K, Sugizaki R, Kobayashi T, Watanabe M 2012 Optical Fiber Communication Conference Los Angeles, California United States, March 4–8, 2012

    [16]

    Amma Y, Sasaki Y, Takenaga K, Matsuo S, Tu J, Saitoh K, Koshiba M, Morioka T, Miyamoto Y 2015 Optical Fiber Communications Conference and Exhibition (OFC) Los Angeles, California United States, March 22–26, 2015

    [17]

    Xie X Q, Tu J J, Zhou X, Long K P, Saitoh K 2017 Opt. Express 25 5119Google Scholar

    [18]

    Ademgil H, Haxha S 2012 Opt. Commun. 285 1514Google Scholar

    [19]

    Koshiba M, Saitoh K, Takenaga K, Matsuo S 2012 IEEE. Photon. J. 4 1987Google Scholar

    [20]

    Wang L Y, Li S G, Meng X J, Guo Y, Li Z H 2021 J. Opt. Soc. Am. B 38 3849Google Scholar

    [21]

    李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾 2021 物理学报 70 104208Google Scholar

    Li Z H, Li S G, Li J S, Wang L Y, Wang X K, Wang Y, Gong L, Cheng T L 2021 Acta Phys. Sin. 70 104208Google Scholar

    [22]

    Wang L Y, Li S G, Li J S, Meng X J, Guo Y, Li Z H, Wang X K, Wang Y 2021 Opt. Fiber Technol. 67 102721Google Scholar

    [23]

    Puttnam B J, Luís R S, Klaus W, et al. 2015 European Conference on Optical Communication (ECOC) Valencia, Spain, September 27–October 1, 2015

  • [1] Zhang Yuan, Jiang Wen-Fan, Chen Ming-Yang. Design of ring-core few-mode multi-core fiber with low crosstalk and low bending loss. Acta Physica Sinica, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [2] Wang Yan, Han Ying, Li Zeng-Hui, Gong Lin, Wang Lu-Yao, Li Shu-Guang. A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation. Acta Physica Sinica, 2022, 71(2): 024205. doi: 10.7498/aps.71.20210974
    [3] An Yi, Pan Zhi-Yong, Yang Huan, Huang Liang-Jin, Ma Peng-Fei, Yan Zhi-Ping, Jiang Zong-Fu, Zhou Pu. 400-W single-mode single-frequency laser output from homemade tapered fiber. Acta Physica Sinica, 2021, 70(20): 204204. doi: 10.7498/aps.70.20210682
    [4] Sun Jia-Cheng, Wang Ting-Ting, Dai Yang, Chang Jian-Hua, Ke Wei. Multi-parameter measurement sensor based on no-core fiber. Acta Physica Sinica, 2021, 70(6): 064202. doi: 10.7498/aps.70.20201474
    [5] Zheng Si-Wen, Liu Ya-Zhuo, Luo Xiao-Ling, Wang Li-Hui, Zhang Na, Zhang Jing-Jing, Jin Chuan-Yang, Xu Bing-Li, Qu Qiang, Chen Ling. Application and analysis of three-layer-core structure in single-mode large-mode-area fiber with low bending loss. Acta Physica Sinica, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [6] A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210974
    [7] Li Zeng-Hui, Li Shu-Guang, Li Jian-She, Wang Lu-Yao, Wang Xiao-Kai, Wang Yan, Gong Lin, Cheng Tong-Lei. Double-trench assisted thirteen-core five-mode fibers with low crosstalk and low non-linearity. Acta Physica Sinica, 2021, 70(10): 104208. doi: 10.7498/aps.70.20201825
    [8] Jin Wen-Xing, Ren Guo-Bin, Pei Li, Jiang You-Chao, Wu Yue, Shen Ya, Yang Yu-Guang, Ren Wen-Hua, Jian Shui-Sheng. Dual-mode large-mode-area multi-core fiber with circularly arranged airhole cores. Acta Physica Sinica, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [9] Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing. A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Physica Sinica, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [10] Cui Lu, Tang Yi, Zhu Qing-Wei, Luo Jia-Bin, Hu Shan-Shan. Analysis of channel crosstalk in muliti-spectrum visible light communication system. Acta Physica Sinica, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [11] Zhou Yu-Zhu, Huang Li-li, Chai Lu, Wang Qing-Yue, Hu Ming-Lie. The beam combination of multi-core photonic crystal fiber by using the Kagome fiber. Acta Physica Sinica, 2016, 65(2): 024206. doi: 10.7498/aps.65.024206
    [12] Xu Min-Nan, Zhou Gui-Yao, Chen Cheng, Hou Zhi-Yun, Xia Chang-Ming, Zhou Gai, Liu Hong-Zhan, Liu Jian-Tao, Zhang Wei. Analysis of a novel four-mode micro-structured fiber with low-level crosstalk and high mode differential group delay. Acta Physica Sinica, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [13] Sheng Xin-Zhi, Lou Shu-Qin, Yin Guo-Lu, Lu Wen-Liang, Wang Xin. A high-compatibility low-bending-loss photonic crystal fiber with standard single mode fiber. Acta Physica Sinica, 2013, 62(10): 104217. doi: 10.7498/aps.62.104217
    [14] Liu Bao-Jun, Cai Li. Analytical model of single event crosstalk in near space. Acta Physica Sinica, 2012, 61(19): 196103. doi: 10.7498/aps.61.196103
    [15] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [16] Wang Chun-Can, Zhang Fan, Tong Zhi, Ning Ti-Gang, Jian Shui-Sheng. Study on the suppression of the stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifier. Acta Physica Sinica, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [17] Liu Xiao-Yi, Zhang Fang-Di, Zhang Min, Ye Pei-Da. Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect. Acta Physica Sinica, 2007, 56(1): 301-307. doi: 10.7498/aps.56.301
    [18] Tan Zhong-Wei, Cao Ji-Hong, Chen Yong, Liu Yan, Ning Ti-Gang, Jian Shui-Sheng. Multi-wavelength dispersion compensator based on fiber gratings with low crosstalk. Acta Physica Sinica, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [19] Zhang Fang-Di, Liu Xiao-Yi, Zhang Min, Ye Pei-Da. Numerical simulation of a novel rectangular-lattice single-polarization single-mode photonic crystal fiber. Acta Physica Sinica, 2006, 55(12): 6447-6453. doi: 10.7498/aps.55.6447
    [20] Xiang Wang-Hua, Chen Xiao-Wei, Tan Bin, Zhang Gui-Zhong. A study on monocycle optical pulse generation by crossed phase modulation in a single-mode fiber. Acta Physica Sinica, 2004, 53(1): 137-144. doi: 10.7498/aps.53.137
Metrics
  • Abstract views:  3845
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2021
  • Accepted Date:  28 January 2022
  • Available Online:  21 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回