-
Lithium-ion battery is one of the most versatile energy storage technologies today, and the reliability and safety of lithium battery have always been the target pursued by the industry all the time, so it is particularly important to accurately monitor the safety status of the battery. Actually, the ultimate cause of all lithium battery safety problems lies in the thermal runaway inside the lithium battery. In order to overcome the current problems of temperature measurement systems, such as low accuracy and insufficient stability for long-time operation at relatively high temperature, a temperature monitoring system of quasi-distributed lithium battery based on double clad Fiber Bragg Grating (FBG) is proposed in this work. After the monitoring of the temperature field and bulge deformation of 18650 lithium battery pack by building 4 channels and 16 double clad FBG points to monitor the temperature field and bulge deformation of 18650 lithium battery pack, the results show that the points with abnormal temperature rise caused by short circuit and other problems can be accurately determined under the temperature of 0–450 ℃, with the corresponding temperature sensitivity of 10 pm/℃, and the resolution of 0.1 ℃. The double clad FBG attached to the surface of the lithium battery shell can also monitor the bulge deformation on the surface of the battery shell, and its longitudinal pressure modification sensitivity is up to 142 pm/N. The temperature field monitoring system of quasi-distributed lithium battery pack based on double clad FBG in this paper can not only ensure high-precision temperature and deformation measurement, but also have good stability and anti-interference ability, which shows that the research work in this paper is expected to provide a reliable theoretical and experimental basis for the safety monitoring and use of lithium battery pack.
-
Keywords:
- fiber Bragg grating sensor /
- double cladding fiber /
- lithium battery pack /
- temperature monitoring
[1] 黄彦瑜 2007 物理 36 643Google Scholar
Huang Y Y 2007 Physics 36 643Google Scholar
[2] Jun P, Shuhai J, Hongqiang Y, Xilong K, Shuming Y, Shouping X 2021 IEEE Sens. J. 21 4628Google Scholar
[3] 姜德生, 何伟 2002 光电子·激光 04 420Google Scholar
Jiang D S, He W 2002 J. Optoelectron. Laser 04 420Google Scholar
[4] Li B, Parekh M H, Adams R A, Adams T E, Love C T, Pol V G, Tomar V 2019 Sci. Rep. 9 1Google Scholar
[5] 余有龙, 谭华耀, 锺永康 2001 光学学报 21 987Google Scholar
Yu Y L, Tan H Y, Zhong Y K 2001 Acta Opt. Sin. 21 987Google Scholar
[6] Ee Y J, Tey K S, Lim K S, Shrivastava P, Adnan S, Ahmad H 2021 J. Energy Storage 40 102704Google Scholar
[7] Nascimento M, Paixão T, Ferreira M S, Pinto J 2018 Batteries 4 67Google Scholar
[8] Huang J Q, Blanquer L A, Bonefacino J, Logan E R, Dalla Corte D A, Charles D, Delacourt C, Gallant B M, Boles S T, Dahn J R, Tam H Y, Tarascon J M 2020 Nat. Energy 5 674Google Scholar
[9] Andrey W G, David, Julian W, Helmar W, Christoph S, Gisela F, Gernot V, Alexander T, Viktor H 2014 RSC Adv. 4 3633Google Scholar
[10] Rengaswamy S, Plamen A D, Bliss G C 2018 J. Power Sources 405 30Google Scholar
[11] Shasha L, Tomas V, Alexandros V, Frans O, Yaolin X, Zhaolong L, Zhengcao L, Marnix W 2018 Nat. Commun. 9 1Google Scholar
[12] 曹后俊, 司金海, 陈涛, 王瑞泽, 高博, 闫理贺, 侯洵 2018 中国激光 45 0702009Google Scholar
Cao H J, Si J H, Chen T, Wang R Z, Gao B, Yan L H, Hou X 2018 Chin. J. Lasers 45 0702009Google Scholar
[13] Meltz G, Morey W W, Glenn W H 1989 Opt. Lett. 14 823Google Scholar
[14] 徐团伟, 李芳, 刘育梁 2012 光学学报 32 241Google Scholar
Xu T W, Li F, Liu Y L 2012 Acta Opt. Sin. 32 241Google Scholar
[15] Nazmi A M, Nermeen M O 2018 J. Comput. Electron. 17 349Google Scholar
-
图 4 单模和双包层FBG不同温度下光谱图 (a) 单模FBG反射光谱演变; (b) 双包层FBG反射光谱演变; (c) FBG反射峰值强度随温度的变化; (d) 升温过程中FBG反射峰值强度随时间的变化; (e) 双包层FBG反射峰值强度在不同温度下随时间的变化; (f) FBG中心波长随温度变化
Figure 4. Spectra of single-mode and double clad FBG at different temperatures: (a) Reflection spectrum variation of single mode FBG; (b) reflection spectrum variation of double clad FBG; (c) variation of FBG reflection peak intensity with temperature; (d) variation of FBG reflection peak intensity with time during heating; (e) variation of double clad FBG reflection peak intensity with time at different temperatures; (f) FBG center wavelength varies with temperature.
表 1 E型热电偶与双包层FBG温度测量结果对比
Table 1. Comparison of temperature measurement results between E-type thermocouple and double clad FBG.
时间/
min温度/℃ 热电偶 FBG(1) 热电偶 FBG(2) 热电偶 FBG(3) 0 20.8 20.7 20.8 20.7 20.8 20.7 1 27.9 27.7 27.8 27.6 27.9 27.7 2 34.7 34.5 34.9 34.8 34.8 34.7 3 41.6 41.5 41.9 41.7 41.7 41.5 4 48.9 48.8 49.0 48.8 48.8 48.7 5 55.8 55.6 55.7 55.5 55.9 55.6 6 62.6 62.4 62.8 62.7 63 62.7 7 69.8 69.7 69.8 69.6 69.7 69.6 8 76.7 76.5 76.9 76.8 76.8 76.6 9 83.9 83.6 83.8 83.6 83.9 83.8 10 90.8 90.6 91 90.7 91.1 91 表 2 双包层FBG监测18650锂电池模组反射谱中心波长随时间变化数据
Table 2. Double clad FBG monitoring 18650 lithium battery module reflectance spectrum center wavelength change data with time.
时间/s 10 20 30 40 50 60 70 中心波长/nm 通道1 FBG11 1546.52 1546.55 1546.57 1546.59 1546.61 1546.62 1546.63 FBG12 1549.34 1549.36 1549.38 1549.39 1549.42 1549.43 1549.45 FBG13 1552.56 1552.57 1552.60 1552.61 1552.63 1552.64 1552.66 FBG14 1555.47 1555.50 1555.51 1555.53 1555.55 1555.56 1555.59 通道2 FBG21 1546.54 1546.55 1546.57 1546.59 1546.6 1546.62 1546.64 FBG22 1549.32 1549.34 1549.35 1549.38 1549.40 1549.42 1549.44 FBG23 1552.49 1552.52 1552.55 1552.57 1552.58 1552.60 1552.63 FBG24 1555.42 1555.43 1555.46 1555.48 1555.49 1555.51 1555.52 通道3 FBG31 1546.72 1546.86 1546.97 1547.25 1547.61 1548.11 1548.77 FBG32 1549.53 1549.67 1549.79 1550.03 1550.38 1550.91 1551.54 FBG33 1552.57 1552.59 1552.62 1552.64 1552.68 1552.7 1552.73 FBG34 1555.45 1555.49 1555.53 1555.57 1555.60 1555.64 1555.67 通道4 FBG41 1546.53 1546.57 1546.59 1546.61 1546.62 1546.61 1546.59 FBG42 1549.35 1549.37 1549.38 1549.41 1549.42 1549.44 1549.45 FBG43 1552.55 1552.57 1552.68 1552.80 1553.01 1553.34 1553.69 FBG44 1555.48 1555.53 1555.57 1555.59 1555.61 1555.58 1555.59 -
[1] 黄彦瑜 2007 物理 36 643Google Scholar
Huang Y Y 2007 Physics 36 643Google Scholar
[2] Jun P, Shuhai J, Hongqiang Y, Xilong K, Shuming Y, Shouping X 2021 IEEE Sens. J. 21 4628Google Scholar
[3] 姜德生, 何伟 2002 光电子·激光 04 420Google Scholar
Jiang D S, He W 2002 J. Optoelectron. Laser 04 420Google Scholar
[4] Li B, Parekh M H, Adams R A, Adams T E, Love C T, Pol V G, Tomar V 2019 Sci. Rep. 9 1Google Scholar
[5] 余有龙, 谭华耀, 锺永康 2001 光学学报 21 987Google Scholar
Yu Y L, Tan H Y, Zhong Y K 2001 Acta Opt. Sin. 21 987Google Scholar
[6] Ee Y J, Tey K S, Lim K S, Shrivastava P, Adnan S, Ahmad H 2021 J. Energy Storage 40 102704Google Scholar
[7] Nascimento M, Paixão T, Ferreira M S, Pinto J 2018 Batteries 4 67Google Scholar
[8] Huang J Q, Blanquer L A, Bonefacino J, Logan E R, Dalla Corte D A, Charles D, Delacourt C, Gallant B M, Boles S T, Dahn J R, Tam H Y, Tarascon J M 2020 Nat. Energy 5 674Google Scholar
[9] Andrey W G, David, Julian W, Helmar W, Christoph S, Gisela F, Gernot V, Alexander T, Viktor H 2014 RSC Adv. 4 3633Google Scholar
[10] Rengaswamy S, Plamen A D, Bliss G C 2018 J. Power Sources 405 30Google Scholar
[11] Shasha L, Tomas V, Alexandros V, Frans O, Yaolin X, Zhaolong L, Zhengcao L, Marnix W 2018 Nat. Commun. 9 1Google Scholar
[12] 曹后俊, 司金海, 陈涛, 王瑞泽, 高博, 闫理贺, 侯洵 2018 中国激光 45 0702009Google Scholar
Cao H J, Si J H, Chen T, Wang R Z, Gao B, Yan L H, Hou X 2018 Chin. J. Lasers 45 0702009Google Scholar
[13] Meltz G, Morey W W, Glenn W H 1989 Opt. Lett. 14 823Google Scholar
[14] 徐团伟, 李芳, 刘育梁 2012 光学学报 32 241Google Scholar
Xu T W, Li F, Liu Y L 2012 Acta Opt. Sin. 32 241Google Scholar
[15] Nazmi A M, Nermeen M O 2018 J. Comput. Electron. 17 349Google Scholar
Catalog
Metrics
- Abstract views: 5795
- PDF Downloads: 188
- Cited By: 0